Двигатели постоянного тока параллельного возбуждения. Виды возбуждения и схемы включения двигателей постоянного тока

Детские товары 07.07.2019
Детские товары

Все рабочие характеристики двигателя постоянного тока, как и генератора, зависят от способа включения цепи возбуждения по отношению к цепи якоря. Соединение этих цепей может быть параллельным, последовательным, смешанным и, наконец, они могут быть независимы друг от друга.

Двигатели с параллельным возбуждением.

Здесь обмотка возбуждения и обмотка якоря соединены параллельно. Обмотка возбуждения имеет большее количество витков, чем обмотка якоря, поэтому ток обмотки возбуждения в большинстве случаев составляет несколько процентов от тока якоря. В цепь обмотки возбуждения может включаться регулировочный реостат. В цепь якоря включается пусковой реостат ПР.

Двигатель с независимым возбуждением.

Если обмотку возбуждения подключить к другому источнику постоянного напряжения, то получим двигатель с независимым возбуждением. Такими же свойствами обладают электродвигатели с постоянным магнитом.

Скоростная характеристика двигателей с независимым и параллельным возбуждением – это зависимость n

= f (Iя) при U = const и Iе = const, где

n - скорость

Iя - ток якоря

Iе - ток возбуждения.


Рис.8.5.4. Скоростная характеристика.

Изменение скорости вращения может происходить за счёт изменения нагрузки и магнитного потока. Увеличение тока нагрузки незначительно изменяет внутреннее падение напряжения из-за малого сопротивления цепи якоря и поэтому лишь незначительно уменьшает скорость вращения двигателя. Что же касается магнитного потока, то вследствие реакции якоря при увеличении тока нагрузки он несколько уменьшается, что приводит к незначительному увеличению скорости двигателя. Таким образом, скорость вращения двигателя с параллельным возбуждением изменяется очень мало. Скорость вращения двигателя определяется формулой:

n = (U – IяRя) / c∙Φ, где

c – коэффициент, зависящий от устройства машины.

Скорость вращения двигателя с независимым возбуждением можно регулировать либо изменением сопротивления в цепи якоря, либо изменением магнитного потока. Следует отметить, что чрезмерное уменьшение тока возбуждения и, особенно, случайный обрыв этой цепи очень опасны для двигателей с параллельным и независимым возбуждением, т.к. ток в якоре может возрасти до недопустимо больших значений. При небольшой нагрузке (или на холостом ходу) скорость может настолько возрасти, что станет опасной для целостности двигателя.

Двигатель с последовательным возбуждением.

У такого двигателя ток якоря является одновременно и током возбуждения, т.к. обмотка возбуждения включена последовательно с якорем. По этой причине магнитный поток двигателя изменяется с изменением нагрузки. Скорость двигателя:

n =[ U – Iя (Rя + Rв)] / c∙Φ, где

Rя – сопротивление якоря

Rв – сопротивление обмотки возбуждения.


Скоростная характеристика двигателя посл. возбуждения.

На этом графике представлена скоростная характеристика двигателя последовательного возбуждения.

Из этой характеристики видно, что скорость двигателя сильно зависит от нагрузки. При увеличении нагрузки увеличивается падение на сопротивлении обмоток при одновременном увеличении магнитного потока, что приводит к значительному уменьшению скорости вращения. Поэтому такие двигатели не следует пускать вхолостую или с малой нагрузкой. Двигатели с последовательным возбуждением применяют в тех случаях, когда необходим большой пусковой момент или способность выдерживать кратковременные перегрузки. Они используются в качестве тяговых двигателей в трамваях, троллейбусах, метро и электровозах, а также на подъёмных кранах и для пуска двигателей внутреннего сгорания (стартеры).

Двигатель со смешанным возбуждением.

На каждом полюсе такого двигателя имеются две обмотки – параллельная и последовательная. Их можно включить так, чтобы магнитные потоки складывались (согласное включение) или вычитались (встречное включение). Формулы для скорости вращения и вращающего момента для такого двигателя:

n = (U – Iя ∙ Rя) / c∙(Φпарал. +/- Φпосл.)

М = c ∙ Iя ∙ (Φпарал. +/- Φпосл.)

В зависимости от соотношения магнитных потоков двигатель со смешанным возбуждением по своим свойствам приближается либо к двигателю с последовательным возбуждением, либо к двигателю с параллельным возбуждением. Как правило, у таких двигателей последовательная обмотка является главной (рабочей), а параллельная – вспомогательной. Благодаря наличию магнитного потока параллельной обмотки, скорость такого двигателя не может сильно возрастать на малых нагрузках. Двигатели с согласным включением применяются, когда необходим большой пусковой момент и регулировка скорости при переменных нагрузках. Двигатели со встречным включением обмоток применяются в тех случаях, когда необходима постоянная скорость при изменяющейся нагрузке.

Для изменения направления вращения двигателя постоянного тока надо изменить направление тока либо в обмотке возбуждения, либо в обмотке якоря . Изменением полярности на клеммах машины можно поменять направление вращения только в двигателе с постоянным магнитом или независимым возбуждением. В других двигателях надо изменить направление тока либо в якорной обмотке, либо в обмотке возбуждения. Двигатель постоянного тока нельзя включать подсоединением полного напряжения . Пусковой ток машин постоянного тока где-то в 20 раз превышает номинальный ток (он тем больше, чем больше и быстрее мотор). В больших машинах пусковой ток может превышать номинальный ток в 50 раз.

Большой ток вызывает в коллекторе круговое искрение и разрушает коллектор. Для включения применяют плавное увеличение напряжения или пусковые реостаты. Прямое включение допускается при низких напряжениях в случае маленьких двигателей, у которых сопротивление обмотки якоря большое.


Лекция №9

Двигатели постоянного тока

По габаритам;

По способу защиты;

По мощности;

По скорости вращения;

Схемы возбуждения электродвигателей постоянного тока показаны на рисунке.

Рис. 9.1 Схемы возбуждения электродвигателей постоянного тока: а - независимое, б - параллельное, в - последовательное, г - смешанное

Основные формулы и уравнения

Если принять скорость вращения якоря в системе СИ (рад/с), то формула 4.13 из лекции №4 примет вид

М - электромагнитный момент машины постоянного тока, Н/м (ньютон делить на метр)

k - постоянная для данной машины величина;

Ф - основной маг­нитный поток, Вб (вебер)

р - число пар полюсов обмотки якоря

N - число пазовых сторон обмотки якоря

а - число пар параллельных ветвей обмотки якоря

I а или просто I - ток якоря, А;

Для двигателя, работающего с постоянной час­тотой вращения, можно получить уравнение на­пряжений (Э.Д.С.) для цепи якоря генератора:

Это уравнение получают на основании второго закона Кирхгофа

. (9.3)

Сумма сопротивлений всех участков цепи якоря:

Обмотки якоря r а или, r я

Обмотки добавочных полюсов r д,

Компенсационной обмотки r ко,

Последовательной обмотки возбуждения r с

Переходного щеточного контакта r щ.

При отсутствии в машине каких-либо из указан­ных обмоток в (9.4) не входят соответствующие слагаемые.

Из (9.3) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмот­ки якоря и падением напряжения в цепи якоря.

На основании (9.3) получим формулу тока якоря

. (9.5)

Умножив обе части уравнения (9.3) на ток яко­ря I а, получим уравнение мощности для цепи якоря:

, (9.6)

, (9.7)

(9.8)

ω- угловая частота вращения якоря;

Электромаг­нитная мощность двигателя.

Следовательно, выражение представляет собой электромаг­нитную мощность двигателя.

Рабочие характеристики

Рабочие характеристики двигателя представлены на рис 9.2б

Частота вращения двигателя с ростом нагрузки Р 2 уменьшается, а график ω= f(Р 2) приобретает падающий вид . Чтобы обеспечить характеристике частоты вращения форму падающей кривой, в некоторых двигателях параллельного возбу­ждения применяют легкую (с небольшим числом витков) последо­вательную обмотку возбуждения, которую называют стаби­лизирующей обмоткой. При включении этой обмотки согласованно с параллельной обмоткой возбуждения ее МДС компенсирует размагничивающее действие реакции якоря так, что поток Ф во всем диапазоне нагрузок остается практически неизменным.

Изменение частоты вращения двигателя при переходе от но­минальной нагрузки к х.х., выраженное в процентах, называют номинальным изменением частоты вращения:

, (9.12)

∆ω ном = 100

где 0 (n 0) - частота вращения двигателя в режиме х.х.

Обычно для двигателей параллельного возбуждения ∆ω ном =2-8%, поэтому характеристику частоты вращения двигателя па­раллельного возбуждения называют жесткой .

Зависимость полезного момента от нагрузки установлена формулой . При график имел бы вид прямой. Однако с увеличением нагрузки частота вращения двига­теля снижается, и поэтому зависимость криволинейна .

График зависимости М эл =f(Р 2) проходит параллельно кривой М 2 =f(Р 2) .

Пуск двигателя

Ток якоря двигателя определяется формулой

В начальный момент пуска якорь двигателя неподвижен и в его обмотке не индуцируется ЭДС Е а =0. Поэтому при непо­средственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток

I п = (9.13)

Обычно сопротивление невелико, поэтому значение пус­кового тока достигает недопустимо больших значений, в 10-20 раз превышающих номинальный ток двигателя.

Такой большой пусковой ток весьма опасен для двигателя. Во-первых, он может вызвать в машине круговой огонь, а во-вторых, при таком токе в двигателе развивается чрезмерно большой пус­ковой момент, который оказывает ударное действие на вращаю­щиеся части двигателя и может механически их разрушить. И на­конец, этот ток вызывает резкое падение напряжения в сети, что неблагоприятно отражается на работе других потребителей, вклю­ченных в эту сеть. Поэтому пуск двигателя непосредственным подключением в сеть (безреостатный пуск) обычно применяют для двигателей мощностью не более 0,7-1,0 кВт. В этих двигате­лях благодаря повышенному сопротивлению обмотки якоря и не­большим вращающимся массам значение пускового тока лишь в 3-5 раз превышает номинальный, что не представляет опасности для двигателя.

Что же касается двигателей большей мощности, то при их пуске для ограничения пускового тока используют пуско­вые реостаты (ПР), включаемые последовательно в цепь якоря (реостатный пуск).

Перед пуском двигателя необходимо реостат ввести, т.е поставить наибольшее сопротивление. Затем включают рубиль­ник и постепенно уменьшают сопротивление реостата.

Рис. 9.4. Схема включения пускового реостата

Пусковой ток якоря при полном сопротивлении пускового реостата

. (9.14)

Сопротивление пус­кового реостата выбирают обычно таким, чтобы наибольший пус­ковой ток превышал номинальный не более чем в 2-3 раза.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громозд­кими. Поэтому в двигателях большой мощности применяют без­реостатный пуск двигателя путем понижения напряжения.

Приме­рами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе или пуск двига­теля в схеме «генератор-двигатель».

Реверсирование двигателей

Реверсирование двигателя - это изменение направления вращения якоря.

Реверсирование двигателя осуществляется либо изменением полярности напряжения на обмотке якоря, либо на обмотке возбуждения. В обоих случаях изменяется знак электромагнитного момента двигателя М эм и соответственно направление вращения якоря.

КПД машин постоянного тока

η = P 2 /P 1 , (9.20)

Р 2 - полезная мощность машины (у генератора - это электрическая мощность, отдаваемая приемнику, у двигателя - механическая мощность на валу);

Р 1 - подводимая к машине мощность (у генератора - это механическая мощность, сообщаемая ему первичным двигателем, у двигателя - мощность, потребляемая им от источника постоянного тока; если генератор имеет независимое возбуждение, то P 1 включает в себя также мощность, необходимую для питания цепи обмотки возбуждения).

Очевидно, мощность Р 1 может быть выражена следующим образом: Р 1 = Р 2 + ΣΔP,

где ΔP - сумма перечисленных выше потерь мощности.

С учетом последнею выражения

η = P 2 /(P 2 + ΣΔP). (9.21)

Когда машина работает вхолостую, полезная мощность Р 2 равна нулю и η = 0. Характер изменения КПД при увеличении полезной мощности зависит от значения и характера изменения потерь мощности. Примерный график зависимости η=f(Р 2) приведен на рис. 9.5.

При увеличении полезной мощности КПД сначала возрастает при некотором значении Р 2 , достигает наибольшего значения, а затем уменьшается. Последнее объясняется значительным увеличением переменных потерь, пропорциональных квадрату тока. Машины рассчитывают обычно таким образом, чтобы наибольшее значение КПД находилось в области, близкой к номинальной мощности Р 2ном. Номинальное значение КПД машин мощностью от 1 до 100 кВт лежит примерно в пределах от 0,74 до 0,92 соответственно.

Литература: Кацман М.М. Электрические машины. Глава 29.

§29.1, 29.2, 29.3, 29.4, 29.5, 29.6, 29.8, 29.10

Лекция №9

Двигатели постоянного тока

Способы возбуждения электродвигателей постоянного тока

Двигатели постоянного тока используются в промышленности в случае необходимости регулирования скорости ЭП (электропривода). В основном применяются системы УВ-Д (управляемый выпрямитель-двигатель), которые обеспечивают регулирование скорости с высоким качеством.

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы:

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешанным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Двигатели с независимым возбуждением и параллельным возбуждением обладают одинаковыми свойствами, поэтому эти группы объединяют и относят к одной группе: двигатели с независимым возбуждением предназначенные для работы в регулируемых ЭП.

Промышленность выпускает двигатели постоянного тока основной общепромышленной серии 2П и 4П, они подразделяются по следующим признакам:

По габаритам;

По способу защиты;

По мощности;

По скорости вращения;

По напряжению на якоре (110В, 220В, 340В, 440В);

На напряжению обмотке возбуждения (110 и 220 В);

Если напряжение на якоре и на обмотке возбуждения (ОВ) совпадают, то обмотка возбуждения подключается параллельно обмотке якоря.

Кроме серий 2П и 4П выпускаются и другие специализированные серии.

Электродвигателем параллельного возбуждения называется двигатель постоянного тока, обмотка возбуждения которого включена параллельно обмотке якоря (рис. 1). При снятии характеристик к цепи якоря подводится номинальное напряжение U н =const.

Рис. 1 - Схема двигателя параллельного возбуждения

Ток, потребляемый двигателем из сети, определяется суммой I=I a +I в, ток возбуждения обычно равен I в =(0,03…0,04)I н. Все характеристики двигателя снимаются при постоянных сопротивлениях в цепях возбуждения r в =const и якоря

Скоростная характеристика.

Зависимость n=f(I a) при U н =const и I в =const

Из уравнения ЭДС для электродвигателя

Как видно из выражения,частота вращения двигателя зависит от двух факторов - изменения тока нагрузки и потока. При увеличении тока нагрузки падение напряжения в сопротивлении цепи якоря увеличивается, а частота вращения двигателя уменьшается.

Поперечная реакция якоря размагничивает двигатель, т.е. с ростом тока I a уменьшается поток и, следовательно, увеличиваются обороты двигателя. Таким образом, оба фактора действуют в отношении оборотов машины встречно и вид скоростной характеристики будет определяется их результирующим действием.

На рис. 2 показаны три разные скоростные линии двигателя (кривые 1,2,3). Кривая 1 - скоростная характеристика при преобладании влияния I a ∑r,кривая 2 - оба фактора приблизительно уравновешиваются, кривая 3 - преобладает фактор размагничивающего действия реакции якоря.

Рис. 2 - Характеристики двигателя параллельного возбуждения

Ввиду того, что в реальных машинах изменение потока Ф незначительно, скоростная характеристика является практически прямой линией. На ряде современных машин параллельного возбуждения для компенсации влияния поперечной реакции якоря устанавливается дополнительная стабилизирующая обмотка возбуждения, которая полностью или частично компенсирует влияние реакции якоря.

Нормальной формой скоростной характеристики, при которой обеспечивается устойчивая работа двигателя, имеет вид кривой 1.

Наклон характеристики определяется величиной сопротивления цепи якоря Σr без учета реакции якоря. Когда добавочных сопротивлений в цепь якоря не включено, характеристика называется естественной. Естественная характеристика двигателя параллельного возбуждения достаточно жесткая. Обычно, где n o - частота вращения при холостом ходе. При включении в цепь якоря добавочных сопротивлений R рг, наклон характеристик увеличивается, они становятся «мягкими» и называются искусственными или реостатными.

Моментная характеристика

Это зависимость М=f(I a) при r в =const, U=U н и Σr=const. В установившемся режиме работы двигателя согласно

имеем M эм = M 2 +M 0 = с м I a Ф. Если бы в процессе работы машины поток Ф не изменялся, то моментная характеристика представляла бы собой прямую (линия 4, рисунок 2). В действительности поток Ф с ростом тока I a несколько уменьшается из-за размагничивающего действия реакции якоря, поэтому моментная характеристика слегка наклонена вниз (кривая 5). Характеристика полезного момента располагается ниже кривой электромагнитного момента на величину момента холостого хода (кривая 6).

Характеристика КПД

η=f(I a) снимается при U=U н, r в =const, Σr=const и имеет типичный для электродвигателей вид (характеристика 7 на рис. 2). КПД быстро растет при увеличении нагрузки от холостого хода до 0,25Р н, достигает максимального значения при Р=(0,5…0,75)Р н, а затем до Р=Р н остается почти неизменным. Обычно в двигателях малой мощности η=0,75…0,85, а в двигателях средней и большой мощности η=0,85…0,94.

Механическая характеристика

Представляет зависимость n=f(M) при U=U н, I в =const и Σr=const. Аналитическое выражение для механической характеристики можно получить из уравнения ЭДС электродвигателя

Определив ток I а из выражения М = с е I a Ф и подставив это значение тока в выражение выше, получим

Если пренебречь реакцией якоря и считать, что поток Ф не изменяется, то механические характеристики электродвигателя параллельного возбуждения можно представить в виде прямых (рис. 3), наклон которых зависит от величины сопротивления R рг включенного в цепь якоря. При R рг =0 характеристика называется естественной.

Рис. 3 - Механические показатели двигателя параллельного возбуждения

Следует помнить, что при обрыве цепи возбуждения I в =0 обороты n→∞, т.е. двигатель идет «вразнос», поэтому его необходимо немедленно отключить от сети.

Двигатель постоянного тока с параллельным возбуждением – это электродвигатель, у которого обмотки якоря и возбуждения подключаются друг к другу параллельно. Часто по своей функциональности он превосходит агрегаты смешанного и последовательного типов в случаях, если необходимо задать постоянную скорость работы.

Характеристики двигателя постоянного тока с параллельным возбуждением

Формула общего тока, идущего от источника, выводится согласно первому закону Кирхгофа и имеет вид: I = I я + I в, где I я - ток якоря, I в – ток возбуждения, а I – ток, который двигатель потребляет от сети. Следует отметить, что при этом I в не зависит от I я, т.е. ток возбуждения не зависит от нагрузки. Величина тока в обмотке возбуждения меньше тока якоря и составляет примерно 2-5% от сетевого тока.

В целом, данные электродвигатели отличаются следующими весьма полезными тяговыми параметрами:

  • Высокая экономичность (поскольку ток якоря не проходит через обмотку возбуждения).
  • Устойчивость и непрерывность рабочего цикла при колебаниях нагрузки в широких пределах (т.к. величина момента сохраняется даже в случае изменения числа оборотов вала).

При недостаточном моменте пуск осуществляется посредством перехода на смешанный тип возбуждения.

Сферы применения двигателя

Поскольку частота вращения подобных двигателей остается почти постоянной даже при изменении нагрузки, а также может изменяться при помощи регулировочного реостата, они широко применяются в работе с:

  • вентиляторами;
  • насосами;
  • шахтными подъемниками;
  • подвесными электрическими дорогами;
  • станками (токарными, металлорежущими, ткацкими, печатными, листоправильными и пр.).

Таким образом, этот вид двигателей в основном используется с механизмами, требующими постоянства скорости вращения или ее широкой регулировки.

Регулирование частоты вращения

Регулирование скорости – это целенаправленное изменение скорости электродвигателя в принудительном порядке при помощи специальных устройств или приспособлений. Оно позволяет обеспечить оптимальный режим работы механизма, его рациональное использование, а также уменьшить расход энергии.

Существует три основных способа регулирования скорости двигателя:

  1. Изменение магнитного потока главных полюсов. Осуществляется при помощи регулировочного реостата: при увеличении его сопротивления магнитный поток главных полюсов и ток возбуждения I в уменьшаются. При этом увеличивается число оборотов якоря на холостом ходу, а также угол наклона механической характеристики. Жесткость механических характеристик сохраняется. Однако увеличение скорости может привести к механическим повреждениям агрегата и к ухудшению коммутации, поэтому не рекомендуется увеличивать частоту вращения этим методом более чем в два раза.
  2. Изменение сопротивления цепи якоря. К якорю последовательно подключается регулировочный реостат. Скорость вращения якоря уменьшается при увеличении сопротивления реостата, а наклон механических характеристик увеличивается. Регулировка скорости вышеуказанным способом:
  • способствует уменьшению частоты вращения относительно естественной характеристики;
  • связана с большой величиной потерь в регулировочном реостате, следовательно, неэкономична.
  1. Безреостатное изменение подаваемого на якорь напряжения. В этом случае необходимо наличие отдельного источника питания с регулируемым напряжением, например, генератора или управляемого вентиля.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения как раз и реализует третий принцип регулирования скорости. Его отличие в том, что обмотка возбуждения и магнитное поле главных полюсов подключаются к разным источникам. Ток возбуждения является неизменной характеристикой, а магнитное поле меняется. При этом изменяется число оборотов вала на холостом ходу, жесткость характеристики остается прежней.

Таким образом, принцип работы дпт с независимым возбуждением является достаточно сложным вследствие независимой работы двух источников, тем не менее, его главное преимущество – большая экономичность.

Электродвигателем параллельного возбуждения называется двигатель постоянного тока, обмотка возбуждения которого включена параллельно обмотке якоря (рис. 1). При снятии характеристик к цепи якоря подводится номинальное напряжение U н =const.

Рис. 1 - Схема двигателя параллельного возбуждения

Ток, потребляемый двигателем из сети, определяется суммой I=I a +I в, ток возбуждения обычно равен I в =(0,03...0,04) I н. Все характеристики двигателя снимаются при постоянных сопротивлениях в цепях возбуждения r в =const и якоря

Скоростная характеристика.

Зависимость n=f (I a) при U н =const и I в =const

Из уравнения ЭДС для электродвигателя

Как видно из выражения,частота вращения двигателя зависит от двух факторов - изменения тока нагрузки и потока. При увеличении тока нагрузки падение напряжения в сопротивлении цепи якоря увеличивается, а частота вращения двигателя уменьшается.

Поперечная реакция якоря размагничивает двигатель, т.е. с ростом тока I a уменьшается поток и, следовательно, увеличиваются обороты двигателя. Таким образом, оба фактора действуют в отношении оборотов машины встречно и вид скоростной характеристики будет определяется их результирующим действием.

На рис. 2 показаны три разные скоростные характеристики двигателя (кривые 1,2,3). Кривая 1 - скоростная характеристика при преобладании влияния I a ∑r,кривая 2 - оба фактора приблизительно уравновешиваются, кривая 3 - преобладает фактор размагничивающего действия реакции якоря.

Рис. 2 - Характеристики двигателя параллельного возбуждения

Ввиду того, что в реальных двигателях изменение потока Ф незначительно, скоростная характеристика является практически прямой линией. На ряде современных машин параллельного возбуждения для компенсации влияния поперечной реакции якоря устанавливается дополнительная стабилизирующая обмотка возбуждения, которая полностью или частично компенсирует влияние реакции якоря.

Нормальной формой скоростной характеристики, при которой обеспечивается устойчивая работа двигателя, является характеристика вида кривой 1.

Наклон характеристики определяется величиной сопротивления цепи якоря Σr без учета реакции якоря. Когда добавочных сопротивлений в цепь якоря не включено, характеристика называется естественной. Естественная характеристика двигателя параллельного возбуждения достаточно жесткая. Обычно, где n o - частота вращения при холостом ходе. При включении в цепь якоря добавочных сопротивлений R рг, наклон характеристик увеличивается, они становятся «мягкими» и называются искусственными или реостатными.

Моментная характеристика – это зависимость М=f (I a) при r в =const, U=U н и Σr=const. В установившемся режиме работы двигателя согласно

имеем M эм = M 2 +M 0 = с м I a Ф. Если бы в процессе работы машины поток Ф не изменялся, то моментная характеристика представляла бы собой прямую (характеристика 4, рисунок 2). В действительности поток Ф с ростом тока I a несколько уменьшается из-за размагничивающего действия реакции якоря, поэтому моментная характеристика слегка наклонена вниз (кривая 5). Характеристика полезного момента располагается ниже кривой электромагнитного момента на величину момента холостого хода (кривая 6).

Характеристика КПД η=f (I a) снимается при U=U н, r в =const, Σr=const и имеет типичный для электродвигателей вид (характеристика 7 на рис. 2). КПД быстро растет при увеличении нагрузки от холостого хода до 0,25Р н, достигает максимального значения при Р=(0,5...0,75) Р н, а затем до Р=Р н остается почти неизменным. Обычно в двигателях малой мощности η=0,75...0,85, а в двигателях средней и большой мощности η=0,85...0,94.

Механическая характеристика представляет зависимость n=f (M) при U=U н, I в =const и Σr=const. Аналитическое выражение для механической характеристики можно получить из уравнения ЭДС электродвигателя

Определив ток I а из выражения М = с е I a Ф и подставив это значение тока в выражение выше, получим

Если пренебречь реакцией якоря и считать, что поток Ф не изменяется, то механические характеристики электродвигателя параллельного возбуждения можно представить в виде прямых (рис. 3), наклон которых зависит от величины сопротивления R рг включенного в цепь якоря. При R рг =0 характеристика называется естественной.

Рис. 3 - Механические характеристики двигателя параллельного возбуждения

Следует помнить, что при обрыве цепи возбуждения I в =0 обороты двигателя n→∞, т.е. двигатель идет «вразнос», поэтому его необходимо немедленно отключить от сети.



Рекомендуем почитать

Наверх