Микросхемы для зарядных устройств литиевых аккумуляторов. Зарядка литиевых аккумуляторов схема

Электроника 19.09.2019
Электроника


В предыдущей статье я рассматривал вопрос о замене никель-кадмиевых (никель-марганцевых) NiСd(NiMn) аккумуляторов шуруповерта на литиевые. Надо рассмотреть несколько правил по зарядке аккумуляторов.

Литий ионные аккумуляторы размера 18650 в основном могут заряжаться до напряжения 4,20В на ячейку с допустимым отклонением не больше 50 мВ потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может составлять 0,1хС до 1хС (здесь С-емкость). Лучше выбрать эти значение по даташиту. Я применил в переделке шуруповерта аккумуляторы марки . Смотрим даташит-ток зарядки -1,5А.


Наиболее правильным будет провести заряд литиевых аккумуляторов в два приема по методике CCCV (ток постоянный, постоянное напряжение).

Первый этап- должен обеспечить постоянный ток заряда. Величина тока равна 0.2-0.5С. Я применил аккумулятор емкостью 3000 мА/ч, значит номинальный ток заряда будет 600-1500мА. После зарядка банки идет на неизменном напряжении, ток постоянно уменьшается.

Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25В. Аккумулятор зарядился если ток уменьшится до 0.05-0.01С. Принимая во внимание вышесказанное используем электронные платы с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на так, как она более удобна в настройках.




Характеристики XL4015E1.
Максимальный выходной ток до 5 А.
Напряжение на выходе: 0.8 В-30 В.
Напряжение на входе 5 В-32 В.
имеет аналогичные параметры, только ток до 3 А.

Перечень инструментов и материалов.

Адаптер 220\12 В, 3 А -1шт;
-штатное зарядное устройство шуруповерта (или источник питания);
-плата заряда CC/CV на или на -1шт;
-соединительные провода -паяльник;
-тестер;
-пластмассовая коробка для плата заряда -1шт;
-минивольтметр -1шт;
-переменный резистор (потенциометр) на 10-20 кОм -1шт;
-разъем питания для аккумуляторного отсека шуруповерта -1шт.

Шаг первый . Сборка ЗУ аккумуляторов шуруповерта на адаптере.

Плату cccv мы уже выбрали выше. В качестве источника питания можно применить любой с такими параметрами-выходное напряжение не ниже 18 В (для схемы 4S),ток 3 А. В первом примере изготовления зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 12 В, 3 А.

Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без перегруза 1,9 А. Также измерил температуру на радиаторе транзистора-40°C. Вполне нормальный режим.

Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.



На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 В (небольшой запас от 16,8 В для падения на плате CC/CV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.

Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 В. Другим подстроечным резистором выставляем ток 1,5 А, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43°C, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.

Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

Шаг второй . Сборка схемы зарядного устройства аккумуляторов шуруповерта на штатном зарядном.

У меня было штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-марганцевых аккумуляторов. Задача стояла в том чтобы заряжать и никель-марганцевые аккумуляторы и литий-ионные.


Так с помощью маленькой коробочки, а вернее ее содержимым можно зарядить аккумуляторы нашего шуруповерта.

Если у вас штатное зарядное на трансформаторе то можно подключить плату CC/CV после диодного мостика выпрямителя.

Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.

Подробнее в ролике:

Всем желаю здоровья и успехов в жизни и творчестве!

В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.

Самодельная зарядка литиевых АКБ - схема электрическая

Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.

Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.

Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.

Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.

Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3.7V) и после (4.2V), ёмкость 1100 mA*h.

Печатная плата для литиевого зарядного

Печатная плата (PCB) существует в двух форматах для разных программ - архив находится . Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.

Как работает зарядка

Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.

Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР .

Обсудить статью ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ

Изобретения и использование инструмента с источниками автономного питания стало одним из визитных карточек нашего времени. Разрабатывается и внедряются всё новые активные компоненты, улучшающие работу батарейных сборок. К сожалению аккумуляторы не могут работать без подзарядки. И если на устройствах, имеющих постоянный доступ электросети вопрос решается встроенными источниками, то для мощных источников питания, например, шуруповерта, необходимо отдельные зарядные устройства для литиевых аккумуляторов с учетом особенности различных типов аккумуляторов.

Последние годы всё активнее используются изделия на литий-ионном активном компоненте. И это вполне понятно, так — как эти источники питания зарекомендовали себя с очень хорошей стороны:

  • у них отсутствует эффект памяти;
  • практически полностью ликвидирован саморазряд;
  • могут работать при минусовых температурах;
  • хорошо удерживают разряд.
  • количество доведен до 700 циклов.

Но, каждый тип батарей имеет свои особенности. Так, литий — ионный компонент требует конструкцию элементарных батареек с напряжением 3, 6В, что требует некоторые индивидуальные особенности для подобных изделий.

Особенности восстановления

При всех достоинствах литий-ионных аккумуляторах у них есть свои недостатки — это возможность внутреннего замыкания элементов при перенапряжении зарядки из — за активные кристаллизации лития в активном компоненте. Также имеется ограничение по минимальному значению напряжения, которое приводит к невозможности приема электронов активным компонентом. Чтобы исключить последствия, батарея оснащается внутренними контроллером, которое разрывает цепь элементов с нагрузкой при достижении критических значений. Хранятся такие элементы лучше всего при зарядке 50 % при +5 — 15° С. Еще одно из особенностей литий-ионных аккумуляторов является то, что время эксплуатации батарейки зависит от времени ее изготовления, вне зависимости от того была ли она в эксплуатации или нет, или другими словами подвержена «эффекту старения», который ограничивает сроком эксплуатации — пять лет.

Зарядка литий — ионных аккумуляторов

Простейшее устройство зарядки одного элемента

Для того чтобы понять более сложные схемы зарядки литий — ионных аккумуляторов, рассмотрим простое зарядное устройство для литиевых аккумуляторов, точнее для одной батарейки.

Основа схемы оставляет управление: микросхема TL 431 (выполняет роль регулируемого стабилитрона) и одном транзисторе обратной проводимости.
Как видно из схемы управляющий электрод TL431 включен в базу транзистора. Настройка аппарата сводится к следующему: нужно на выходе устройства установить напряжение 4,2В — это устанавливается регулировкой стабилитрона подключением на первую ножку сопротивления R4 — R3 номиналом 2,2 кОм и 3 кОм. Эта цепочка отвечает за регулировку выходного напряжения, регулировка напряжения устанавливается только один раз и является стабильной.

Далее регулируется ток заряда, регулировка производится сопротивлением R1 (на схеме номиналом 3Ом) в случае, если эмиттер транзистора будет включён без сопротивления, тогда входное напряжение будет и на клеммах зарядки, то есть — это 5В, что может не соответствовать требованиям.

Так же, в этом случае не будет светиться светодиод, а он сигнализирует об протекании процесса насыщения током. Резистор может быт номиналом от 3 до 8 Ом.
Для быстрой подстройки напряжение на нагрузке, сопротивление R3 можно установить регулируемое (потенциометр). Напряжение настраивается без нагрузки, то есть, без сопротивления элемента, номиналом 4, 2 — 4,5В. После достижения необходимого значения достаточно замерить величину сопротивление переменного резистора и поставить основную деталь нужного номинала вместо него. Если нет необходимого номинала его можно собрать из нескольких штук параллельным или последовательным соединением.

Сопротивление R4 предназначено для открывания базы транзистора, его номинал должен быть 220Ом.При увеличении заряда аккумулятора напряжение будет повышаться, управляющий электрод базы транзистора будет увеличивать переходное сопротивление эмиттер — коллектор, уменьшая ток зарядки.

Транзистор можно использовать КТ819, КТ817 или КТ815, но тогда придется ставить радиатор для охлаждения. Также радиатор будет необходим если токи будут превышать 1000мА. В общем, эта классическая схема простейшая зарядки.

Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов

Когда появляется необходимость зарядить литий ионных батарей, соединенных из нескольких спаянных элементарных ячеек, то лучше всего заряжать ячейки отдельно с применением контрольной схемы, которая будет следить за зарядкой индивидуально каждой отдельной батарейкой. Без этой схемы значительное отклонение характеристик одного элемента в последовательно спаянной батареи приведет к неисправности все аккумуляторы, а сам блок будет даже опасным по причине его возможного перегрева или даже воспламенения.

Зарядное устройство для литиевых аккумуляторов 12 вольт. Устройство балансира

Термин балансировка в электротехнике означает режим зарядки, который производит контроль за каждым отдельным элементом, участвующим в процессе, не допуская увеличения или снижения напряжения менее необходимого уровня. Необходимость подобных решений вытекает из особенностей сборок с li — ion. Если из за внутренней конструкции один из элементов зарядиться быстрее остальных, что очень опасно для состояния остальных элементов, и как следствие всей батареи. Схемное решение балансира выполнена таким образом, что элементы схемы берут на себя избыток энергии, тем самым регулируя процесс зарядки отдельной ячейки.

Если сравнивать принципы зарядки никель-кадмиевых аккумуляторов, то они имеют отличия от литий-ионного, прежде всего у Ca — Ni окончание процесса свидетельствует повышение напряжения полярных электродов и уменьшение тока до 0, 01мА. Также перед зарядкой этот источник должен быть разряжен не менее 30% от первоначальной емкости, если не выдержать это условия в батарее возникает «эффект памяти», который снижает емкость батареи.

С Li-Ion активным компонентом все наоборот. Полная разрядка этих элементов может привести к необратимым последствиям и резко понизить способность заряжаться. Нередко некачественные контроллеры могут не обеспечить контроль за уровнем разрядки батареи, что может привести неисправности всей сборки из-за одной ячейки.

Выходом из ситуации может стать применение выше рассмотренной схемы на регулируемом стабилитроне TL431. Нагрузку 1000 мА или больше может обеспечить установка более мощным транзистором. Такие ячейки подключается к непосредственно к каждой ячейке предохранит от неправильной зарядки.

Выбирать транзистор следует от мощности. Мощность подсчитывается по формуле P = U*I, где U — напряжение, I – зарядный ток.

Например, при токовой зарядки 0,45 А транзистор должен иметь рассеиваемую мощность не менее 3,65 В*0,45А = 1,8 Вт. а это для внутренних переходов большая токовая нагрузка, поэтому выходные транзисторы лучше установить в радиаторы.

Ниже приведен примерный расчет величины резисторов R1 и R2 на различное напряжение заряда:

22,1к + 33к => 4,16 В

15,1к + 22к => 4,20 В

47,1к + 68к => 4,22 В

27,1к + 39к => 4,23 В

39,1к + 56к => 4,24 В

33к + 47к => 4,25 В

Сопротивление R3 – нагрузка на базе транзистора. Его сопротивление может быть 471Ом — 1, 1 кОм.

Но, при реализации этих схемных решений, возникла проблема, как заряжать отдельную ячейку в аккумуляторном блоке? И такое решение нашлось. Если посмотреть на контакты на зарядной ножке, то на выпускаемых в последнее время корпусах с литий-ионными батареями находится такое количество контактов, сколько отдельных ячеек в батарее, естественно, на зарядном устройстве каждый такой элемент подключается отдельный схеме контроллера.

По стоимости подобное зарядное изделие несколько дороже чем линейное устройство с двумя контактами, но это стоит того, особенно если учесть, что сборки с высококачественными литий-ионными компонентами с доходят да половины стоимости самого изделия.

Импульсное зарядное устройство для литиевых li — ion аккумуляторов

Последнее время многие ведущие — фирмы производители ручного инструмента с автономным питанием, широко рекламирует быстро зарядные устройства. Для этих целей были разработаны импульсные преобразователи на основе широтно-импульсно модулированных сигналов (ШИМ) для восстановления блоков питания шуруповертов на основе ШИМ генератора на микросхеме UC3842 собран обратноходовой AS — DS преобразователь c нагрузкой на импульсный трансформатор.

Далее будет рассмотрена работа схема наиболее распространённых источника (см прилагаемую схему) : сетевое напряжение 220В поступает на диодную сборку D1- D4, для этих целей используются любые диоды мощностью до 2A. Сглаживание пульсаций происходит на конденсаторе C1, где концентрируется напряжение порядка 300В. Это напряжение является питанием для импульсного генератора с трансформатором T1 на выходе.

Первоначальное питание для запуска интегральная микросхемы A1 поступает через резистор R1, после чего включается генератор импульсов микросхемы, которая выдает их на вывод 6. Далее импульсы подаются на затвор мощного полевого транзистора VT1 открывая его. Стоковая цепь транзистора подает питание к первичной обмотке импульсного трансформатора Т1. После чего включатся в работу трансформатор и начинается передача импульсов на вторичную обмотку. Импульсы вторичной обмотки 7 — 11 после выпрямления диодом VT6 используется для стабилизации работы микросхемы A1, которая в режиме полной генерации потребляют гораздо больший ток, чем получает по цепи от резистора R1.

В случае неисправности диодов Д6, источник переходит у режиму пульсации, поочередно запуская работу трансформатор и прекращая его, при этом слышен характерный пульсирующий «писк» посмотрим работу схемы в этом режиме.

Питание через R1 и конденсатор C4 запускают генератор микросхемы. После запуска, для нормальной работы требуется более повышенный ток. При неисправности Д6 дополнительного питания на микросхему не поступает, и генерация прекращается, затем процесс повторяется. Если диод Д6 исправен, сразу включает в работу импульсный трансформатор под полную нагрузку. При нормальном запуске генератора на обмотке 14- 18 появляется импульсный ток 12 — 14В (на холостом ходу 15В). После выпрямления диодом V7 и сглаживания импульсов конденсатором C7 и импульсный ток поступает на зажимы батареи.

Ток 100 мА, не вредит активному компоненту, но повышает время восстановления в 3-4 раза, снижая ее время от 30 мин до1 часа. (источник — журнал интернет издание Радиоконструктор 03-2013 )

Быстрозарядное устройство G4-1H RYOBI ONE+ BCL14181H

Импульсное устройство для литиевых аккумуляторов 18 вольт производства немецкой компании Ryobi, производитель народная республика Китай. Импульсное устройство подходит для литий-ионных, никель кадмиевых 18В. Рассчитана на нормальную эксплуатацию при температуре от 0 до 50 С. Схемное решение обеспечивает два режима питания по напряжению и стабилизации по току. Импульсная подача тока обеспечивает оптимальную подпитку каждой отдельной батарейки.

Устройство выполнено в оригинальном корпусе из ударопрочной пластмассы. Применено принудительное охлаждение от встроенного вентилятора, с автоматическим включением при достижении 40° С.

Характеристики:

  • Минимальное время заряда 18В при 1,5 А /ч — 60 минут, вес 0,9 кг, габариты: 210 x 86 x 174 мм. Индикация процесса зарядки подсвечивается синим светодиодом, по окончании загорается красный. Имеется диагностика неисправности, которая загорается при неисправности сборки отдельной подсветкой на корпусе.
  • Питание однофазное 50Гц. 220В. Длина сетевого провода 1,5 метра.

Ремонт зарядной станции

Если случилось так, что изделие перестало выполнять свои функции, лучше всего обратиться в специализированные мастерские, но элементарные неисправности можно устранить своими руками. Что делать если не горит индикатор питания, разберем некоторые простые неисправности на примере станции .

Это изделие предназначено для работы с литий-ионными батареями 12В, 1,8А. Изделие выполнено с понижающим трансформатором, преобразование пониженного переменного тока выполняется четырех диодные мостовую схему. Для сглаживания пульсации установлен электролитический конденсатор. Из индикации имеется светодиоды сетевого питания, начала и окончание насыщения.

Итак, если не горит сетевой индикатор. Прежде всего необходимо через сетевую вилку убедится в целостности цепи первичной обмотки трансформатора. Для этого через штыри вилки подключения сетевого питания нужно прозвонить омметром целостность первичной обмотки трансформатора коснувшись щупами прибора за штыри сетевой вилки, если цепь показывает обрыв, тогда нужно осмотреть детали внутри корпуса.

Возможен обрыв предохранителя, обычно это тоненькая проволочка, протянутая в фарфоровом или стеклянном корпусе, сгорающая при перегрузках. Но некоторые фирмы, например, «Интерскол», для того чтобы предохранить обмотки трансформатора от перегрева устанавливают между витками первичной обмотки тепловой предохранитель, цель которого при достижении температуры 120 — 130° С, разрывать цепь питания сети и, к сожалению, ее уже после разрыва не восстанавливает.

Обычно предохранитель находится под покровной бумажной изоляцией первичной обмотки, после вскрытия которой, можно легко обнаружить эту деталь. Чтобы снова привести схему в рабочее состояние, можно, просто спаять концы обмотки в одно целое, но нужно помнить — трансформатор остается без защиты от короткого замыкания и лучше всего вместо теплового установить обычный сетевой предохранитель.

Если цепь первичной обмотки целая, прозванивается вторичная обмотка и диоды моста. Для прозвонки диодов лучше выпаять один конец из схемы и проверить диод омметром. При подсоединении концов к выводам поочередно щупов в одну сторону, диод должен показывать обрыв, в другую, короткое замыкание.

Таким образом необходимо проверить все четыре диода. И, если, уж, мы залезли в схему, тогда лучше всего сразу поменять конденсатор, потому, что диоды обычно перегружаются по причине высовшего электролита в конденсаторе.

Купить блоки питания для шуруповерта

Любой ручной инструмент и аккумуляторы можно приобрести у нас на сайте. Для этого необходимо пройти простую процедуру регистрации и далее следовать по несложный навигации. Простая навигации сайта легко выведет на необходимый для вас инструмент. На сайте можно посмотреть цены и сравнить их с конкурирующими магазинами. Любой возникший вопрос можно решить с помощью менеджера, позвонив по указанному телефону или оставить вопрос дежурному специалисту. Заходите к нам, и вы не останетесь без выбора необходимого вам инструмента.

У многих, наверное, возникает проблема с зарядкой Li-Ion аккумулятора без контроллера, у меня возникла такая ситуация. Достался убитый ноутбук, в аккумуляторе 4 банки SANYO UR18650A оказались живые.
Решил заменить в светодиодном фонарике, вместо трех батареек ААА. Встал вопрос об их зарядке.
Покопавшись в инете нашел кучу схемок, но с деталями у нас в городе туговато.
Пробовал заряжать от зарядки сотового, проблема в контроле заряда, нужно постоянно следить за нагревом, чуть начинает нагреваться нужно отключать от зарядки иначе аккумулятору каюк в лучшем случае, а то и можно устроить пожар.
Решил сделать самостоятельно. Купил в магазине постельку под аккумулятор. На барахолке купил зарядку. Для удобства отслеживания окончания заряда желательно найти с двухцветным светодиодом который сигнализирует о конце заряда. Он переключается с красного на зеленый при окончании зарядки.
Но можно и обычную. Зарядку можно заменить на шнур USB, и заряжать от компьютера или зарядки с USB выходом.
Моя зарядка только для аккумуляторов без контроллера. Контроллер я взял от старого аккумулятора сотового телефона. Она следит за тем, чтобы аккумулятор не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания.
На нем стоят микросхема DW01 и сборка двух MOSFET-транзисторов (M1,M2) SM8502A. Есть и с другими маркировками, но схемы подобны этой, и работает аналогично.

Контроллер заряда от аккумулятора сотового телефона.


Схема контроллера.


Ещё одна схема контроллера.
Главное не перепутать полярность припайки контроллера с постелькой и контроллера с зарядкой. На платке контроллера указаны контакты «+» и «-» .



В постельке возле плюсового контакта желательно сделать явно заметный указатель, красной краской или самоклеющейся пленкой, во избежание переполюсовки.
Собрал всё воедино и вот что получилось.



Заряжает замечательно. При достижении напряжения 4,2 вольта контроллер отключает аккумулятор от зарядки, и переключается светодиод с красного на зелёный. Зарядка закончена. Заряжать можно и другие Li-Ion аккумуляторы, только применить другую постельку. Всем удачи.

Как правильно зарядить литий-ионный аккумулятор и зачем это вообще нужно? Наши современные устройства работают благодаря наличию источников автономного питания. И не важно, что это за приспособления: электрические смартфоны или ноутбуки. Именно поэтому так важно знать ответ на вопрос о том, как правильно зарядить литий-ионный аккумулятор.

Немного о том, что такое аккумулятор литиево-ионного типа

Источники автономного питания, которые применяются в современных смартфонах и других устройствах, принято подразделять на несколько разных групп. Их достаточно много. Взять те же Но именно в портативной технике, то есть в смартфонах и ноутбуках, чаще всего устанавливают батареи литиево-ионного типа (английское обозначение Li-Ion). Причины, которые привели к этому, имеют разную природу.

Плюсы этих видов аккумуляторов

В первую очередь следует отметить то, насколько просто и дешево обходится производство этих источников энергии. Дополнительными преимуществами их являются превосходные характеристики эксплуатации. Саморазрядные потери составляют очень малый показатель, и это тоже сыграло свою роль. А вот запас циклов для зарядки и разрядки очень и очень большой. Вкупе все это делает литиево-ионные аккумуляторы лидерами среди остальных аналогичных устройств именно в сфере применения их в смартфонах и ноутбуках. Хотя исключения из правил существуют, они составляют порядка 10 процентов от общего числа случаев. Именно поэтому множество пользователей задает вопрос о том, как правильно зарядить литий-ионный аккумулятор.

Важные и интересные факты

Аккумулятор для смартфона имеет свои специфические особенности. Поэтому нужно знать определенные правила и быть ознакомленным с соответствующими инструкциями еще до того, как начинать заниматься процессом принудительной зарядки или разрядки. Следует отметить в первую очередь, что большинство аккумуляторов такого типа специально оснащают дополнительным устройством контроля. Его применение обусловлено необходимостью удержания заряда на определенном уровне (который также называют критическим). Таким образом, устройство контроля, встроенное, в том числе, и в аккумулятор для смартфона, не дает нам переступить ту роковую черту, после которой батарея просто-напросто “сдохнет”, как любят выражаться специалисты-сервисники. С точки зрения физики, все выглядит следующим образом: при обратном процессе (критическая разрядка) напряжение литий-ионного аккумулятора просто падает к нулю. Параллельно блокируется поступление тока.

Как правильно заряжать цифровую технику на основе этого источника автономной работы

Если ваш смартфон работает за счет литиево-ионного аккумулятора, то само устройство необходимо ставить на зарядку, когда показатель батареи высветит примерно такие цифры: 10-20 процентов. То же самое справедливо и для фаблетов, и для планшетных компьютеров. Это есть краткий ответ на вопрос о том, как правильно зарядить литий-ионный аккумулятор. Следует добавить, что даже при достижении 100-процентного номинального заряда устройство нужно держать подключенным к электрической сети в течение еще одного-двух часов. Дело в том, что аппараты неверно интерпретируют зарядку, и 100 процентов, которое выдает смартфон или планшет, по факту есть не более 70-80 процентов.

Если ваш аппарат оснащен литиево-ионным аккумулятором, вы должны знать некоторые тонкости его работы. Это будет очень полезно в будущем, поскольку, следуя им, вы сможете продлить срок службы не только этого элемента, но и всего устройства в целом. Так вот, запомните, один раз в три месяца нужно проводить полную разрядку аппарата. Делается это в профилактических целях.

А вот о том, как заряжать разряженный аккумулятор, мы поговорим позднее. Сейчас же просто укажем, что стационарный компьютер и ноутбук не способны обеспечить достаточно высокое напряжение при подключении мобильного аппарата к этим чудесам техники посредством порта стандарта USB. Соответственно, для того чтобы полностью зарядить аппарат от этих источников, потребуется большее количество времени. Интересно то, что срок службы литиево-ионного аккумулятора может продлить одна методика. Она заключается в чередовании циклов зарядки. То есть, один раз вы заряжаете устройство полностью, на все 100 процентов, второй раз - не полностью (80 - 90 процентов). И вот эти два варианта чередуются по очереди. В таком случае можно использовать для литий-ионных аккумуляторов.

Правила использования

В общем-то, литиево-ионные источники питания можно назвать неприхотливыми. Мы уже разговаривали на эту тему и выяснили, что эта характеристика, наряду с другими, стала причиной настолько широкого их распространения в вычислительной технике. Тем не менее, даже столь умная архитектура аккумуляторов не дает полной гарантии их долгосрочной работы. Зависит этот срок в первую очередь от человека. А ведь от нас не требуется делать что-то запредельное. Если пять простых правил, которые мы можем запомнить навсегда, применять их успешно. В таком случае литиево-ионный источник питания прослужит вам очень и очень долго.

Правило первое

Оно заключается в том, что не нужно полностью. Уже говорилось о том, что подобную процедуру следует проводить только один раз в три месяца. Современные конструкции этих источников питания не несут в себе “эффекта памяти”. Собственно, поэтому лучше успеть поставить аппарат на зарядку еще до того, как он полностью “сядет”. Кстати, весьма примечателен тот факт, что некоторые производители соответствующей продукции измеряют срок службы изделий в количествах циклов. Продукция высшего класса способна “пережить” порядка шести сотен циклов.

Правило второе

Оно гласит, что мобильному устройству нужна полная разрядка. Ее следует осуществлять раз в три месяца в целях профилактики. Напротив, нерегулярная и нестабильная зарядка способна сдвинуть номинальные отметки минимального и максимального заряда. Таким образом, аппарат, в который встроен этот источник автономной работы, начинает получить неправдивые сведения о том, сколько на самом деле осталось энергии. А это, в свою очередь, приводит к неправильным расчетам энергопотребления.

Профилактическая разрядка призвана предотвратить это. Когда она произойдет, схема управления автоматически обнулит минимальное значение заряда. Однако тут есть свои хитрости. Например, после полной разрядки необходимо “забить под завязку” источник питания, продержав его дополнительно порядка 12 часов. Кроме обыкновенной электрической сети и провода, для зарядки нам в этом деле больше ничего не понадобится. Зато работа аккумулятора после профилактической разрядки станет стабильнее, и вы сможете это сразу заметить.

Правило третье

Если вы не используете свой аккумулятор, за его состоянием все равно нужно следить. При этом температура в том помещении, где вы его храните, желательно должна быть не больше и не меньше 15 градусов. Понятно, что достичь ровно такой цифры не всегда получается, но все же, чем меньше отклонение от этого значения, тем будет лучше. Следует отметить, что сам аккумулятор должен быть заряжен на 30-50 процентов. Подобные условия позволят продержать источник питания без серьезного ущерба достаточно долго. Почему же не следует его полностью заряжать? А потому что “забитый под завязку” аккумулятор в силу физических процессов теряет достаточно большую часть своей емкости. Если же источник питания хранится долгое время в разряженном состоянии, то он становится практически бесполезным. И единственное место, где он действительно пригодится, это мусорка. Единственный путь, хоть и маловероятный, это восстановление литий-ионных аккумуляторов.

Правило четвертое

Цена на который попадает в интервал от нескольких сотен до нескольких тысяч рублей, следует заряжать только при помощи оригинальных устройств. Это в меньшей степени относится к мобильным устройствам, поскольку в их комплектацию (если вы покупаете их в официальном магазине) уже включены адаптеры. Но они в этом случае только стабилизируют подаваемое напряжение, а зарядное устройство, по сути дела, уже встроено в ваш девайс. Что, кстати, нельзя сказать о видеокамерах и фотоаппаратах. Именно об этом идет речь, тут использование сторонних устройств при зарядке аккумуляторов может нанести заметный вред.

Правило пятое

Следите за температурой. Литиево-ионные аккумуляторы могут сопротивляться тепловой нагрузке, но перегрев для них губителен. Да и низкие температуры для источника питания - это не самое лучшее, что может быть. Хотя большая опасность исходит именно от процесса перегрева. Помните о том, аккумулятор не должен подвергаться воздействию прямых солнечных лучей. Диапазон температур и их допустимых значений начинается на - 40 градусах и заканчивается на + 50 градусах по шкале Цельсия.



Рекомендуем почитать

Наверх