Назовите основные преимущества сетей хранения данных. Системы хранения данных компании Intel

Авто 27.06.2020
Авто

– это аппаратно-программное решение для надежного хранения данных и предоставление быстрого и надежного доступа к ним.

Реализация аппаратного обеспечения в системах хранения данных (СХД) схоже с реализацией архитектуры персонального компьютера. Зачем же тогда вообще применять СХД в архитектуре локальной сети организации, почему нельзя обеспечить, внедрить СХД на базе обычного ПК?

СХД как дополнительный узел локальной сети на базе персоналки или даже мощного сервера существуют уже давно.

Простейшее предоставление доступа к данным по протоколам FTP (протокол передачи фалов) и SMB (протокол удаленного доступа к сетевым ресурсам) поддержка которых есть во всех современных операционных системах.

Почему же тогда вообще появились СХД ?

Все просто , появление СХД связано с отставанием в развитии и скорости работы постоянно запоминающих устройств (жестких магнитных дисков) от центрального процессора и оперативной памяти. Самым узким местом в архитектуре ПК до сих пор считается жесткий диск, даже не смотря на мощное развитие SATA (последовательного интерфейса) до скорости обмена в 600 Мбайт/с (SATA3 ), физическое устройство накопителя представляет собой пластину, доступ к данным на которой нужно получить с помощью считывающих головок, что очень медленно. Последние недостатки на текущий момент решены накопителями SSD (не механическое запоминающее устройство), построенных на основе микросхем памяти. Кроме высокой цены на SSD у них есть, на мой взгляд, на текущий момент времени, недостаток в надежности. Инженеры СХД предложили вытеснить устройства хранения в отдельный элемент, а оперативную память таких устройств использовать для хранения часто меняющихся данных по специальным алгоритмам, для чего понадобилась программная составляющая продукта. В итоге системы хранения данных работают быстрее, чем накопители на жестких дисках в серверах, а вынос устройства хранения (дисковой подсистемы в отдельный элемент) повлияло на надежность и централизацию системы в целом.

Надежность обеспечил факт реализации в отдельном устройстве дисковой системы, которая работая с программной составляющей, выполняет одну функцию – это операции ввода/вывода и хранения данных.

Кроме простого принципа – одно устройство, одна функция обеспечивающее надежность. Все основные узлы: блоки питания, контроллеры системы хранения данных дублируют, что конечно еще больше увеличивает надежность системы, но сказывается на цене конечного продукта.

Вынос дисковой системы в отдельный узел позволяет централизовать устройства хранения . Как правило, без отдельного сетевого хранилища, домашние папки пользователей, почта, базы данных хранятся на отдельных узлах, как правило, серверах в сети, что очень неудобно, не надежно. Приходится делать резервные копии, дублировать данные на резервный сервер в сети, что кроме расходов на поддержку и аппаратуру, программное обеспечение, занимает часть пропускной способности сети.

Вот как это выглядит:

С отдельным СХД:

В зависимости от способа, технологии подключения СХД в информационную сеть. СХД подразделяют на: DAS, NAS, SAN

DAS (Direct Attached Storage) – способ подключения, который ничем не отличается от стандартного подключения жесткого диска, массивов дисков (RAID) к серверу или ПК. Как правило, для подключения используется SAS .

SAS – фактически, протокол рассчитанный на замену SCSI, использует последовательный интерфейс в отличии от SCSI, но команды используются те же самые, что и в SCSI. SAS имеет большую пропускную способность благодаря канальным соединениям в одном интерфейсе.

NAS (Network Attached Storage) – дисковая система подключается к общей LAN сети, используется транспортный протокол TCP, поверх модели работают протоколы SMB, NFS (удаленный доступ к файлам и принтерам).

SAN (Storage Area Network) – это выделенная сеть объединяющая устройства хранения с серверами. Работает с использованием протокола Fibre Channel либо iSCSI .

С Fibre Channel все понятно – оптика. А вот iSCSI – инкапсуляция пакетов в протокол IP, позволяет создавать сети хранения данных на основе Ethernet инфраструктуры, скорость передачи 1Gb и 10GB. Скорости работы iSCSI по мнению разработчиков должно хватать почти для всех бизнес приложений. Для подключения сервера к СХД по iSCSI требуются адаптеры с поддержкой iSCSI . До каждого устройства при использовании iSCSI прокладывают как минимум два маршрута, применяя VLAN , каждому устройству и LUN (определяет виртуальный раздел в массиве, используется при адресации) присваивается адрес (World Wide Name ).

Отличие NAS от SAN в том, что в сети SAN при операциях ввода/вывода данные считываются и записываются блоками. СХД не имеет никакого представления об устройстве файловых систем.

Из наиболее брендовых вендоров на рынке устройств хранения можно выделить: NetApp, IBM, HP, DELL, HITACHI, EMC.

Для нашего проекта требуется система хранения данных со следующими характеристиками:

  • Объем 1Тб для файлов, 1Тб для операционных систем серверов и баз данных, 300 – 500 Гб, для резервных серверов + запас. Итого минимум 3Тб дискового пространства
  • Поддержка протоколов SMB и NFS, для раздачи общих файлов для пользователей без участия серверов
  • Если хотим загрузку гипервизора с СХД , нужен как минимум протокол iSCSI
  • По идее еще нужно учитывать такой важный параметр как скорость ввода вывода (IO) который сможет обеспечить СХД. Прикинуть это параметр можно измерением IO на действующем железе, например программой IOMeter.

Нужно учитывать, что кластеризация от Microsoft работает только через Fibre Channel.

Вот список фирм и железок для выбора:

Asustor

Asustor AS 606T , AS 608T , 609 RD (кроме возможности установки до 8-ми дисков емкостью 4Tb заявлена поддержка VMware, Citrix и Hyper-V.

Аппаратная составляющая

CPU Intel Atom 2.13

RAM 1GB (3GB) DDR3

Hard 2.5, 3.5, SATA 3 or SSD

Lan Gigabit Ethernet – 2

ЖК-Экран, HDMI

Сеть

Сетевые протоколы

Файловая система

Для встроенных жестких дисков: EXT4, Для внешних жестких дисков: FAT32, NTFS, EXT3, EXT4, HFS+

Хранение

Поддержка нескольких томов с резервными дисками

Тип тома: Single disk, JBOD, RAID 0, RAID 1, RAID 5, RAID 6, RAID 10

Поддержка онлайн-миграции уровней RAID-массива

Максимальное число целей: 256

Максимальное число LUN: 256

Маскирование целей

Отображение LUN

Монтирование ISO-образов

Поддержка MPIO и MCS

Постоянное резервирование (SCSI-3)

Управление дисками

Поиск поврежденных блоков по графику

Сканирование S.M.A.R.T по графику

Поддерживаемые ОС

Windows XP, Vista, 7, 8, Server 2003, Server 2008, Server 2012

Mac OS X 10.6 Onwards

UNIX, Linux, and BSD

Резервное копирование

Поддержка режима Rsync (удаленной синхронизации)

Резервное копирование в «облако»

Резервное копирование по FTP

Резирвирование на внешние носители

Резервное копирование одним касанием

Системное администрирование

Тип журнала регистрации: системный журнал, журнал подключений, журнал доступа к файлам

Регистратор действий пользователя в реальном времени

Системный монитор реального времени

Сетевая корзина

Дисковая квота пользователей

Виртуальный диск (монтирование образов ISO, макс. 16)

Поддержка ИБП

Управление доступом

Максимальное число пользователей: 4096

Максимальное число групп: 512

Максимальное число папок общего доступа: 512

Максимальное число одновременных подключений: 512

Поддержка Windows Active Directory

Безопасность

Брандмауэр: предотвращение несанкционированного доступа

Сетевой фильтр: предотвращение сетевых атак

Уведомления об угрозах: E-mail, SMS

Защищенные подключения: HTTPS, FTP через SSL/TLS, SSH, SFTP, Rsync через SSH

Операционная система ADM с возможностью подключения дополнительных модулей через app central

Модели AS 604RD , AS 609RD в отличие от AS 606T , AS 608T , не имеют в своем составе ЖК-дисплея, предназначены для установки в стойку и имеют резервный блок питания, заявлена поддержка платформ виртуализации

Netgear

Ready Nas 2100 , Ready Nas 3100 , Ready Nas Pro 6

Аппаратная составляющая

CPU Intel SOC 1ГГц

Hard 2.5, 3.5, SATA 2 or SSD

Lan Gigabit Ethernet – 2

Сеть

Сетевые протоколы

CIFS/SMB, AFP, NFS, FTP, WebDAV, Rsync, SSH, SFTP, iSCSI, HTTP, HTTPS

Файловая система

Для встроенных жестких дисков: BTRFS, Для внешних жестких дисков: FAT32, NTFS, EXT3, EXT4, HFS+

Хранение

Поддержка онлайн-расширения емкости RAID-массива

Максимальное число целей: 256

Максимальное число LUN: 256

Маскирование целей

Отображение LUN

Управление дисками

Ёмкость диска, производительность, мониторинг загрузки

Сканирование для поиска плохих блоков на дисках

Поддержка HDD S.M.A.R.T.

Он-лайн коррекция данных на дисках

Поддержка режима Disk Scrubbing

Поддержка дефрагментации

Сообщения (от сервиса SMTP через e-mail, SNMP, syslog, локальный журнал)

Автоматическое выключение (HDD, вентиляторов, ИБП)

Восстановление работоспособности при возобновлении питания

Поддерживаемые ОС

Microsoft Windows Vista (32/64-bit), 7 (32/64-bit), 8 (32/64-bit), Microsoft Windows Server 2008 R2/2012, Apple OS X, Linux/Unix, Solaris, Apple iOS, Google Android)

Резервное копирование

Неограниченное число snapshot для непрерывной защиты.

Восстановление снимков в любой момент времени. Через графический интерфейс пользователя (консоль администратора), ReadyCLOUD, или проводник Windows

Возможность создания snapshot вручную или через планировщик

Синхронизация файлов через R-sync

Облачное управление Remote Replication(ReadyNAS to ReadyNAS). Не требует лицензий для устройств работающих под oперационной системой Radiator OS v6.

Резервирование в “горячем” режиме

Поддержка eSATA

Поддержка резервного копирования на внешние диски to e (USB/eSATA)

Поддержка технологии Remote Apple Time Machine backup and restore (через ReadyNAS Remote)

Поддержка сервиса ReadyNAS Vault Cloud (опционально)

Поддержка синхронизации через ReadyDROP (синхронизация файлов Mac/Windows на ReadyNAS)

Поддержка сервиса DropBox для файловой синхронизации (требуется учётная запись на сервисе DropBox)

Системное администрирование

ReadyCLOUD для обнаружения и управления устройствами

RAIDar –агент для обнаружения устройств в сетиt (Windows/Mac)

Сохранение и восстановление файла конфигураций

Журнал событий

Поддержка сообщений для сервера syslog

Поддержка сообщений для SMB

Графический интерфейс пользователя на русском и английском языках

Genie+ marketplace. Встроенный магазин приложений для повышения функциональности устройства

Поддержка Unicode- символов

Дисковый менеджер

Поддержка Thin provision Shares and LUNs

Мгновенное выделение ресурсов

Управление доступом

Максимальное число пользователей: 8192

Максимальное число групп: 8192

Максимальное количество папок предоставляемых для сетевого доступа: 1024

Максимальное количество подключение: 1024

Доступ к папкам и файлам на основе ACL

Расширенные разрешения для папок и подпапок на основе ACL для CIFS / SMB, AFP, FTP, Microsoft Active Directory (AD) Domain Controller Authentication

Собственные списки доступа

Списки доступа ReadyCLOUD на основе ACL

Операционная система

ReadyNAS OS 6 базируется на Linux 3.x

Ready Nas 3100 отличает Ready Nas 2100 объемом памяти 2Гб ECC

Ready Nas Pro 6 – хранилище с шестью слотами, процессор Intel Atom D510, память DDR2 1Гбайт

Qnap

TS-869U-RP , TS-869 PRO

Аппаратная составляющая

CPU Intel Atom 2.13ГГц

Hard 2.5, 3.5, SATA 3 or SSD

Lan Gigabit Ethernet – 2

Сеть

IPv4, IPv6, Supports 802.3ad and Six Other Modes for Load Balancing and/or Network Failover, Vlan

Сетевые протоколы

CIFS/SMB, AFP, NFS, FTP, WebDAV, Rsync, SSH, SFTP, iSCSI, HTTP, HTTPS

Файловая система

Для встроенных жестких дисков: EXT3, EXT4, Для внешних жестких дисков: FAT32, NTFS, EXT3, EXT4, HFS+

Хранение

Тип тома: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10

Поддержка онлайн-расширения емкости RAID-массива

Максимальное число целей: 256

Максимальное число LUN: 256

Маскирование целей

Отображение LUN

Инициатор iSCSI (Виртуальный диск)

Stack Chaining Master

До 8 виртуальных дисков

Управление дисками

Увеличение емкости дискового пространства RAID-массива без потери данных

Сканирование на сбойные блоки

Функция восстановления RAID-массива

Поддержка Bitmap

Поддерживаемые ОС

Резервное копирование

Репликация в реальном времени (RTRR)

Работает как в качестве RTRR сервера, так и клиента

Поддерживает резервное копирование в реальном времени и по расписанию

Возможны фильтрация файлов, сжатие и шифрование

Кнопка копирования данных с/на внешнее устройство

Поддержка Apple Time Machine с управлением резервирования

Репликация ресурсов на уровне блоков (Rsync)

Работает как в качестве сервера, так и клиента

Защищенная репликация между серверами QNAP

Резервное копирование на внешние носители

Резервное копирование на облачные системы хранения данных

Приложение NetBak Replicator для Windows

Поддержка Apple Time Machine

Системное администрирование

Веб-интерфейс на технологии AJAX

Подключение по HTTP/ HTTPS

Мгновенные уведомления по E-mail и SMS

Управление системой охлаждения

DynDNS и специализированный сервис MyCloudNAS

Поддержка ИБП с SNMP-управлением (USB)

Поддержка сетевых ИБП

Монитор ресурсов

Сетевая корзина для CIFS/ SMB и AFP

Подробные журналы событий и подключений

Список активных пользователей

Клиент Syslog

Обновление микропрограммы

Сохранение и восстановление системных настроек

Восстановление заводских настроек

Управление доступом

До 4096 учетных записей пользователей

До 512 групп пользователей

До 512 сетевых ресурсов

Пакетное добавление пользователей

Импорт/экспорт пользователей

Задание параметров квотирования

Управление правами доступа на вложенные папки

Операционная система

TS – 869 Pro – модель без резервного блока питания, объем памяти 1Гб

Synology

RS 2212 , DS1813

Аппаратная составляющая

CPU Intel Core 2.13ГГц

Hard 2.5, 3.5, SATA 2 or SSD

Lan Gigabit Ethernet – 2

Сеть

IPv4, IPv6, Supports 802.3ad and Six Other Modes for Load Balancing and/or Network Failover

Сетевые протоколы

CIFS/SMB, AFP, NFS, FTP, WebDAV, SSH

Файловая система

Для встроенных жестких дисков: EXT3, EXT4, Для внешних жестких дисков: NTFS, EXT3, EXT4

Хранение

Тип тома: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10

Максимальное число целей: 512

Максимальное число LUN: 256

Управление дисками

Изменение уровня RAID без остановки работы системы

Поддерживаемые ОС

Windows 2000 и последующие версии, Mac OS X 10.3 и последующие версии, Ubuntu 9.04 и последующие версии

Резервное копирование

Сетевое резервирование

Локальное резервирование

Синхронизация папок общего доступа

Резервирование рабочего стола

Системное администрирование

Уведомление о событиях системы по SMS, E-mail

Пользовательская квота

Мониторинг ресурсов

Управление доступом

До 2048 учетных записей пользователей

До 256 групп пользователей

До 256 сетевых ресурсов

Операционная система

DS1813 – 2 Гб оперативной памяти, 4 Gigabit, поддержка HASP 1C, поддержка дисков 4Тб

Thecus

N8800PRO v2 , N7700PRO v2 , N8900

Аппаратная составляющая

CPU Intel Core 2 1.66ГГц

Lan Gigabit Ethernet – 2

Возможность LAN 10Гб

Сеть

IPv4, IPv6, Supports 802.3ad and Six Other Modes for Load Balancing and/or Network Failover

Сетевые протоколы

CIFS/SMB, NFS, FTP

Файловая система

Для встроенных жестких дисков: EXT3, EXT4, Для внешних жестких дисков: EXT3, EXT4, XFS

Хранение

Тип тома: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50, RAID 60

Поддержка онлайн-расширения емкости RAID-массива

Маскирование целей

Отображение LUN

Управление дисками

Контроль состояния дисков (S.M.A.R.T)

Сканирование на сбойные блоки

Возможность монтирования ISO-образов

Поддерживаемые ОС

Microsoft Windows 2000, XP, Vista (32/ 64 bit), Windows 7 (32/ 64 bit), Server 2003/ 2008

Резервное копирование

Acronis True Image

Утилита резервного копирования от Thecus

Чтение с оптического диска на Nas

Системное администрирование

Серверный веб-интерфейс администрирования

Управление доступом

Поддержка ADS

Операционная система

N7700PRO v2 – модель без резервного блока питания

N8900 – новая модель с поддержкой SATA 3 и SAS

Исходя из данных выше, в необходимости не менее 3-x Tb на текущий момент, а при обновлении ОС и программ эту цифру можно умножить на два, то нужно дисковое хранилище с емкостью не менее 6Tb , и с возможностью роста. Поэтому с закладкой на будущее и организации массива RAID 5 итоговой цифрой является необходимость в 12 Tb . При поддержке дисковой системы жестких дисков емкостью 4Tb, нужна система с не менее шестью отсеками для дисков.

Выбор был существенно уменьшен следующими моделями: AS 609RD , Ready NAS 3200 , TS-869U-RP , RS-1212RP+ , N8900 . Все модели имеют в своем составе дополнительный блок питания . И заявленную производителем поддержку известных платформ виртуализации . Наиболее интересной показалась модель от NetGear - Ready NAS 3200 , так как только эта модель кроме SMART поддерживала хоть какие та дополнительные технологии для работы с дисками кроме SMART и память с ECC, но цена вылетала за 100 000 руб, к тому же были сомнения по поводу возможности работы в ней дисков 4Tb и SATA3. Цена за RS-1212RP+ , тоже вылетала выше 100 тысяч. AS 609RD – игрок на рынке систем хранения очень новый, поэтому не известно как поведет себя эта СХД .

Из чего оставалось только две системы на выбор : TS-869 U- RP , N8900 .

TS-869U-RP – на текущий момент стоит порядка 88 000 руб.

N8900 – цена 95 400 руб, имеет массу преимуществ в сравнении с TS-869U-RP – это поддержка как дисков SATA так и SAS , возможность дополнительной установки адаптера 10 Gb , более мощный двуядерный процессор, поддержка дисков SATA3 4Tb. Кроме того существует резервирование прошивки на резервную микросхему, что дает более выгодную надежность по сравнению с другими системами.

  • Назад

Shkera

В этой статье речь пойдет о системах хранения данных начального и среднего уровня, а также тех тенденциях, которые сегодня ярко выделяются в этой отрасли. Для удобства будем называть системы хранения данных накопителями.

Сначала мы немного остановимся на терминологии и технологических основах автономных накопителей, а потом перейдём к новинкам и обсуждению современных достижений в разных технологических и маркетинговых группах. Мы также обязательно расскажем о том, зачем нужны системы того или иного вида и насколько эффективным является их использование в разных ситуациях.

Автономные дисковые подсистемы

Для того, чтобы лучше понять особенности автономных накопителей, остановимся немного на одной из более простых технологий построения систем хранения данных - шинно-ориентированной технологии. Она предусматривает использование корпуса для дисковых накопителей и контроллера PCI RAID.

Рисунок 1. Шинно-ориентированная технология постоения систем хранения данных

Таким образом, между дисками и PCI-шиной хоста (от англ. Host - в данном случае автономный компьютер, например сервер или рабочая станция) есть только один контроллер, который в значительной мере и задает быстродействие системы. Накопители, построенные по этому принципу, являются наиболее производительными. Но в связи с архитектурными особенностями практическое их использование, за исключением редких случаев, ограничивается конфигурациями с одним хостом.

К недостаткам шинно-ориентированной архитектуры накопителей следует отнести:

  • эффективное использование только в конфигурациях с одним хостом;
  • зависимость от операционной системы и платформы;
  • ограниченную масштабируемость;
  • ограниченные возможности по организации отказоустойчивых систем.

Естественно, всё это неважно, если данные нужны для одного сервера или рабочей станции. Наоборот, в такой конфигурации вы получите максимальное быстродействие за минимальные деньги. Но если вам нужна система хранения данных для большого вычислительного центра или даже для двух серверов, которым нужны одни и те же данные, шинно-ориентированная архитектура совершенно не подходит. Недостатков этой архитектуры позволяет избежать архитектура автономных дисковых подсистем. Основной принцип ее построения достаточно прост. Контроллер, который управляет системой, переносится из хост-компьютера в корпус накопителя, обеспечивая независимое от хост-систем функционирование. Следует отметить, что такая система может иметь большое количество внешних каналов ввода/вывода, что обеспечивает возможность подключения к системе нескольких, или даже многих компьютеров.


Рисунок 2. Автономная система хранения данных

Любая интеллектуальная система хранения данных состоит из аппаратной части и программного кода. В автономной системе всегда есть память, в которой хранится программа алгоритмов работы самой системы и процессорные элементы, которые этот код обрабатывают. Такая система функционирует независимо от того, с какими хост-системами она связана. Благодаря своей интеллектуальности автономные накопители зачастую самостоятельно реализуют множество функций по обеспечению сохранности и управлению данными. Одна из самых важных базовых и практически повсеместно используемых функций - это RAID (Redundant Array of Independent Disks). Другая, принадлежащая уже системам среднего и высокого уровня - это виртуализация. Она обеспечивает такие возможности как мгновенная копия или удаленное резервирование, а также другие, достаточно изощрённые алгоритмы.

Коротко о SAS, NAS, SAN

В рамках рассмотрения автономных систем хранения данных обязательно следует остановиться на том, каким образом осуществляется доступ хост-систем к накопителям. Это в значительной мере определяет сферы их использования и внутреннюю архитектуру.

Различают три основных варианта организации доступа к накопителям:

  • SAS (Server Attached Storage) - накопитель, подсоединенный к серверу [ второе название DAS (Direct Attached Storage) - напрямую подсоединённый накопитель ];
  • NAS (Network Attached Storage) - накопитель, подсоединенный к сети;
  • SAN (Storage Area Network) - сеть хранения данных.

Мы уже писали о технологиях SAS/DAS, NAS и SAN в статье посвященной SAN, если кого эта информация заинтересует, рекомендуем обратиться к страницам iXBT . Но всё же позволим себе немножко освежить материал с акцентом на практическое использование.

SAS/DAS - это достаточно простой традиционный способ подключения, который подразумевает прямое (отсюда и DAS) подсоединение системы хранения к одной или нескольким хост-системам через высокоскоростной канальный интерфейс. Часто в таких системах, для подсоединения накопителя к хосту используется такой же интерфейс, который используется для доступа к внутренним дискам хост-системы, что в общем случае обеспечивает высокое быстродействие и простое подключение.

SAS-систему можно рекомендовать к использованию в случае, если имеется потребность в высокоскоростной обработке данных больших объемов на одной или нескольких хост-системах. Это, например, может быть файл-сервер, графическая станция или отказоустойчивая кластерная система, состоящая из двух узлов.



Рисунок 3. Кластерная система с общим накопителем

NAS - накопитель, который подсоединен к сети и обеспечивает файловый (обратите внимание - файловый, а не блочный) доступ к данным для хост-систем в сети LAN/WAN. Клиенты, которые работает с NAS, для доступа к данным обычно используют протоколы NSF (Network File System) или CIFS (Common Internet File System). NAS интерпретирует команды файловых протоколов и исполняет запрос к дисковым накопителям в соответствии с используемым в нём канальным протоколом. Фактически, архитектура NAS - это эволюция файловых серверов. Главным преимуществом такого решения является быстрота развёртывания и качество организации доступа к файлам, благодаря специализации и узкой направленности.

Исходя из сказанного, NAS можно рекомендовать для использования в случае, если нужен сетевой доступ к файлам и достаточно важными факторами являются: простота решения (что обычно является неким гарантом качества) и простота его сопровождения и установки . Прекрасным примером является использование NAS в качестве файл-сервера в офисе небольшой компании, для которой важна простота установки и администрирования. Но в то же время, если вам нужен доступ к файлам с большого количества хост-систем, мощный NAS-накопитель, благодаря отточенному специализированному решению, способен обеспечить интенсивный обмен трафиком с огромным пулом серверов и рабочих станций при достаточно низкой стоимости используемой коммуникационной инфраструктуры (например, коммутаторов Gigabit Ethernet и медной витой пары).

SAN - сеть хранения данных. Обычно в SAN используется блочный доступ к данным, хотя возможно подключение к сетям хранения данных устройств, предоставляющих файловые сервисы, например NAS. В современных реализациях сети хранения данных чаще всего используют протокол Fibre Channel, но в общем случае это не является обязательным, в связи с чем, принято выделять отдельный класс Fibre Channel SAN (сети хранения данных на основе Fibre Channel).

Основой SAN является отдельная от LAN/WAN сеть, которая служит для организации доступа к данным серверов и рабочих станций, непосредственно занимающихся обработкой. Такая структура делает построение систем с высокой готовностью и высокой интенсивностью запросов относительно простой задачей. Несмотря на то, что SAN сегодня остается дорогим удовольствием, TCO (общая стоимость владения) для средних и больших систем, построенных с использованием технологии сетей хранения данных, является довольно низкой. Описание способов снижения TCO корпоративных систем хранения данных благодаря SAN можно найти на страницах ресурса techTarget: http://searchstorage.techtarget.com .

Сегодня стоимость дисковых накопителей с поддержкой Fibre Channel, как наиболее распространенного интерфейса для построения SAN, близка к стоимости систем с традиционными недорогими канальными интерфейсами (такими как параллельный SCSI). Главными стоимостными составляющими в SAN остается коммуникационная инфрастуктура, а также стоимость ее развёртывания и сопровождения. В связи с чем, в рамках SNIA и многих коммерческих организациях ведётся активная работа над технологиями IP Storage, что позволяет использовать значительно более недорогую аппаратуру и инфраструктуру IP-сетей, а также колоссальный опыт специалистов в этой сфере.

Примеров по эффективному использованию SAN можно привести достаточно много. Практически везде, где имеется необходимость использования нескольких серверов с совместной системой хранения данных, можно использовать SAN. Например, для организации коллективной работы над видеоданными или предварительной обработки печатной продукции. В такой сети каждый участник процесса обработки цифрового контента получает возможность практически одновременно работать над Терабайтами данных. Или, например, организация резервирования больших объемов данных, которыми пользуется множество серверов. При построении SAN и использовании независимого от LAN/WAN алгоритма резервирования данных и технологий «моментальной копии», можно резервировать почти любые объёмы информации без ущерба функциональности и производительности всего информационного комплекса.

Fibre Channel в сетях хранения данных

Безусловным фактом является то, что сегодня именно FC (Fibre Channel) доминирует в сетях хранения данных. И именно развитие этого интерфейса привело к развитию самой концепции SAN.

В проектировании FC принимали участие специалисты со значительным опытом в разработке как канальных, так и сетевых интерфейсов, и им удалось объединить все важные положительные черты обоих направлений. Одним из важнейших преимуществ Fibre Channel наряду со скоростными параметрами (которые, кстати, не всегда являются главными для пользователей SAN, и могут быть реализованы с помощью других технологий) является возможность работы на больших расстояниях и гибкость топологии, которая пришла в новый стандарт из сетевых технологий. Таким образом, концепция построения топологии сети хранения данных базируется на тех же принципах, что и традиционные локальные сети, на основе концентраторов, коммутаторов и маршрутизаторов, что значительно упрощает построение многоузловых конфигураций систем, в том числе без единой точки отказов.

Стоит также отметить, что в рамках Fibre Channel для передачи данных используются как оптоволоконные, так и медные среды. При организации доступа к территориально удаленным узлам на расстоянии до 10 киллометров используется стандартная аппаратура и одномодовое оптоволокно для передачи сигнала. Если же узлы разнесены на 10-ки или даже 100-ни километров используются специальные усилители. При построении таких SAN учитываются достаточно нетрадиционные для систем хранения данных параметры, например, скорость распространения сигнала в оптоволокне.

Тенденции развития систем хранения данных

Мир систем хранения данных чрезвычайно разнообразен. Возможности систем хранения данных, так и стоимость решений достаточно дифференцирована. Существуют решения, объединяющие в себе возможности обслуживания сотен тысяч запросов в секунду к десяткам и даже сотням Терабайт данных, а также решения для одного компьютера с недорогими дисками с IDE-интерфейсом.

IDE RAID

В последнее время максимальный объем дисков с IDE-интерфейсом колоссально увеличился и опережает SCSI-диски примерно в два раза, а если говорить о соотношении цена на единицу объёма, то IDE-диски лидируют с разрывом более чем в 6 раз. Это, к сожалению, не повлияло положительно на надежность IDE-дисков, но всё же сфера их применения в автономных системах хранения данных неумолимо увеличивается. Главным фактором в этом процессе является то, что потребность в больших объёмах данных растёт быстрее, чем объем одиночных дисков.

Еще несколько лет назад редкие производители решались выпускать автономные подсистемы, ориентированные на использование IDE-дисков. Сегодня их выпускает практически каждый производитель, ориентированный на рынок систем начального уровня. Наибольшее распространение в классе автономных подсистем с IDE-дисками наблюдается в NAS-системах начального уровня. Ведь если вы используете NAS в качестве файлового сервера с интерфейсом Fast Ethernet или даже Gigabit Ethernet, то в большинстве случаев быстродействия таких дисков является более чем достаточным, а их низкая надёжность компенсируется использованием технологии RAID.

Там, где необходим блочный доступ к данным при минимальной цене за единицу хранимой информации, сегодня активно используются системы с IDE-дисками внутри и с внешним SCSI-интерфейсом. Например, на системе JetStor IDE производства американской компании AC&NC для построения отказоустойчивого архива с объёмом хранимых данных в 10 Терабайт и возможностью быстрого блочного доступа к данным стоимость хранения одного Мегабайта будет составлять меньше 0,3 цента.

Ещё одной интересной и достаточно оригинальной технологией, с которой пришлось познакомиться совсем недавно, была система Raidsonic SR-2000 с внешним параллельным IDE-интерфейсом.


Рисунок 4. Автономный IDE RAID начального уровня

Это автономная дисковая система, рассчитанная на использование двух IDE дисков и ориентированная на монтаж внутри корпуса хост-системы. Она абсолютно независима от операционной системы на хост-машине. Система позволяет организовать RAID 1 (зеркало) или просто копирование данных с одного диска на другой с возможностью горячей замены дисков, без какого-либо ущерба или неудобства со стороны пользователя компьютера, чего не скажешь о шинно-ориентированых подсистемах, построенных на контроллерах PCI IDE RAID.

Следует заметить, что ведущие производители IDE-дисков анонсировали выпуск дисков среднего класса с интерфейсом Serial ATA, в которых будут использоваться высокоуровневые технологии. Это должно благоприятно повлиять на их надежность и увеличить долю ATA-решений в системах хранения данных.

Что нам принесёт Serial ATA

Первое и самое приятное, что можно найти в Serial ATA - это кабель. В связи с тем, что интерфейс ATA стал последовательным, кабель стал круглым, а коннектор - узким. Если вам приходилось укладывать кабели параллельного IDE-интерфейса в системе на восемь IDE-каналов, я уверен, что вам понравится эта особенность. Конечно, уже давно существовали круглые IDE-кабели, но коннектор у них всё же оставался широким и плоским, да и максимально допустимая длина параллельного ATA-кабеля не радует. При построении систем с большим количеством дисков, наличие стандартного кабеля вообще не сильно помогает, так как кабели приходится делать самостоятельно, и при этом их укладка становится едва ли не главной по времени задачей при сборке.

Кроме особенности кабельной системы, в Serial ATA есть другие нововведения, которые для параллельной версии интерфейса реализовать самостоятельно с помощью канцелярского ножа и другого подручного инструмента не удастся. В дисках с новым интерфейсом скоро должна появиться поддержка набора инструкций Native Command Queuing (конвейеризации команд). При использовании Native Command Queuing, контроллер Serial ATA анализирует запросы ввода-вывода и оптимизирует очередность их выполнения таким образом, чтобы минимизировать время поиска. Достаточно очевидна схожесть идеи Serial ATA Native Command Queuing с организацией очереди команд в SCSI, правда, для Serial ATA будет поддерживаться очередь до 32 команд, а не традиционных для SCSI - 256. Появилась также родная поддержка горячей замены устройств. Конечно, такая возможность существовала и ранее, но её реализация была за рамками стандарта и, соответственно, не могла получить широкое распространение. Говоря о новых скоростных возможностях Serial ATA, следует заметить, что сейчас от них радости пока большой нет, но главное здесь то, что на будущее есть хороший Roadmap, реализовать который в рамках параллельного ATA было бы очень не просто.

Учитывая сказанное, можно не сомневаться, что доля ATA-решений в системах хранения начального уровня должна увеличиться именно за счёт новых дисков Serial ATA и систем хранения данных, ориентированных на использование таких устройств.

Куда идет параллельный SCSI

Все, кто работает с системами хранения данных, даже начального уровня, вряд ли могут сказать, что им нравятся системы с IDE-дисками. Главное преимущество ATA дисков - их низкая цена, по сравнению со SCSI-устройствами ну и еще, наверное, более низкий уровень шума. И происходит всё это по простой причине, так как SCSI-интерфейс лучше подходит для использования в системах хранения данных и пока значительно дешевле, чем еще более функциональный интерфейс - Fibre Channel, то и диски со SCSI-интерфейсом производятся более качественные, надёжные и быстрые, чем с дешёвым IDE-интерфейсом.

Сегодня многие производители при проектировании систем хранения с параллельным SCSI используют Ultra 320 SCSI, самый новый интерфейс в семействе. Некогда во многих Roadmap были планы по выпуску устройств с интерфейсом Ultra 640 и даже Ultra 1280 SCSI, но всё шло к тому, что в интерфейсе нужно что-то менять кардинальным образом. Параллельный SCSI уже сейчас, на этапе использования Ultra 320, многих не устраивает, главным образом по причине неудобства использования классических кабелей.

К счастью, недавно появился новый интерфейс Serial Attached SCSI (SAS). У нового стандарта будут интересные особенности. Он объединяет в себе некоторые возможности Serial ATA и Fibre Channel. Несмотря на эту странность, следует сказать, что в таком переплетении есть некий здравый смысл. Стандарт возник на основе физических и электрических спецификаций последовательного ATA с такими усовершенствованиями, как увеличение уровня сигнала для соответствующего увеличения длинны кабеля, увеличение максимальной адресуемости устройств. А самое интересное то, что технологи обещают обеспечить совместимость устройств Serial ATA и SAS, но только в следующих версиях стандартов.

К наиболее важным особенностям SAS можно отнести:

  • интерфейс точка-точка;
  • двухканальный интерфейс;
  • поддержка 4096 устройств в домене;
  • стандартный набор команд SCSI;
  • кабель длинной до 10 метров;
  • кабель 4-жильный;
  • полный дуплекс.

Благодаря тому, что новый интерфейс предлагает использовать такой же миниатюрный коннектор, как и Serial ATA, у разработчиков появляется новая возможность по построению более компактных устройств с высокой производительностью. Стандарт SAS также предусматривает использование расширителей. Каждый расширитель будет поддерживать адресацию 64-х устройств с возможностью каскадирования до 4096 устройств в рамках домена. Это конечно значительно меньше, чем возможности Fibre Channel, но в рамках систем хранения начального и среднего уровней, с накопителями, напрямую подсоединенными к серверу, этого вполне достаточно.

Несмотря на все прелести, интерфейс Serial Attached SCSI вряд ли быстро заместит обычный параллельный интерфейс. В мире решений для предприятий разработки обычно ведутся более тщательно и, естественно, в течение большего времени, чем для настольных систем. Да и уходят старые технологии не очень быстро, так как период, за который они отрабатывают себя, тоже немаленький. Но всё же, в году 2004 устройства с интерфейсом SAS должны выйти на рынок. Естественно, сначала это будут в основном диски и PCI-контролеры, но ещё через годик подтянутся и системы хранения данных.

Для лучшего обобщения информации предлагаем ознакомиться со сравнением современных и новых интерфейсов для систем хранения данных в виде таблицы.

1 - Стандарт регламентирует расстояние до 10 км для одномодового оптоволокна, существуют реализации устройств для передачи данных на расстояние больше чем, 105 м.

2 - В рамках внутренней виртуальной топологии кольца работают концентраторы и некоторые коммутаторы FC, также существует много реализаций коммутаторов, которые обеспечивают соединение точка-точка любых устройств, подсоединенных к ним.

3 - Cуществуют реализации устройств со SCSI, FICON, ESCON, TCP/I, HIPPI, VI протоколами.

4 - Дело в том, что устройства будут взаимно совместимы (так обещают сделать в ближайшем будущем производители). То есть SATA-контроллеры будут поддерживать SAS-диски, а SAS-контроллеры - диски SATA.

Массовое увлечение NAS

Последнее время за рубежом отмечается просто-таки массовое увлечение NAS-накопителями. Дело в том, что с увеличением актуальности ориентированного на данные подхода к построению информационных систем увеличилась привлекательность специализации классических файл-серверов и формирование новой маркетинговой единицы - NAS. При этом опыт в построении подобных систем был достаточным для быстрого старта технологии накопителей, подсоединенных к сети, а стоимость их аппаратной реализации была предельно низкой. Сегодня NAS-накопители производят фактически все производители систем хранения данных, среди них и системы начального уровня за очень маленькие деньги, и среднего, и даже системы, отвечающие за хранение десятков Терабайт информации, способные обработать колоссальное количество запросов. В каждом классе NAS-систем есть свои интересные оригинальные решения.

NAS на основе PC за 30 минут

Мы хотим немного описать одно оригинальное решение начального уровня. О практической ценности его реализации можно спорить, но в оригинальности ему не откажешь.

По сути дела, NAS-накопитель начального уровня, да и не только начального, является достаточно простым персональным компьютером с неким количеством дисков и программной частью, которая обеспечивает доступ других участников сети к данным на файловом уровне. Таким образом, для построения NAS устройства достаточно взять указанные компоненты и соединить их между собой. Все дело в том, насколько качественно вы это сделаете, настолько же надежный и качественный доступ к данным получит рабочая группа, работающая с данными, доступ к которым обеспечивает ваше устройство. Именно учитывая эти факторы, а также время развёртывания решения, плюс некоторые дизайнерские изыскания строится NAS-накопитель начального уровня.

Разница между хорошим NAS-решением начального уровня с самостоятельно собранной и настроенной в рамках выбранной ОС персоналкой, если опять-таки опустить конструктивное исполнение, будет в том:

  • насколько быстро вы это сделаете;
  • насколько просто сможет обслуживаться эта система неквалифицированным персоналом;
  • насколько качественно это решение будет работать и поддерживаться.

Другими словами, в случае профессионального подбора комплектующих и существования некого изначально настроенного набора программного обеспечения, можно достичь хорошего результата. Истина вроде банальная, это же можно сказать о любой задаче, которая решается по схеме готовых компонентных решений: «hardware» плюс «software».

Что предлагает сделать компания «X»? Формируется достаточно ограниченый список совместимых комплектующих: материнских плат со всем интегрированным хозяйством, нужных NAS-серверу начального уровня жёстких дисков. Вы покупаете устанавливаемый в IDE-разъём на материнской плате FLASH диск с записанным программным обеспечением и получаете готовый NAS накопитель. Операционная система и утилиты, записанные на этот диск, загружаясь, конфигурируют нужные модули адекватным образом. И в результате пользователь получает устройство, которое может управляться как локально, так и удаленно через HTML-интерфейс и предоставлять доступ к дисковым накопителям, подключённым к нему.

Файловые протоколы в современных NAS

CIFS (Common Internet File System) - это стандартный протокол, который обеспечивает доступ к файлам и сервисам на удаленных компьютерах (в том числе и в Интернет). Протокол использует клиент-серверную модель взаимодействия. Клиент создает запрос к серверу на доступ к файлам или передачу сообщения программе, которая находится на сервере. Сервер выполняет запрос клиента и возвращает результат своей работы. CIFS - это открытый стандарт, который возник на основе SMB-протокола (Server Message Block Protocol), разработанного Microsoft, но, в отличие от последнего, CIFS учитывает возможность возникновения больших таймаутов, так как ориентирован на использование в том числе и в распределённых сетях. SMB-протокол традиционно использовался в локальных сетях с ОС Windows для доступа к файлам и печати. Для транспортировки данных CIFS использует TCP/IP протокол. CIFS обеспечивает функциональность похожую на FTP (File Transfer Protocol), но предоставляет клиентам улучшенный (похожий на прямой) контроль над файлами. Он также позволяет разделять доступ к файлам между клиентами, используя блокирование и автоматическое восстановление связи с сервером в случае сбоя сети.

NFS (Network File System) - это стандарт IETF, который включает в себя распределенную файловую систему и сетевой протокол. NFS был разработан компанией Sun Microsystem Computer Corporation. Он первоначально использовался только в UNIX-системах, позже реализации клиентской и серверной чатей стали распространенными и в других системах.

NFS, как и CIFS, использует клиент-серверную модель взаимодействия. Он обеспечивает доступ к файлам на удаленном компьютере (сервере) для записи и считывания так, как если бы они находились на компьютере пользователя. В ранних версиях NFS для транспортирования данных использовался UDP-протокол, в современных - используется TCP/IP. Для работы NFS в интерент компанией Sun был разработан протокол WebNFS, который использует расширения функциональности NFS для его корректной работы во всемирной сети.

DAFS (Direct Access File System) - это стандартный протокол файлового доступа, который базируется на NFSv4. Он позволяет прикладным задачам передавать данные в обход операционной системы и ее буферного пространства напрямую к транспортным ресурсам, сохраняя семантику, свойственную файловым системам. DAFS использует преимущества новейших технологий передачи данных по схеме память-память. Его использование обеспечивает высокие скорости файлового ввода-вывода, минимальную загрузку CPU и всей системы, благодаря значительному уменьшению количества операций и прерываний, которые обычно необходимы при обработке сетевых протоколов. Особенно эффективным является использование аппаратных средств поддержки VI (Virtual Interface).

DAFS проектировался с ориентацией на использование в кластерном и серверном окружении для баз данных и разнообразных интернет-приложений, ориентированных на непрерывную работу. Он обеспечивает наименьшие задержки доступа к общим файловым ресурсам и данным, а также поддерживает интеллектуальные механизмы восстановления работоспособности системы и данных, что делает его очень привлекательным для использования в High-End NAS-накопителях.

Все дороги ведут к IP Storage

В системах хранения данных высокого и среднего уровня за последние несколько лет появилось очень много новых интересных технологий.

Fibre Channel сети хранения данных сегодня уже достаточно известная и популярная технология. В то же время, их массовое распространение сегодня является проблематичным из-за ряда особенностей. К ним можно отнести высокую стоимость реализации и сложность построения географически распределённых систем. С одной стороны - это всего лишь особенности технологии уровня предприятия, но с другой, если SAN станет дешевле, и построение распределённых систем упростится, это должно дать просто-таки колоссальный прорыв в развитии сетей хранения данных.

В рамках работы над сетевыми технологиями хранения данных в Internet Engineering Task Force (IETF) была создана рабочая группа и форум IP Storage (IPS) по направлениям:

FCIP - Fibre Channel over TCP/IP, созданный на базе TCP/IP туннельный протокол, функцией которого является соединение географически удаленных FC SAN без какого либо воздействия на FC и IP протоколы.

iFCP - Internet Fibre Channel Protocol, созданный на базе TCP/IP протокол для соединения FC систем хранения данных ли FC сетей хранение данных, используя IP инфраструктуру совместно или вместо FC коммутационных и маршрутизирующих элементов.

iSNS - Internet Storage Name Service, протокол поддержке имён накопителей в сети Интернет.

iSCSI - Internet Small Computer Systems Interface, это протокол, который базируется на TCP/IP и разработан для установления взаимодействия и управления системами хранения данных, серверами и клиентами (Определение SNIA - IP Storage Forum: ).

Самым бурно развивающимся и самым интересным из перечисленных направлений является iSCSI.

iSCSI - новый стандарт

11 февраля 2003 года iSCSI стал официальным стандартом. Ратификация iSCSI обязательно повлияет на более широкий интерес к стандарту, который уже развивается достаточно активно. Быстрее всего развитие iSCSI послужит толчком к распространению SAN в малом и среднем бизнесе, так как использование соответствующего стандарту оборудования и подхода к обслуживанию (в том числе распространённого в рамках стандартных Ethernet сетей) позволит сделать сети хранения данных значительно дешевле. Что же касается использования iSCSI в Интернет, то сегодня здесь уже неплохо прижился FCIP, и конкуренция с ним будет трудной.

Новый стандарт охотно поддержали известные IT-компании. Есть, конечно, и противники, но всё же, практически все компании, которые активно участвуют в рынке систем начального и среднего уровня, уже работают над устройствами с поддержкой iSCSI. В Windows и Linux iSCSI драйверы уже включены, системы хранения данных iSCSI производит IBM, адаптеры - Intel, в ближайшее время подключиться к процессу освоения нового стандарта обещают HP, Dell, EMC.

Одной из очень интересных особенностей iSCSI является то, что для передачи данных на накопителе с интерфейсом iSCSI можно использовать не только носители, коммутаторы и маршрутизаторы существующих сетей LAN/WAN, но и обычные сетевые адаптеры Fast Ethernet или Gigabit Ethernet на стороне клиента. Правда, при этом возникают значительные накладные расходы процессорной мощности ПК, который использует такой адаптер. По утверждению разработчиков, программная реализация iSCSI может достичь скоростей среды передачи данных Gigabit Ethernet при значительной, до 100% загрузке современных CPU. В связи с чем рекомендуется использование специальных сетевых карточек, которые будут поддерживать механизмы разгрузки CPU от обработки стека TCP.

Виртуализация в сетях хранения данных

Ёщё одной важной технологией в построении современных накопителей и сетей хранения данных является виртуализация.

Виртуализация систем хранения данных - это представление физических ресурсов в некоем логическом, более удобном виде. Эта технология позволяет гибко распределять ресурсы между пользователями и эффективно ими управлять. В рамках виртуализации успешно реализуется удаленное копирование, моментальная копия, распределение запросов ввода-вывода на наиболее подходящие по характеру обслуживания накопители и множество других алгоритмов. Реализация алгоритмов виртуализации может осуществляться как средствами самого накопителя, так и с помощью внешних устройств виртуализации или же с помощью управляющих серверов, на которых работает специализированное программное обеспечение под стандартными ОС.

Это, конечно, очень малая часть того, что можно сказать о виртуализации. Эта тема очень интересна и обширна, поэтому мы решили посвятить ей отдельную публикацию.

Если Серверы - это универсальные устройства, выполняющие в большинстве случаев
- либо функцию сервера приложения (когда на сервере выполняются специальные программы, и идут интенсивные вычисления),
- либо функцию файл-сервера (т.е. некоего места для централизованного хранения файлов данных)

то СХД (Системы Хранения Данных) - устройства, специально спроектированные для выполнения таких серверных функций, как хранение данных.

Необходимость приобретения СХД
возникает обычно у достаточно зрелых предприятий, т.е. тех, кто задумывается над тем, как
- хранить и управлять информацией, самым ценным активом компании
- обеспечить непрерывность бизнеса и защиту от потери данных
- увеличить адаптируемость ИТ-инфраструктуры

СХД и виртуализация
Конкуренция заставляет компании МСБ работать эффективней, без простоев и с высоким КПД. Смена производственных моделей, тарифных планов, видов услуг происходит всё чаще. Весь бизнез современных компаний "завязан" на информационных технологиях. Потребности бизнеса меняются быстро, и мгновенно отражаются на ИТ - растут требования к надёжности и адаптируемости ИТ-инфраструктуры. Виртуализация предоставляет такие возможности, но для этого нужны недорогие и простые в обслуживании системы хранения данных.

Классификация СХД по типу подключения

DAS . Первые дисковые массивы соединялись с серверами по интерфейсу SCSI. При этом один сервер мог работать только с одним дисковым массивом. Это - прямое соединение СХД (DAS - Direct Attached Storage).

NAS . Для более гибкой организации структуры вычислительного центра - чтобы каждый пользователь мог использовать любую систему хранения - необходимо подключить СХД в локальную сеть. Это - NAS - Network Attached Storage). Но обмен данными между сервером и СХД во много раз более интенсивный чем между клиентом и сервером, поэтому в таком варианте варианте появились объективные трудности, связанные с пропускной способностью сети Ethernet. Да и с точки зрения безопасности не совсем правильно показывать СХД в общую сеть.

SAN . Но можно создать между серверами и СХД свою, отдельную, высокоскоростную сеть. Такую сеть назвали SAN (Storage Area Network). Быстродействие обеспечивается тем, что физической средой передачи там является оптика. Специальные адаптеры (HBA) и оптические FC-коммутаторы обеспечивают передачу данных на скорости 4 и 8Gbit/s. Надёжность такой сети повышалась резервированием (дупликацией) каналов (адаптеров, коммутаторов). Основным недостатком является высокая цена.

iSCSI . С появлением недорогих Ethernet-технологий 1Gbit/s и 10Gbit/s, оптика со скоростью передачи 4Gbit/s уже выглядит не так привлекательно, особенно с учетом цены. Поэтому всё чаще в качестве среды SAN используется протокол iSCSI (Internet Small Computer System Interface). Сеть iSCSI SAN может быть построена на любой достаточно быстрой физической основе, поддерживающей протокол IP.

Классификация Систем Хранения Данныхпо области применения:

класс описание
personal

Чаще всего представляют из себя обычный 3.5" или 2.5" или 1.8" жесткий диск, помещенный в специальный корпус и оснащенный интерфейсами USB и/или FireWire 1394 и/или Ethernet, и/или eSATA.
Таким образом мы имеем переносное устройство, которое может подключаться к компьютеру/серверу и выполнять функции внешнего накопителя. Иногда для удобства в устройство добавляют функции беспроводного доступа, принтерных и USB портов.

small workgroup

Обычно это стационарное или переносное устройство, в которое можно устанавливать несколько (чаще всего от 2 до 5) жестких дисков SATA, с возможностью горячей замены или без, имеющее интерфейс Ethernet. Диски можно организовывать в массивы - RAID различного уровня для достижения высокой надежности хранения и скорости доступа. СХД имеет специализированную ОС, обычно на основе Linux, и позволяет разграничивать уровень доступа по имени и паролю пользователей, организовывать квотирование дискового пространства и т.п.
Такие СХД подходят для небольших рабочих групп, как замена файл-серверов.

workgroup

Устройство, обычно монтируемое в 19" стойку (rack-mount) в которое можно устанавливать 12-24 жестких дисков SATA или SAS с возможностью горячей замены HotSwap. Имеет внешний интерфейс Ethernet, и/или iSCSI. Диски организованы в массивы - RAID для достижения высокой надежности хранения и скорости доступа. СХД поставляется со специализированным программным обеспечением, которое позволяет разграничивать уровень доступа, организовывать квотирование дискового пространства, организовывать BackUp (резервное копирование информации) и т.п.
Такие СХД подходят для средних и крупных предприятий, и используются совместно с одним или несколькими серверами.
enterprise
Стационарное устройство или устройство, монтируемое в 19" стойку (rack-mount) в которое можно устанавливать до сотен жестких дисков.
В дополнение к предыдущему классу СХД могут иметь возможность наращивания, модернизации и замены компонент без остановки системы, системы мониторинга. Программное обеспечение может поддерживать создание "моментальных снимков" и другие "продвинутые" функции.
Такие СХД подходят для больших предприятий и обеспечивают повышенную надежность, скорость и защиту критически важных данных.

high-end enterprise

В дополнение к предыдущему классу СХД может поддерживать тысячи жестких дисков.
Такие СХД занимают несколько 19" кабинетов, общий вес достигает нескольких тонн.
СХД предназначены для безостановочной работы с высочайшей степенью надежности, хранения стратегически важных данных уровня государства/корпораций.

История вопроса.

Первые серверы сочетали в одном корпусе все функции (как компьютеры) - и вычислительные (сервер приложений) и хранение данных (файл-сервер). Но по мере роста потребности приложений в вычислительных мощностях с одной стороны и по мере роста количества обрабатываемых данных с другой стороны - стало просто неудобно размещать все в одном корпусе. Эффективнее оказалось выносить дисковые массивы в отдельные корпуса. Но тут встал вопрос соединения дискового массива с сервером. Первые дисковые массивы соединялись с серверами по интерфейсу SCSI. Но в таком случае один сервер мог работать только с одним дисковым массивом. Народу захотелось более гибкой организации структуры вычислительного центра - чтобы любой сервер мог использовать любую систему хранения. Подключить все устройства напрямую в локальную сеть и организовать обмен данными по Ethernet - конечно, простое и универсальное решение. Но обмен данными между серверами и СХД во много раз более интенсивный чем между клиентами и серверами, поэтому в таком варианте варианте (NAS - см. ниже) появились объективные трудности, связанные с пропускной способностью сети Ethernet. Возникла идея создать между серверами и СХД свою, отдельную высокоскоростную сеть. Такую сеть назвали SAN (см. ниже). Она похожа на Ethernet, только физической средой передачи там является оптика. Там тоже есть адаптеры (HBA), которые устанавливаются в серверы и коммутаторы (оптические). Стандарты на скорость передачи данных по оптике - 4Gbit/s. С появлением технологий Ethernet 1Gbit/s и 10Gbit/s, а также протокола iSCSI всё чаще в качестве среды SAN используется Ethernet.

В простейшем случае SAN состоит из СХД , коммутаторов и серверов, объединённых оптическими каналами связи. Помимо непосредственно дисковых СХД в SAN можно подключить дисковые библиотеки, ленточные библиотеки (стримеры), устройства для хранения данных на оптических дисках (CD/DVD и прочие) и др.

Пример высоконадёжной инфраструктуры, в которой серверы включены одновременно в локальную сеть (слева) и в сеть хранения данных (справа). Такая схема обеспечивает доступ к данным, находящимся на СХД, при выходе из строя любого процессорного модуля, коммутатора или пути доступа.

Использование SAN позволяет обеспечить:

  • централизованное управление ресурсами серверов и систем хранения данных ;
  • подключение новых дисковых массивов и серверов без остановки работы всей системы хранения;
  • использование ранее приобретенного оборудования совместно с новыми устройствами хранения данных;
  • оперативный и надежный доступ к накопителям данных, находящимся на большом расстоянии от серверов, *без значительных потерь производительности;
  • ускорение процесса резервного копирования и восстановления данных - BURA .

История

Развитие сетевых технологий привело к появлению двух сетевых решений для СХД – сетей хранения Storage Area Network (SAN) для обмена данными на уровне блоков, поддерживаемых клиентскими файловыми системами, и серверов для хранения данных на файловом уровне Network Attached Storage (NAS). Чтобы отличать традиционные СХД от сетевых был предложен еще один ретроним – Direct Attached Storage (DAS).

Появлявшиеся на рынке последовательно DAS, SAN и NAS отражают эволюционирующие цепочки связей между приложениями, использующими данные, и байтами на носителе, содержащим эти данные. Когда-то сами программы-приложения читали и писали блоки, затем появились драйверы как часть операционной системы. В современных DAS, SAN и NAS цепочка состоит из трех звеньев: первое звено – создание RAID-массивов, второе – обработка метаданных, позволяющих интерпретировать двоичные данные в виде файлов и записей, и третье – сервисы по предоставлению данных приложению. Они различаются по тому, где и как реализованы эти звенья. В случае с DAS СХД является «голой», она только лишь предоставляет возможность хранения и доступа к данным, а все остальное делается на стороне сервера, начиная с интерфейсов и драйвера. С появлением SAN обеспечение RAID переносится на сторону СХД, все остальное остается так же, как в случае с DAS. А NAS отличается тем, что в СХД переносятся к тому же и метаданные для обеспечения файлового доступа, здесь клиенту остается только лишь поддерживать сервисы данных.

Появление SAN стало возможным после того, как в 1988 году был разработан протокол Fibre Channel (FC) и в 1994 утвержден ANSI как стандарт. Термин Storage Area Network датируется 1999 годом. Со временем FC уступил место Ethernet, и получили распространение сети IP-SAN с подключением по iSCSI.

Идея сетевого сервера хранения NAS принадлежит Брайану Рэнделлу из Университета Ньюкэстла и реализована в машинах на UNIX-сервере в 1983 году. Эта идея оказалась настолько удачной, что была подхвачена множеством компаний, в том числе Novell, IBM , и Sun, но в конечном итоге сменили лидеров NetApp и EMC.

В 1995 Гарт Гибсон развил принципы NAS и создал объектные СХД (Object Storage, OBS). Он начал с того, что разделил все дисковые операции на две группы, в одну вошли выполняемые более часто, такие как чтение и запись, в другую более редкие, такие как операции с именами. Затем он предложил в дополнение к блокам и файлам еще один контейнер, он назвал его объектом.

OBS отличается новым типом интерфейса, его называют объектным. Клиентские сервисы данных взаимодействуют с метаданными по объектному API (Object API). В OBS хранятся не только данные, но еще и поддерживается RAID, хранятся метаданные, относящиеся к объектам и поддерживается объектный интерфейс. DAS, и SAN, и NAS, и OBS сосуществуют во времени, но каждый из типов доступа в большей мере соответствует определенному типу данных и приложений.

Архитектура SAN

Топология сети

SAN является высокоскоростной сетью передачи данных, предназначенной для подключения серверов к устройствам хранения данных. Разнообразные топологии SAN (точка-точка, петля с арбитражной логикой (Arbitrated Loop) и коммутация) замещают традиционные шинные соединения «сервер - устройства хранения» и предоставляют по сравнению с ними большую гибкость, производительность и надежность. В основе концепции SAN лежит возможность соединения любого из серверов с любым устройством хранения данных, работающим по протоколу Fibre Channel . Принцип взаимодействия узлов в SAN c топологиями точка-точка или коммутацией показан на рисунках. В SAN с топологией Arbitrated Loop передача данных осуществляется последовательно от узла к узлу. Для того, чтобы начать передачу данных передающее устройство инициализирует арбитраж за право использования среды передачи данных (отсюда и название топологии – Arbitrated Loop).

Транспортную основу SAN составляет протокол Fibre Channel, использующий как медные, так и волоконно-оптические соединения устройств.

Компоненты SAN

Компоненты SAN подразделяются на следующие:

  • Ресурсы хранения данных;
  • Устройства, реализующие инфраструктуру SAN;

Host Bus Adaptors

Ресурсы хранения данных

К ресурсам хранения данных относятся дисковые массивы , ленточные накопители и библиотеки с интерфейсом Fibre Channel . Многие свои возможности ресурсы хранения реализуют только будучи включенными в SAN. Так дисковые массивы высшего класса могут осуществлять репликацию данных между масcивами по сетям Fibre Channel, а ленточные библиотеки могут реализовывать перенос данных на ленту прямо с дисковых массивов с интерфейсом Fibre Channel, минуя сеть и серверы (Serverless backup). Наибольшую популярность на рынке приобрели дисковые массивы компаний EMC , Hitachi , IBM , Compaq (семейство Storage Works , доставшееся Compaq от Digital), а из производителей ленточных библиотек следует упомянуть StorageTek , Quantum/ATL , IBM .

Устройства, реализующие инфраструктуру SAN

Устройствами, реализующими инфраструктуру SAN, являются коммутаторы Fibre Channel (Fibre Channel switches , FC switches),концентраторы (Fibre Channel Hub) и маршрутизаторы (Fibre Channel-SCSI routers).Концентраторы используются для объединения устройств, работающих в режиме Fibre Channel Arbitrated Loop (FC_AL). Применение концентраторов позволяет подключать и отключать устройства в петле без остановки системы, поскольку концентратор автоматически замыкает петлю в случае отключения устройства и автоматически размыкает петлю, если к нему было подключено новое устройство. Каждое изменение петли сопровождается сложным процессом её инициализации . Процесс инициализации многоступенчатый, и до его окончания обмен данными в петле невозможен.

Все современные SAN построены на коммутаторах, позволяющих реализовать полноценное сетевое соединение. Коммутаторы могут не только соединять устройства Fibre Channel , но и разграничивать доступ между устройствами, для чего на коммутаторах создаются так называемые зоны. Устройства, помещенные в разные зоны, не могут обмениваться информацией друг с другом. Количество портов в SAN можно увеличивать, соединяя коммутаторы друг с другом. Группа связанных коммутаторов носит название Fibre Channel Fabric или просто Fabric. Связи между коммутаторами называют Interswitch Links или сокращенно ISL.

Программное обеспечение

Программное обеспечение позволяет реализовать резервирование путей доступа серверов к дисковым массивам и динамическое распределение нагрузки между путями. Для большинства дисковых массивов существует простой способ определить, что порты, доступные через разные контроллеры , относятся к одному диску. Специализированное программное обеспечение поддерживает таблицу путей доступа к устройствам и обеспечивает отключение путей в случае аварии, динамическое подключение новых путей и распределение нагрузки между ними. Как правило, изготовители дисковых массивов предлагают специализированное программное обеспечение такого типа для своих массивов. Компания VERITAS Software производит программное обеспечение VERITAS Volume Manager , предназначенное для организации логических дисковых томов из физических дисков и обеспечивающее резервирование путей доступа к дискам, а также распределение нагрузки между ними для большинства известных дисковых массивов.

Используемые протоколы

В сетях хранения данных используются низкоуровневые протоколы:

  • Fibre Channel Protocol (FCP), транспорт SCSI через Fibre Channel. Наиболее часто используемый на данный момент протокол . Существует в вариантах 1 Gbit/s, 2 Gbit/s, 4 Gbit/s, 8 Gbit/s и 10 Gbit/s.
  • iSCSI , транспорт SCSI через TCP/IP .
  • FCoE , транспортировка FCP/SCSI поверх "чистого" Ethernet.
  • FCIP и iFCP , инкапсуляция и передача FCP/SCSI в пакетах IP.
  • HyperSCSI , транспорт SCSI через Ethernet .
  • FICON транспорт через Fibre Channel (используется только мейнфреймами).
  • ATA over Ethernet , транспорт ATA через Ethernet.
  • SCSI и/или TCP/IP транспорт через InfiniBand (IB).

Преимущества

  • Высокая надёжность доступа к данным, находящимся на внешних системах хранения. Независимость топологии SAN от используемых СХД и серверов.
  • Централизованное хранение данных (надёжность, безопасность).
  • Удобное централизованное управление коммутацией и данными.
  • Перенос интенсивного трафика ввода-вывода в отдельную сеть – разгрузка LAN.
  • Высокое быстродействие и низкая латентность.
  • Масштабируемость и гибкость логической структуры SAN
  • Географические размеры SAN, в отличие от классических DAS, практически не ограничены.
  • Возможность оперативно распределять ресурсы между серверами.
  • Возможность строить отказоустойчивые кластерные решения без дополнительных затрат на базе имеющейся SAN.
  • Простая схема резервного копирования – все данные находятся в одном месте.
  • Наличие дополнительных возможностей и сервисов (снапшоты, удаленная репликация).
  • Высокая степень безопасности SAN.

Совместное использование систем хранения как правило упрощает администрирование и добавляет изрядную гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому.

Другим приемуществом является возможность загружать сервера прямо из сети хранения. При такой конфигурации можно быстро и легко заменить сбойный



Рекомендуем почитать

Наверх