Обратное преобразование лапласа онлайн калькулятор. Оригинал и изображение

Детские товары 15.06.2019
Детские товары

Задача 1. Найти оригинал для изображения

при помощи разложения на простейшие дроби.

Решение. Разложим
на сумму простейших дробей

.

Найдем неопределенные коэффициенты A , B , C , D . Так как

то, приравнивая коэффициенты при одинаковых степенях , получаем

,
,
,
.

Таким образом,

Свертка оригиналов. Пусть
и
- функции-ориентиры и
,
. По определению, сверткой оригиналов
называется интеграл
(3.1)

По теореме сложения изображений свертки оригиналов
соответствует произведение изображений

Задача 2. Найти свертку функций
и
.

Решение. Имеем

Задача 3. Восстановить оригинал по изображению
при помощи свертки.

Решение. Представим
как произведение двух функций и используя теорему умножения, запишем

. (см. задачу 2)

4. Решение линейных дифференциальных уравнений и систем.

Рассмотрим применение правил и теорем операционного исчисления к решению линейных дифференциальных уравнений с постоянными коэффициентами и их систем при заданных начальных условиях. Предлагаем, что искомое решение, его производные и правая часть дифференциального уравнения являются оригиналами.

Схема решения дифференциального уравнения.

    Искомая функция, ее производные, входящие в данное уравнение, правая часть уравнения заменяются их изображениями. В результате получается так называемое операторное уравнение.

    Решаем операторное уравнение относительно изображения искомой функции.

    Переходим от изображения искомой функции к оригиналу.

Схема решения систем дифференциальных уравнений такая же.

Задача 1. Решить дифференциальное уравнение

, если
,

Решение. Пусть
- искомое решение.

.

Запишем операторное уравнение

Находим A , B , C .
,
,
.

Задача 2. Найти решение системы дифференциальных уравнений

удовлетворяющее начальным условиям
,
,
,

Решение. Пусть
,
. Тогда

;
;
;
.

Преобразованная система имеет вид

Определяем
,
по правилу Крамера

;

Вычислим
получим



Вычислим
получим

Рассмотрим решение дифференциальных уравнений при нулевых начальных условиях с использованием интеграла Дюамеля.

Интеграл Дюамеля.

Если
и
, то

(4.1)

(4.1 ’)

Рассмотрим линейное дифференциальное уравнение с постоянными коэффицентами

то получим

или
, где
- многочленn-ой степени;

(4.2)

Если рассмотреть ещё одно дифференциальное уравнение, у которого правая часть равна единице,

то при тех же нулевых начальных условиях в изображениях получим уравнение

Отсюда
(4.3)

Подставим (4.3) в (4.2), получим

(4.4)

Используя интеграл Дюамеля (4.1’) для и учитывая, что
, получаем

Итак, достаточно решить уравнение с правой частью равной единице, чтобы при помощи интеграла (4.5) получить решения при различных правых частях.

Задача 3.

Найти частное решение дифференциального уравнения, используя интеграл Дюамеля:


(4.7)

Пусть
, тогда

Получим уравнение для изображения

Возвращаясь к первоначальному уравнению для
, Запишем

Следует отметить, что преимущество операционного метода решения дифференциальных уравнений состоит в том, что благодаря этому методу мы заменяем решение дифференциального уравнения на решение алгебраического уравнения, что сильно упрощает вычисление.

Применение методов операционного исчисления в

задачах электротехники .

Методы операционного исчисления широко используются в решениях специальных задач электротехники.

Задача1.

Включение дополнительного источника ЭДС в цепь с ненулевыми начальными условиями.

Рассмотрим электрическую цепь с ненулевыми начальными условиями (рис. 5.1), где r- сопротивление;L- индуктивность;C– ёмкость конденсатора;k– выключатель.

Эта цепь характеризуется тем, что при отключении ЭДС Е в цепи происходит арядка конденсатора. После зарядки конденсатора ток в цепи становится равным нулю. Требуется найти ток i(t) после подключения к цепи дополнительной ЭДС е(t).

По второму закону Кирхгофа (алгебраическая сумма падения напряжения на сопротивлениях равна алгебраической сумме действующих в цепи ЭДС) для момента времени
имеем

, (5.1)

где
- напряжение на конденсаторе;

(0) – начальное напряжение на конденсаторе, обусловленное тем, что конденсатор уже был ранее заряжен.

Решение.

Применяя к интегро-дифяфференциальному уравнению (5.1) преобразование Лапласа, запишем

где
- начальный ток в цепи. Используя указанные соотношения, получаем алгебраическое уравнение в изобржениях

где неизвестной величиной является
. Остальные величины известныИз (5.2) получаем

(5.3)

Рассмотрим конкретный пример. Пусть Применяя преобразование Лапласа, получаем
следовательно,
С учётом этих условий из (5.3) получаем

Замечание. Из полученного решения (5.4) следует, что
, при
, т.е.
Это означает что за некоторое время конденсатор дополнительно зарядится и ток станет равным нулю.

Задача 2.

Определить ток в цепи, состоящей из последовательно соединённых сопротивления rи конденсатора С, если в моментt=0 цепь подсоединяется к источнику ЭДС (рис 5.2) в виде треугольного импульса (рис 5.3).

рис 5.2 рис 5.3

В задаче задано

Решение.

Используя второй закон Кирхгофа, получим интегральное уравнение для рассматриваемого контура

(5.5)

Решение уравнения (5.5) выразим при помощи интеграла Дюамеля (4.1)

(5.6)

где
- решение вспомогательного уравнения

(5.7)

Применяя преобразование Лапласа, имеем

Уравнение (5.7) преобразуется к алгебраическому уравнению для нахождения J(p)

откуда
(5.8)

Подставляя найденное решение (5.8) вспомогательного уравнения (5.7) в интеграл Дюамеля (5.6) получаем решение исходного уравнения (5.5)

Пример контрольной работы по операционному исчислению

и комплексным числам.

Вариант 1.

3. Найти все значения корней

5. Найти изображение оригинала, заданного графически

6. Решить систему

Вариант 2.

    Найти изображение функции:

3. Найти все значения корней

6. Решить систему

Вариант 3.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

4. Представить в алгебраической форме:

6. Решить систему

Вариант 4.

    Найти изображение функции:

    Решить задачу Коши операторным методом:

3. Найти все значения корней

4. Представить в алгебраической форме:

    Восстановить оригинал по изображению

6. Решить систему

Вариант 5.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Найти изображение оригинала, заданного графически:

6. Решить систему

Вариант 6.

    Найти изображение функции:

    Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

    Восстановить оригинал по изображению

6. Решить систему

Вариант 7.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Найти изображение оригинала, заданного графически:

6. Решить систему

Вариант 8.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;

б)

    Восстановить оригинал по изображению

6. Решить систему

Вариант 9.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Найти изображение оригинала, заданного графически:

6. Решить систему

Вариант 10.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

6. Решить систему

Вариант 11.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Найти изображение оригинала, заданного графически:

6. Решить систему

Вариант 12.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Восстановить оригинал по изображению

6. Решить систему

Вариант 13.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Найти изображение оригинала, заданного графически:

6. Решить систему

Вариант 14.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а) ;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Восстановить оригинал по изображению

6. Решить систему

Вариант 15.

1. Восстановить оригинал по изображению

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Найти изображение оригинала, заданного графически:

6. Решить систему

Вариант 16.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
; б)

5. Восстановить оригинал по изображению

6. Решить систему

Введение.

    Комплексные числа.

    Преобразование Лапласа. Оригинал и изображение.

    Нахождение оригинала по изображению.

    Решение линейных дифференциальных уравнений и систем.

    Применение методов операционного исчисления в задачах электротехники.

    Пример контрольной работы по операционному исчислению и комплексным числам.

    Литература.

Литература.

    Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. М.: Наука, 1981, 448с.

    Сборник задач по математике для втузов. Ч.З. Под ред. А.В. Ефимова, А.С. Поспелова. М.: издательства физико-математической литературы, 2002. 576с.

    Краснов М.Л., Киселев А.Н., Макаренко Г.Н. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука, 1981. 304с.

    Глатенок И.В., Заварзина И.Ф. Теория функций комплексного переменного и операционное исчисление. М.: Московский энергетический институт, 1989. 48с.

Как решить дифференциальное уравнение
методом операционного исчисления?

На данном уроке будет подробно разобрана типовая и широко распространенная задача комплексного анализа – нахождение частного решения ДУ 2-го порядка с постоянными коэффициентами методом операционного исчисления . Снова и снова избавляю вас от предубеждения, что материал немыслимо сложный и недоступный. Забавно, но для освоения примеров можно вообще не уметь дифференцировать, интегрировать и даже не знать, что такое комплексные числа . Потребуется навык применения метода неопределённых коэффициентов , который детально разобран в статье Интегрирование дробно-рациональных функций . Фактически краеугольным камнем задания являются обычные алгебраические действия, и я уверен, что материал доступен даже для школьника.

Сначала сжатые теоретические сведения о рассматриваемом разделе математического анализа. Основная суть операционного исчисления состоит в следующем: функция действительной переменной с помощью так называемого преобразования Лапласа отображается в функцию комплексной переменной :

Терминология и обозначения:
функция называется оригиналом ;
функция называется изображением ;
заглавной буквой обозначается преобразование Лапласа .

Говоря простым языком, действительную функцию (оригинал) по определённым правилам нужно превратить в комплексную функцию (изображение). Стрелочка обозначает именно это превращение. А сами «определенные правила» и являются преобразованием Лапласа , которое мы рассмотрим лишь формально, чего для решения задач будет вполне достаточно.

Осуществимо и обратное преобразование Лапласа, когда изображение превращается в оригинал:

Зачем всё это нужно? В ряде задач высшей математики бывает очень выгодно перейти от оригиналов к изображениям , поскольку в этом случае решение задания значительно упрощается (шутка). И как раз одну из таких задач мы и рассмотрим. Если вы дожили до операционного исчисления, то формулировка должна быть вам хорошо знакома:

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Примечание: иногда дифференциальное уравнение может быть и однородным: , для него в вышеизложенной формулировке также применим метод операционного исчисления. Однако в практических примерах однородное ДУ 2-го порядка встречается крайне редко, и далее речь пойдёт о неоднородных уравнениях.

И сейчас будет разобран третий способ – решение ДУ с помощью операционного исчисления. Ещё раз подчеркиваю то обстоятельство, что речь идёт о нахождении частного решения , кроме того, начальные условия строго имеют вид («иксы» равны нулям).

К слову, об «иксах». Уравнение можно переписать в следующем виде:
, где «икс» – независимая переменная, а «игрек» – функция. Я не случайно об этом говорю, поскольку в рассматриваемой задаче чаще всего используются другие буквы:

То есть роль независимой переменной играет переменная «тэ» (вместо «икса»), а роль функции играет переменная «икс» (вместо «игрека»)

Понимаю, неудобно конечно, но лучше придерживаться обозначений, которые встречаются в большинстве задачников и методичек.

Итак, наша задача с другими буквами записывается следующим образом:

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Смысл задания нисколько не изменился, изменились только буквы.

Как решить данную задачу методом операционного исчисления?

Прежде всего, потребуется таблица оригиналов и изображений . Это ключевой инструмент решения, и без неё не обойтись. Поэтому, по возможности, постарайтесь распечатать указанный справочный материал. Сразу же поясню, что обозначает буква «пэ»: комплексную переменную (вместо привычного «зет»). Хотя для решения задач этот факт не имеет особого значения, «пэ» так «пэ».

С помощью таблицы оригиналы и необходимо превратить в некоторые изображения. Далее следует ряд типовых действий, и используется обратное преобразование Лапласа (тоже есть в таблице). Таким образом, будет найдено искомое частное решение.

Все задачи, что приятно, решаются по достаточно жесткому алгоритму.

Пример 1


, ,

Решение: На первом шаге перейдем от оригиналов к соответствующим изображениям. Используем левую сторону .

Сначала разбираемся с левой частью исходного уравнения. Для преобразования Лапласа справедливы правила линейности , поэтому все константы игнорируем и по отдельности работаем с функцией и её производными.

По табличной формуле №1 превращаем функцию:

По формуле №2 , учитывая начальное условие , превращаем производную:

По формуле №3 , учитывая начальные условия , превращаем вторую производную:

Не путаемся в знаках!

Признаюсь, правильнее говорить не «формулы», а «преобразования», но для простоты время от времени буду называть начинку таблицы формулами.

Теперь разбираемся с правой частью, в которой находится многочлен . В силу того же правила линейности преобразования Лапласа, с каждым слагаемым работаем отдельно.

Смотрим на первое слагаемое: – это независимая переменная «тэ», умноженная на константу. Константу игнорируем и, используя пункт №4 таблицы, выполняем преобразование:

Смотрим на второе слагаемое: –5. Когда константа находится одна-одинёшенька, то пропускать её уже нельзя. С одиночной константой поступают так: для наглядности её можно представить в виде произведения: , а к единице применить преобразование:

Таким образом, для всех элементов (оригиналов) дифференциального уравнения с помощью таблицы найдены соответствующие изображения:

Подставим найденные изображения в исходное уравнение :

Дальнейшая задача состоит в том, чтобы выразить операторное решение через всё остальное, а именно – через одну дробь. При этом целесообразно придерживаться следующего порядка действий:

Для начала раскрываем скобки в левой части:

Приводим подобные слагаемые в левой части (если они есть). В данном случае складываем числа –2 и –3. Чайникам настоятельно рекомендую не пропускать данный этап:

Слева оставляем слагаемые, в которых присутствует , остальные слагаемые переносим направо со сменой знака:

В левой части выносим за скобки операторное решение , в правой части приводим выражение к общему знаменателю:

Многочлен слева следует разложить на множители (если это возможно). Решаем квадратное уравнение:

Таким образом:

Сбрасываем в знаменатель правой части:

Цель достигнута – операторное решение выражено через одну дробь.

Действие второе. Используя метод неопределенных коэффициентов , операторное решение уравнения следует разложить в сумму элементарных дробей:

Приравняем коэффициенты при соответствующих степенях и решим систему:

Если возникли затруднения с , пожалуйста, наверстайте упущенное в статьях Интегрирование дробно-рациональной функции и Как решить систему уравнений? Это очень важно, поскольку разложение на дроби, по существу, самая важная часть задачи.

Итак, коэффициенты найдены: , и операторное решение предстаёт перед нами в разобранном виде:

Обратите внимание, что константы записаны не в числителях дробей. Такая форма записи выгоднее, чем . А выгоднее, потому что финальное действие пройдёт без путаницы и ошибок:

Заключительный этап задачи состоит в том, чтобы с помощью обратного преобразования Лапласа перейти от изображений к соответствующим оригиналам. Используем правый столбец таблицы оригиналов и изображений .

Возможно, не всем понятно преобразование . Здесь использована формула пункта №5 таблицы: . Если подробнее: . Собственно, для похожих случаев формулу можно модифицировать: . Да и все табличные формулы пункта №5 очень легко переписать аналогичным образом.

После обратного перехода искомое частное решение ДУ получается на блюдечке с голубой каёмочкой:

Было:

Стало:

Ответ: частное решение:

При наличии времени всегда желательно выполнять проверку. Проверка выполняется по стандартной схеме, которая уже рассматривалась на уроке Неоднородные дифференциальные уравнения 2-го порядка . Повторим:

Проверим выполнение начального условия :
– выполнено.

Найдём первую производную:

Проверим выполнение второго начального условия :
– выполнено.

Найдём вторую производную:

Подставим , и в левую часть исходного уравнения :

Получена правая часть исходного уравнения.

Вывод: задание выполнено правильно.

Небольшой пример для самостоятельного решения:

Пример 2

С помощью операционного исчисления найти частное решение дифференциального уравнения при заданных начальных условиях.

Примерный образец чистового оформления задания в конце урока.

Наиболее частный гость в дифференциальных уравнениях, как многие давно заметили, экспоненты, поэтому рассмотрим несколько примеров с ними, родными:

Пример 3


, ,

Решение: С помощью таблицы преобразований Лапласа (левая часть таблицы) перейдем от оригиналов к соответствующим изображениям.

Сначала рассмотрим левую часть уравнения. Там отсутствует первая производная. Ну и что из того? Отлично. Работы поменьше. Учитывая начальные условия , по табличным формулам №№1,3 находим изображения:

Теперь смотрим на правую часть: – произведение двух функций. Для того чтобы воспользоваться свойствами линейности преобразования Лапласа, нужно раскрыть скобки: . Так как константы находятся в произведениях, то на них забиваем, и, используя группу №5 табличных формул, находим изображения:

Подставим найденные изображения в исходное уравнение:

Напоминаю, что дальнейшая задача состоит в том, чтобы выразить операторное решение через единственную дробь.

В левой части оставляем слагаемые, в которых присутствует , остальные слагаемые переносим в правую часть. Заодно в правой части начинаем потихоньку приводить дроби к общему знаменателю:

Слева выносим за скобки, справа приводим выражение к общему знаменателю:

В левой части получен неразложимый на множители многочлен . Если многочлен не раскладывается на множители, то его, бедолагу, сразу нужно сбросить на дно правой части, забетонировав ноги в тазике. А в числителе раскрываем скобки и приводим подобные слагаемые:

Наступил самый кропотливый этап: методом неопределенных коэффициентов разложим операторное решение уравнения в сумму элементарных дробей:


Таким образом:

Обратите внимание, как разложена дробь: , скоро поясню, почему именно так.

Финиш: перейдем от изображений к соответствующим оригиналам, используем правый столбец таблицы:

В двух нижних преобразованиях использованы формулы №№6,7 таблицы, и дробь предварительно раскладывалась как раз для «подгонки» под табличные преобразования.

В результате, частное решение:

Ответ: искомое частное решение:

Похожий пример для самостоятельного решения:

Пример 4

Найти частное решение дифференциального уравнения методом операционного исчисления.

Краткое решение и ответ в конце урока.

В Примере 4 одно из начальных условий равно нулю. Это, безусловно, упрощает решение, и самый идеальный вариант, когда оба начальных условия нулевые: . В этом случае производные преобразуются в изображения без хвостов:

Как уже отмечалось, наиболее сложным техническим моментом задачи является разложение дроби методом неопределенных коэффициентов , и в моём распоряжении есть достаточно трудоёмкие примеры. Тем не менее, монстрами запугивать никого не буду, рассмотрим ещё пару типовых разновидностей уравнения:

Пример 5

Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразований Лапласа перейдем от оригиналов к соответствующим изображениям. Учитывая начальные условия :

С правой частью тоже никаких проблем:

(Напоминаю, что константы-множители игнорируются)

Подставим полученные изображения в исходное уравнение и выполняем стандартные действия, которые, я надеюсь, вы уже хорошо отработали:

Константу в знаменателе выносим за пределы дроби, главное, потом про неё не забыть:

Думал, выносить ли ещё дополнительно двойку из числителя, однако, прикинув, пришел к выводу, что данный шаг практически не упростит дальнейшего решения.

Особенностью задания является полученная дробь. Кажется, что её разложение будет долгим и трудным, но впечатление обманчиво. Естественно, бывают сложные вещи, но в любом случае – вперёд, без страха и сомнений:

То, что некоторые коэффициенты получились дробными, смущать не должно, такая ситуация не редкость. Лишь бы техника вычислений не подвела. К тому же, всегда есть возможность выполнить проверку ответа.

В результате, операторное решение:

Перейдем от изображений к соответствующим оригиналам:

Таким образом, частное решение:

Задача ставится так: дана функция F(p), надо найти функцию /(<)> изображением которой является F(p). Сформулируем условия, достаточные для того, чтобы функция F(p) комплексного переменного р служила изображением. Теорема 12. Если аналитическая в полуплоскости функция F(p) 1) стремится к нулю при в любой полуплоскости Rep = а > s0 равномерно относительно arg Отыскание оригинала по изображению 2) интеграл а-«сю сходится абсолютно, то F(p) является изображением некоторой функции-оригинала f{t). Задач*. Может ли функция F(p) = ^ служить изображением некоторой функции-оригинала? Укажем некоторые способы отыскания оригинала по изображению. 3.1. Отыскание оригинала с помощью таблиц изображений Прежде всего стоит привести функцию F(p) к более простому, «табличному» виду. Например, в случае, когда F(p) - дробно-рациональная функция аргумента р,ее разлагают на элементарные дроби и пользуются подходящими свойствами преобразования Лапласа. Пример 1. Найти оригинал для Запишем функцию F(p) в виде Пользуясь теоремой смещения и свойством линейности преобразования Лапласа, получаем Пример 2. Найти оригинал для функции М Запишем F(p) в виде Отсюда / 3.2. Использование теоремы обращения и следствий из нее Теорема 13 (обращения). /Гош функция fit) есть функция-оригинал с показателем роста s0 и F(p) - ее изображение, то в любой точке непрерывности функции f(t) выполняется соотношение где интеграл берется вдоль любой прямой и понимается в смысле главного значения, т. е. как Формула (1) называется формулой обращения преобразования Лапласа, или формулой Меллина. В самом деле, пусть, например, f(t) - кусочно-гладкая на каждом конечном отрезке }

Рекомендуем почитать

Наверх