Оперативная память типа DRAM (динамическая оперативная память). Память типа DRAM

Электроника 15.07.2019
Электроника

    регенерация памяти - Регулярный циклический опрос ячеек памяти с регенерацией хранимой в них информации. Такая процедура обращения к памяти необходима в системах с запоминающими ячейками в виде конденсаторов, где время хранения данных ограничено. [Л.М. Невдяев.… …

    - (запоминающиеустройства) в вычислит. технике (см. Электронная вычислительная машина)устройства для записи, хранения и воспроизведения информации. В качественосителя информации может выступать физ. сигнал, распространяющийся в среде … Физическая энциклопедия

    Запрос «ОЗУ» перенаправляется сюда. Cм. также другие значения. Простейшая схема взаимодействия оперативной памяти с ЦП Оперативная память (также оперативное запоминающее устройство, ОЗУ) в информатике память, часть системы памяти ЭВМ, в которую … Википедия

    адаптивная регенерация - Процедура обновления информации, хранимой в полупроводниковых ячейках памяти, при которой все запросы на регенерацию ставятся в очередь и обслуживаются в фоновом режиме (в паузах между остальными запросами). Если же число накопившихся запросов… … Справочник технического переводчика

    - (МПИ) стандарт, определяющий набор контактов и процедуры обмена по 16 разрядной шине с совмещением (мультиплексированием) адреса и данных. Стандарт не определяет физической реализации интерфейса. Содержание 1 Принцип работы 2 Реализации … Википедия

    Типы DRAM памяти FPM RAM EDO RAM Burst EDO RAM SDRAM DDR SDRAM DDR2 SDRAM DDR3 SDRAM DDR4 SDRAM Rambus RAM QDR SDRAM VRAM WRAM SGRAM GDDR2 GDDR3 GDDR4 GDDR5 … Википедия

    Типы DRAM памяти FPM RAM EDO RAM Burst EDO RAM DDR SDRAM DDR2 SDRAM DDR3 SDRAM QDR SDRAM WRAM SGRAM GDDR3 GDDR5 DRAM (Dynamic Random Access Memory) один из видов компьютерной памяти с произвольным доступом (RAM), наиболее широко используемый в… … Википедия

    Запрос «Повелители времени» перенаправляет сюда. О французском фантастическом мультфильме см. Властелины времени (мультфильм) Галлифрей … Википедия

    Спираль, также известная как Символ Большинство персонажей сериала «Герои» обладает сверхчеловеческими способностями. Способности связаны с генотипом и передаются по наследству. Статья является переводом интерпретацией статьи на английском.… … Википедия

    Тип Промышленная микроЭВМ Выпущен? Выпускался по … Википедия

    НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия

Как указывалось ранее, динамическая память требует регенерации (восстановления) информации, производимой через каждые несколько мс. Это связано с тем, что для хранения одного бита информации в ней используется заряд на конденсаторе, который с течением времени рассасывается. Регенерация памяти заключается в том, что содержимое каждой строки микросхемы DRAM считывается, усиливается и записывается вновь на прежнее место. При регенерации доступ к памяти со стороны процессора или других устройств запрещен, что приводит к снижению производительности ЭВМ.

В соответствии с ранее рассмотренной организацией микросхемы DRAM для регенерации хранимой в ней информации, на микросхему необходимо подать адрес строки (в сопровождении строба RAS) и сигнал чтения. Упрощенная структура системы регенерации содержимого памяти DRAM, состоящей из 256 строк, приведена на рисунке 7.10.

Таймер интервала регенерации следит за своевременным проведением регенерации всех строк микросхем DRAM. Если требуемое время регенерации составляет 4 мс, то для регенерации каждой строки 256- строковой микросхемы DRAM сигнал регенерации (REFRESH) должен вырабатываться через каждые 15,6 мкс. В каждом цикле регенерации осуществляется восстановление содержимого одной строки. При выработке нового сигнала REFRESH содержимое счетчика адреса строки инкрементируется, после чего вырабатываются строб RAS и сигнал чтения памяти MEMR. Основные действия по регенерации содержимого очередной строки осуществляются

Рисунок 7.10 - Структура подсистемы регенерации динамической памяти

внутри самой микросхемы DRAM. Система регенерации отвечает лишь за своевременную регенерацию всех строк, выработку адреса очередной строки и необходимых управляющих сигналов.

КЭШ-память

Повышение производительности процессоров привело к тому, что основная память, построенная на микросхемах DRAM, стала замедлять дальнейшее повышение производительности ЭВМ в целом. Реализация ОП на микросхемах SRAM технически и экономически не оправдана, так как габариты и стоимость микросхем SRAM на 1 бит хранимой информации существенно выше, чем аналогичные показатели у DRAM. Разумным компромиссом для построения экономичных и быстродействующих систем явилось сочетание памяти большого объёма на DRAM и небольшой на микросхемах SRAM.

Слово Cache означает склад, тайник. КЭШ- память не имеет отдельного адресного пространства и не доступна для пользователя. Она является дополнительным и быстродействующим хранилищем копий тех областей информации ОП, к которым, вероятно, в ближайшее время будет обращение. В их число попадают в первую очередь области, примыкающие к выполняемой в данный момент команде, а во вторую – области связанные с ней командами перехода (см. рисунок 7.11).

Рисунок 7.11- Возможная область кэширования ОП

Приведенный рисунок, а также анализ хода выполнения различных программ показывают, что большую часть времени в них выполняются определенные группы команд, которые многократно повторяются. Это свойство программ называется локализацией ссылок. Локализация ссылок происходит во времени и в пространстве. Первое означает, что недавно выполненные команды скорее всего будут затребованы снова. Локализация в пространстве означает, что скорее всего в последующие моменты времени будут выполняться команды, расположенные (по значениям адресов) в непосредственной близости от выполняемой. Заметим, что последовательность выполнения команд для работы КЭШ- памяти не имеет значения.

КЭШ не может хранить копию всей основной памяти, так как её размер во много раз меньше ОП. Поэтому она хранит копии части содержимого ОП. Для записи информации о текущем соответствии содержимого КЭШ-памяти конкретным областям (блокам) ОП используется каталог, находящийся в дополнительной тэговой (ТЭГ) памяти, входящей в состав КЭШ- памяти. При обращении к ОП контроллер КЭШ- памяти (ККП) с помощью каталога в ТЭГ проверяет, есть ли копия затребованных данных (или команды) в КЭШе. Если она там есть, то это случай так называемого КЭШ- попадания и данные берутся из КЭШа. Если нет (случай КЭШ - промаха), то данные берутся из основной памяти, вводятся в процессор и записываются в КЭШ. При попадании в КЭШ время доступа к подсистеме памяти КЭШ+DRAM уменьшается и основная память представляется процессору более быстрой, чем есть на самом деле.

Здравствуйте, уважаемые читатели блога Help начинающему пользователю компьютера. Сегодня мы опишем физическую и логическую организацию динамической памяти DRAM. Физически память DRAM (Dynamic RAM - DRAM) состоит из ячеек. Совокупность ячеек DRAM-памяти образуют матрицу, в которую входит определённое количество строк и столбцов. Матрицу ячеек еще называют страницей. Совокупность страниц называют банком.

Для образования одной ячейки используется электронная схема, в которую входит один транзистор и один конденсатор (это простейшая схема). Конденсатор в течении некоторого промежутка способен сохранять электрический заряд (заряды в конденсаторах стекают, поэтому память получила своё название динамическая). Присутствие или отсутствие заряда на конденсаторе дает бит информации (1 или 0) – единицу информации. Таким образом, чтобы записать в ячейку бит информации в виде логической единицы, необходимо зарядить конденсатор. Чтобы получить логический нуль конденсатор разряжают.

При считывании данных каждый конденсатор разряжается, поэтому его необходимо зарядить до предыдущего значения. Кроме того, конденсаторы сохраняют заряд только на протяжении определенного промежутка времени и время от времени нуждаются в подзарядке (чтобы не терялись данные). Для этого используется регенерация электрического заряда конденсатора . Процесс регенерации сочетается с процессом считывания информации из ячеек DRAM. Но когда в промежутке длительного времени обращение к ячейке не происходит (конденсаторы разряжаются), контроллер памяти (обычно встраиваемый в набор микро­схем системной платы, однако он может быть встроен и в процессор) периодически обращается ко всем ячейкам в микросхемах па­мяти и восстанавливает данные. Процесс регенерации замедляет роботу системы, поскольку при регенерации памяти обмен данными с памятью невозможен.

По логике организации DRAM-память может быть асинхронной (обмен данными, подача адресов выполняются в произвольные моменты времени) и синхронной (имеется внешний синхронный сигнал, к импульсам которого привязаны моменты подачи адресов и обмена данными).

Динамическая оперативная память на данный момент наиболее широко используется в современных ПК.

Причинами такой популярности стали:

  • Компактность DRAM. Ячейки динамической памяти очень плотно упакованы, что позволяет организовать память большой емкости.
  • Дешевизна модулей памяти. Использованием схемы с одним конденсатором и транзистором в качестве ячейки памяти дешевле по сравнению с статической памятью (где в качестве ячейки памяти выступает триггер, который включает в себя несколько транзисторов).

Стоит отметить, что динамическая память имеет ряд минусов:

Динамическая память по сравнению с памятью статической работает медленнее (связано с затратой времени на зарядку и разрядку конденсаторов). К минусам относится необходимость регенерации заряда конденсатора (цикл регенера­ции по длительности занимает несколько тактов центрального процессора), поскольку при регенерации периодически приостанавливаются все операции с памятью.

Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества строк и столбцов . Один такой «прямоугольник» называется страницей , а совокупность страниц называется банком . Весь набор ячеек условно делится на несколько областей.

Как запоминающее устройство , DRAM представляет собой модуль памяти различных конструктивов, состоящий из электрической платы, на которой расположены микросхемы памяти и разъёма, необходимого для подключения модуля к материнской плате.

Принцип действия

Принцип действия чтения DRAM для простого массива 4×4

Принцип действия записи DRAM для простого массива 4×4

Физически DRAM-память представляет собой набор запоминающих ячеек , которые состоят из конденсаторов и транзисторов , расположенных внутри полупроводниковых микросхем памяти.

Первоначально микросхемы памяти выпускались в корпусах типа DIP (к примеру, серия К565РУхх), далее они стали производиться в более технологичных для применения в модулях корпусах.

На многих модулях SIMM и подавляющем числе DIMM устанавливалась SPD (Serial Presence Detect) - небольшая микросхема памяти EEPROM, хранящяя параметры модуля (ёмкость, тип, рабочее напряжение, число банков, время доступа и т. п.), которые программно были доступны как оборудованию, в котором модуль был установлен (применялось для автонастройки параметров), так и пользователям и производителям.

Модули SIPP

Модули типа SIPP (Single In-line Pin Package) представляют собой прямоугольные платы с контактами в виде ряда маленьких штырьков. Этот тип конструктивного исполнения уже практически не используется, так как он далее был вытеснен модулями типа SIMM.

Модули SIMM

Модули типа SIMM (Single In-line Memory Module) представляют собой длинные прямоугольные платы с рядом контактных площадок вдоль одной из её сторон. Модули фиксируются в разъёме (сокете) подключения с помощью защёлок, путём установки платы под некоторым углом и нажатия на неё до приведения в вертикальное положение. Выпускались модули на 4, 8, 16, 32, 64, 128 Мбайт.

Наиболее распространены 30- и 72-контактные модули SIMM.

Модули DIMM

Модули типа DIMM (Dual In-line Memory Module) представляют собой длинные прямоугольные платы с рядами контактных площадок вдоль обеих её сторон, устанавливаемые в разъём подключения вертикально и фиксируемые по обоим торцам защёлками. Микросхемы памяти на них могут быть размещены как с одной, так и с обеих сторон платы.

Модули памяти типа SDRAM наиболее распространены в виде 168-контактных DIMM-модулей, памяти типа DDR SDRAM - в виде 184-контактных, а модули типа DDR2, DDR3 и FB-DIMM SDRAM - 240-контактных модулей.

Модули SO-DIMM

Для портативных и компактных устройств (материнских плат форм-фактора Mini-ITX , лэптопов , ноутбуков , таблетов и т. п.), а также принтеров, сетевой и телекоммуникационной техники и пр. широко применяются конструктивно уменьшенные модули DRAM (как SDRAM, так и DDR SDRAM) - SO-DIMM (Small outline DIMM) - аналоги модулей DIMM в компактном исполнении для экономии места.

(Тема)

Запоминающая ячейка динамического типа хранит информацию в виде заряда емкости. Ток утечки обратно смещенного p-n перехода составляет не более 10-10 A (0,1 нA ), а емкость - 0,1..0,2 пФ, следовательно постоянная времени разряда - более 1 мС . Поэтому через каждые 1..2 мС требуется производить подзаряд емкостей запоминающих элементов - регенерацию динамической памяти.

В динамических ОЗУ чаще используется т.н. "строчная регенерация", при которой в одном цикле регенерируются все элементы, расположенные в одной строке прямоугольной матрицы накопителя. Следует отметить, что любое обращение к запоминающей ячейке (запись или чтение) осуществляет ее регенерацию и одновременно регенерирует все ячейки, расположенные в той же строке накопителя.

Рис. 1. Управление регенерацией динамической памяти

Однако, при работе ОЗУ в составе МПС в общем случае нельзя дать гарантию, что в течение 2мС произойдет обращение ко всем строкам накопителя, т.к. поток адресов является случайным. Для обеспечения гарантированной сохранности информации в динамическом ОЗУ при работе МПС вводятся специальные циклы регенерации - обращения к ОЗУ по последовательным адресам строк.

В большинство динамических ОЗУ адрес ячейки подается за два приема : сначала - адрес строки, который запоминается во внутреннем регистре ОЗУ, потом по тем же линиям - адрес столбца. Каждая передаваемая по мультиплексированным линиям часть адреса сопровождается соответствующим управляющим сигналом (RAS, CAS).

Для регенерации накопителя достаточно провести обращение только к последовательным строкам - каждый цикл обращения для регенерации может состоять только из передачи адреса строки. Поэтому для полной регенерации накопителя объемом 16K (матрица 128 ´ 128) достаточно 128 тактов. Накопители большего объема реализуют на неквадратных матрицах, чтобы уменьшить число строк и сократить время регенерации. Так, накопитель объемом 64K имеет матрицу 128 ´ 512.

Различают несколько способов организации регенерации динамических ОЗУ в МПС.

Регенерация "по таймеру" . В состав МПС вкл ючается таймер регенерации, который каждые 2 мС формирует сигнал, блокирующий обращение МП к памяти и запускающий процедуру регенерации. Схема управления регенерацией включает в себя счетчик адреса регенерации, триггер регенерации и мультиплексор адреса.

Недостатком такого способа регенерации является значительная потеря времени на регенерацию - до нескольких процентов времени работы МПС, причем это время может возрастать с ростом объема памяти МПС. Таким образом, использование метода регенерации по таймеру снижает производительность МПС, т.к. при выполнении регенерации МП пребывает в состоянии ожидания.

"Прозрачная" регенерация . Главным достоинством метода прозрачной регенерации является отсутствие простоев МП при регенерации ОЗУ, поскольку для регенерации выбираются такие моменты времени, когда МП не занимает системную шину. Однажды начав регенерацию, совсем не обязательно проводить ее полностью. Циклы регенерации могут чередоваться с процессорными циклами, главное, чтобы процесс регенерации накопителя завершился за время, не превышающее 2 мС . Многие МП формируют специальные сигналы, отмечающие занятость шины. Эти сигналы можно использовать для управления триггером регенерации. Если МП (например, i8080) не формирует сигнала занятости магистрали, то такой сигнал можно сформировать специальной внешней схемой.

Так, в машинном цикле МП i8080 могут появляться такты T4, T5, в которых МП не занимает системную шину. Эти моменты времени можно выделять специальной схемой и использовать для регенерации.

Микропроцессор Z80 имеет встроенный счетчик регенерации и обеспечивает этот процесс самостоятельно параллельно с внутренней обработкой информации на кристалле.

В большинстве МП не предусмотрены средства обеспечения регенерации, т.к. в МПС может и отсутствовать динамическая память. Однако, в составе микропроцессорных комплектов выпускаются специальные БИС контроллеров регенерации. В качестве примера кратко рассмотрим структуру и функционирование БИС К1818ВТ03 - "Контроллер динамической памяти". Ниже показана структура БИС 565РУ5 (64К´ 1), а на рис.3 временная диаграмма ее работы.


Рис. 2 . Структура БИС динамического ОЗУ

БИС динамических ЗУ имеют объемы от 16К´ 1 (565РУ3) до 1М´ 1 (..РУ9 ), но имеют одинаковую структуру и линии управления (за исключением числа адресных).


Рис. 3 . Временная диаграмма работы БИС динамического ОЗУ

Из рисунков следует, что адрес ячейки подается в ОЗУ последовательно двумя порциями по одним и тем же линиям в сопровождении управляющих сигналов RAS\ (строб адреса строки) и CAS\ (строб адреса столбца). Поэтому адрес на системной шине, формируемый МП, должен мультиплексироваться, одновременно вырабатываться управляющие сигналы RAS и CAS.

Кристалл ОЗУ бывает выбран только при условии RAS = CAS = 0, что позволяет осуществлять селекцию блоков по двум координатам.

Контроллер динамической памяти (КДП) обеспечивает мультиплексирование адреса системной шины, выработку управляющих сигналов CAS и RAS (для селекции модулей ОЗУ), а также внутреннюю (по таймеру) или внешнюю (прозрачную) регенерацию.

Структурная схема контроллеравключает в себя :

· буферные схемы Буф.1,2,3 для подключения системной шины адреса и управления;

· счетчик адреса регенерации;

· мультиплексоры MUX1,2;

· схему управления с тактовым генератором, таймером и триггером регенерации, арбитром и логической схемой L для формирования управляющих сигналов.

КДП обеспечивает преобразование сигналов системной шины МПС в сигналы управления динамическим ОЗУ, причем может работать в двух режимах : "16/64" (на память 16K или 64K соответственно). В режиме "16" две старшие линии адреса используются для формирования одного из сигналов RAS\, в режиме "64" КДП может управлять двумя банками по 64K, причем сигнал RAS появляется на одном из выходов RAS0 или RAS1 - в зависимости от состояния линии RAS3\/B0, которая в режиме "64" становится входом, определяющим номер банка ОЗУ.

Регенерация может осуществляться в двух режимах - внутреннем и внешнем. Если вход REFR остается неактивным 10..16 мкС , то формируется запрос на цикл регенерации от внутреннего таймера, причем в случае конфликта арбитр отдает предпочтение циклу памяти. Таким образом, и при регенерации по таймеру используются свободные такты шины. При внешней регенерации запрос должен быть сформирован на входе REFR.

Сигнал PCS - "Защищенный выбор кристалла" отличается от традиционного CS тем, что если PCS сформирован, то цикл ЗУ аннулировать нельзя.

Рис. 4 . Контроллер динамического ОЗУ

RD, WR - запросы на циклы чтения и записи соответственно.

X0, X1 - выводы для подключения кварцевого резонатора при работе с внутренним генератором. При работе с внешним генератором на вход X0 подается высокий потенциал, а на X1 - частота CLK внешнего генератора.

Выходной сигнал SACK\ вырабатывается КДП в начале цикла обращения к памяти. Если запрос от МП приходится на цикл регенерации, то SACK\ задерживается до начала цикла чтения/записи.

Выходной сигнал XACK\ ("Готовность данных") вырабатывается в конце цикла чтения/записи.

Сигналы SACK\ и XACK\ можно использовать для управления потенциалом на входе READY микропроцессора.

В некоторых, достаточно редких частных случаях, можно воспользоваться способом регенерации "размещением данных" . Так, если, например, память изображения дисплея является составной частью единого ОЗУ МПС и МП регулярно обращается в эту область для поддержания изображения на экране, то достаточно расположить область ОЗУ дисплея в памяти МПС таким образом, чтобы она "перекрывала" все строки накопителя (достигается соответствующим подбором адресов), чтобы каждое обращение к области ОЗУ дисплея, помимо регенерации изображения, регенерировала и всю память МПС.



Рекомендуем почитать

Наверх