Отказоустойчивый кластер серверов. Требования к аппаратному обеспечению

Электроника 11.04.2019
Электроника
После нескольких лет молчания, решил поделиться опытом по развертыванию отказоустойчивого кластера на основе Windows Server 2012.
Постановка задачи: Развернуть отказоустойчивый кластер для размещения на нем виртуальных машин, с возможностью выделения виртуальных машин в отдельные виртуальные подсети (VLAN), обеспечить высокую надежность, возможность попеременного обслуживания серверов, обеспечить доступность сервисов. Обеспечить спокойный сон отделу ИТ.

Для выполнения выше поставленной задачи нам удалось выбить себе следующее оборудование:

  1. Сервер HP ProLiant DL 560 Gen8 4x Xeon 8 core 64 GB RAM 2 шт.
  2. SAS Хранилище HP P2000 на 24 2,5» дисков 1 шт.
  3. Диски для хранилища 300 Gb 24 шт. //С объемом не густо, но к сожалению бюджеты такие бюджеты…
  4. Контроллер для подключения SAS производства HP 2 шт.
  5. Сетевой адаптер на 4 1Gb порта 2 шт. //Можно было взять модуль под 4 SFP, но у нас нет оборудования с поддержкой 10 Gb, гигабитного соединения вполне достаточно.
Естественно обновляем BIOS и Firmware с официального сайта.
Организация подключений:


У нас на самом деле подключено в 2 разных коммутатора. Можно подключить в 4 разных. Я считаю, что достаточно 2х.
На портах коммутаторов, куда подключены сервера необходимо сменить режим интерфейса с access на trunk, для возможности разнесения по виртуальным подсетям.

Пока качаются обновления на свежеустановленную Windows Server 2012, настроим дисковое хранилище. Мы планируем развернуть сервер баз данных, посему решили 600 Гб использовать под базы данных, остальное под остальные виртуальные машины, такая вот тавтология.

Создаем виртуальные диски:

  • Диск raid10 на основе Raid 1+0 из 4 дисков +1 spare
  • Диск raid5 на основе Raid 5 из 16 дисков +1 spare
  • 2 диска - ЗИП
Советую в имени диска указывать модель массива, сразу будет понятен функционал.Также HP рекомендует использовать небольшое количество виртуальных дисков, в которых будет большое количество физических, т.е. не стоит плодить кучу мелких виртуальных дисков.

Теперь необходимо создать разделы.

  • raid5_quorum - Так называемый диск-свидетель (witness). Необходим для организации кластера из 2 нод.
  • raid5_store - Здесь мы будем хранить виртуальные машины и их жесткие диски
  • raid10_db - Здесь будет хранится жесткий диск виртуальной машины MS SQL сервера
Назначаем (map) наши разделы на порты sas контроллеров хранилища.
Обязательно необходимо включить feature Microsoft Multipath IO, иначе при сервера к обоим контроллерам хранилища в системе будет 6 дисков, вместо 3х, и кластер не соберется, выдавая ошибку, мол у вас присутствуют диски с одинаковыми серийными номерами, и этот визард будет прав, хочу я вам сказать.

Подключать сервера к хранилищу советую по очереди:

  1. Подключили 1 сервер к 1 контроллеру хранилища
  2. В хранилище появится 1 подключенный хост - дайте ему имя. Советую называть так: имясервера_номер контроллера (A или B)
  3. И так, пока не подключите оба сервера к обоим контроллерам.

На коммутаторах, к которым подключены сервера необходимо создать 3 виртуальных подсети (VLAN):

  1. ClusterNetwork - здесь ходит служебная информаци кластера (хэртбит, регулирование записи на хранилище)
  2. LiveMigration - тут думаю все ясно
  3. Management - сеть для управления

На этом подготовка инфраструктуры закончена. Переходим к настройке серверов и поднятию кластера.

Заводим сервера в домен. Устанавливаем роль Hyper-V, Failover Cluster.
В настройках Multipath IO включаем поддержку SAS устройств.
Обязательно перезагружаем.

Следующие настройки необходимо выполнить на обоих серверах.

Переименуйте все 4 сетевых интерфейса в соответствии их физическим портам (у нас это 1,2,3,4).
Настраиваем NIC Teaming - Добавляем все 4 адаптера в команду, Режим (Teaming-Mode) - Switch Independent, Балансировка нагрузки (Load Balancing) - Hyper-V Port. Даем имя команде, я так и назвал Team.
Теперь необходимо поднять виртуальный коммутатор.
Открываем powershell и пишем:

New-VMSwitch "VSwitch" -MinimumBandwidthMode Weight -NetAdapterName "Team" -AllowManagementOS 0

Создаем 3 виртуальных сетевых адаптера.
В том же powershell:
Add-VMNetworkAdapter –ManagementOS –Name "Management" Add-VMNetworkAdapter –ManagementOS –Name "ClusterNetwork"Add-VMNetworkAdapter –ManagementOS –Name "Live Migration"

Эти виртуальные коммутаторы появятся в центре управления сетями и общим доступом, именно по ним и будет ходить траффик наших серверов.

Настройте адресацию в соответствии с вашими планами.

Переводим наши адапетры в соответствующие VLAN’ы.
В любимом powershell:

Set-VMNetworkAdapterVlan -ManagementOS -Access -VlanId 2 -VMNetworkAdapterName "Management" -Confirm Set-VMNetworkAdapterVlan -ManagementOS -Access -VlanId 3 -VMNetworkAdapterName "ClusterNetwork" -Confirm Set-VMNetworkAdapterVlan -ManagementOS -Access -VlanId 4 -VMNetworkAdapterName "Live Migration" -Confirm

Теперь нужно настроить QoS.

При настройке QoS by weight (по весу), что является best practice, по заявлению Microsoft, советую расставить вес так, чтобы в общей сумме получилось 100, тогда можно считать, что значение указанное в настройке есть гарантированный процент полосы пропускания. В любом случае считается процент по формуле:

Процент полосы пропускания = установленный вес * 100 / сумма всех установленных значений веса
Set-VMSwitch “VSwitch” -DefaultFlowMinimumBandwidthWeight 15

Для служебной информации кластера.

Set-VMNetworkAdapter -ManagementOS -Name “Cluster” -MinimumBandwidthWeight 30

Для управления.
Set-VMNetworkAdapter -ManagementOS -Name "Management" -MinimumBandwidthWeight 5

Для Live Migration.
Set-VMNetworkAdapter -ManagementOS -Name “Live Migration” -MinimumBandwidthWeight 50

Чтобы трафик ходил по сетям верно, необходимо верно расставить метрики.
Трафик служебной информации кластера будет ходит по сети с наименьшей метрикой.По следующей по величине метрики сети будет ходить Live Migration.

Давайте так и сделаем.
В нашем ненаглядном:

$n = Get-ClusterNetwork “ClusterNetwork” $n.Metric = 1000 $n = Get-ClusterNetwork “LiveMigration” $n.Metric = 1050$n = Get-ClusterNetwork “Management” $n.Metric = 1100

Монтируем наш диск-свидетель на ноде, с которой будем собирать кластер, форматируем в ntfs.

В оснастке Failover Clustering в разделе Networks переименуйте сети в соответствии с нашими адаптерами.

Все готово к сбору кластера.

В оснастке Failover Clustering жмем validate. Проходим проверку. После чего создаем кластер (create cluster) и выбираем конфигурацию кворума (quorum configuration) Node and Disk majority, что также считается лучшим выбором для кластеров с четным количеством нод, а учитывая, что у нас их всего две - это единственный выбор.

В разделе Storage оснастки Failover Clustering, добавьте ваши диски. А затем по очереди добавляйте их как Cluster Shared Volume (правый клик по диску). После добавления в папке C:\ClusterStorage появится символическая ссылка на диск, переименуйте ее в соответствии с названием диска, добавленного как Cluster Shared Volume.

Теперь можно создавать виртуальные машины и сохранять их на эти разделы. Надеюсь статья была Вам полезна.

Прошу сообщать об ошибках в ПМ.

Советую к прочтению: Microsoft Windows Server 2012 Полное руководство. Рэнд Моримото, Майкл Ноэл, Гай Ярдени, Омар Драуби, Эндрю Аббейт, Крис Амарис.

P.S.: Отдельное спасибо господину Салахову, Загорскому и Разборнову, которые постыдно были забыты мною при написании данного поста. Каюсь >_< XD

Уже на этапе планирования будущей виртуальной инфраструктуры следует задуматься об обеспечении высокой доступности ваших виртуальных машин. Если в обычной ситуации временная недоступность одного из серверов еще может быть приемлема, то в случае остановки хоста Hyper-V недоступной окажется значительная часть инфраструктуры. В связи с чем резко вырастает сложность администрирования - остановить или перезагрузить хост в рабочее время практически невозможно, а в случае отказа оборудования или программного сбоя получим ЧП уровня предприятия.

Все это способно серьезно охладить энтузиазм по поводу преимуществ виртуализации, но выход есть и заключается он в создании кластера высокой доступности. Мы уже упоминали о том, что термин "отказоустойчивый" не совсем корректен и поэтому сегодня все чаще используется другая характеристика, более точно отражающая положение дел - "высокодоступный".

Для создания полноценной отказоустойчивой системы требуется исключить любые точки отказа, что в большинстве случаев требует серьезных финансовых вложений. В тоже время большинство ситуаций допускает наличие некоторых точек отказа, если устранение последствий их отказа обойдется дешевле, чем вложение в инфраструктуру. Например, можно отказаться от недешевого отказоустойчивого хранилища в пользу двух недорогих серверов с достаточным числом корзин, один из которых настроен на холодный резерв, в случае отказа первого сервера просто переставляем диски и включаем второй.

В данном материале мы будем рассматривать наиболее простую конфигурацию отказоустойчивого кластера, состоящего из двух узлов (нод) SRV12R2-NODE1 и SRV12R2-NODE2, каждый из которых работает под управлением Windows Server 2012 R2. Обязательным условием для этих серверов является применение процессоров одного производителя, только Intel или только AMD, в противном случае миграция виртуальных машин между узлами будет невозможна. Каждый узел должен быть подключен к двум сетям: сети предприятия LAN и сети хранения данных SAN.

Вторым обязательным условием для создания кластера является наличие развернутой Active Directory, в нашей схеме она представлена контроллером домена SRV12R2-DC1.

Хранилище выполнено по технологии iSCSI и может быть реализовано на любой подходящей платформе, в данном случае это еще один сервер на Windows Server 2012 R2 - SRV12R2-STOR. Сервер хранилища может быть подключен к сети предприятия и являться членом домена, но это необязательное условие. Пропускная способность сети хранения данных должна быть не ниже 1 Гбит/с.

Будем считать, что на оба узла уже установлена операционная система, они введены в домен и сетевые подключения настроены. Откроем Мастер добавления ролей и компонентов и добавим роль Hyper-V .

Следующим шагом добавим компоненту Отказоустойчивая кластеризация .

На странице настройки виртуальных коммутаторов выбираем тот сетевой адаптер, который подключен к сети предприятия.

Миграцию виртуальных машин оставляем выключенной .

Остальные параметры оставляем без изменения. Установка роли Hyper-V потребует перезагрузку, после чего аналогичным образом настраиваем второй узел.

Затем перейдем к серверу хранилища, как настроить iSCSI-хранилище на базе Windows Server 2012 мы рассказывали в , но это непринципиально, вы можете использовать любой сервер цели iSCSI. Для нормальной работы кластера нам потребуется создать минимум два виртуальных диска: диск свидетеля кворума и диск для хранения виртуальных машин. Диск-свидетель - это служебный ресурс кластера, в рамках данной статьи мы не будем касаться его роли и механизма работы, для него достаточно выделить минимальный размер, в нашем случае 1ГБ.

Создайте новую цель iSCSI и разрешите доступ к ней двум инициаторам, в качестве которых будут выступать узлы кластера.

И сопоставьте данной цели созданные виртуальные диски.

Настроив хранилище, вернемся на один из узлов и подключим диски из хранилища. Помните, что если сервер хранилища подключен также к локальной сети, то при подключении к цели iSCSI укажите для доступа сеть хранения данных .

Подключенные диски инициализируем и форматируем.

Затем переходим на второй узел и также подключаем диски, форматировать их уже не надо, просто присваиваем им такие же самые буквы и метки тома. Это необязательно, но желательно сделать в целях единообразия настроек, когда одинаковые диски на всех узлах имеют одни и те-же обозначения запутаться и сделать ошибку гораздо труднее.

После чего откроем Диспетчер Hyper-V и перейдем к настройке виртуальных коммутаторов. Их название на обоих узлах должно полностью совпадать .

Теперь у нас все готово к созданию кластера. Запустим оснастку Диспетчер отказоустойчивых кластеров и выберем действие Проверить конфигурацию .

В настройках мастера добавим настроенные нами узлы и выберем выполнение всех тестов.

Проверки занимают ощутимое время, при возникновении каких-либо ошибок их необходимо исправить и повторить проверку.

Если существенных ошибок не обнаружено работа мастера завершится и он предложит вам создать на выбранных узлах кластер.

Однако, если проверка выдала предупреждения, мы советуем изучить отчет и выяснить на что влияет данное предупреждение и что нужно сделать для его устранения. В нашем случае мастер предупреждал нас об отсутствии избыточности в сетевых подключениях кластера, по умолчанию кластер не использует сети iSCSI, что нетрудно исправить позднее.

При создании кластера для него создается виртуальный объект, обладающий сетевым именем и адресом. Укажем их в открывшемся Мастере создания кластеров .

Больше вопросов не последует и мастер сообщит нам, что кластер создан, выдав при этом предупреждение об отсутствии диска-свидетеля.

Закроем мастер и развернем дерево слева до уровня Хранилище - Диски , в доступных действиях справа выберем Добавить диск и укажем подключаемые диски в открывшемся окне, в нашем случае их два.

Затем щелкнем правой кнопкой мыши на объекте кластера в дереве слева и выберем Дополнительные действия - Настроить параметры кворума в кластере .

Далее последовательно выбираем: Выбрать свидетель кворума - Настроить диск-свидетель и указываем созданный для этих целей диск.

Теперь настроим диск хранилища, с ним все гораздо проще, просто щелкаем на диске правой кнопкой и указываем: Добавить в общие хранилища кластера .

Для того, чтобы диск мог использоваться сразу несколькими участниками кластера на нем создается CSVFS - реализуемая поверх NTFS кластерная файловая система, впервые появившаяся в Windows Server 2008 R2 и позволяющая использовать такие функции как Динамическая (Живая) миграция, т.е. передачу виртуальной машины между узлами кластера без остановки ее работы.

Общие хранилища становятся доступны на всех узлах кластера в расположении C:\ClusterStorage\VolumeN . Обратите внимание, что это не просто папки на системном диске, а точки монтирования общих томов кластера.

Закончив с дисками, перейдем к настройкам сети, для этого перейдем в раздел Сети . Для сети, которая подключена к сети предприятия указываем и Разрешить клиентам подключаться через эту сеть . Для сети хранения данных просто оставим Разрешить кластеру использовать эту сеть , таким образом обеспечив необходимую избыточность сетевых соединений.

На этом настройка кластера закончена. Для работы с кластеризованными виртуальными машинами следует использовать Диспетчер отказоустойчивости кластеров , а не Диспетчер Hyper-V , который предназначен для управления виртуалками расположенными локально.

Чтобы создать виртуальную машину перейдите в раздел Роли в меню правой кнопки мыши выберите Виртуальные машины - Создать виртуальную машину , это же можно сделать и через панель Действия справа.

Прежде всего выберите узел, на котором будет создана виртуальная машина. Каждая виртуалка работает на определенном узле кластера, мигрируя на другие узлы при остановке или отказе своей ноды.

После выбора узла откроется стандартный Мастер создания виртуальной машины, работа с ним не представляет сложности, поэтому остановимся только на значимых моментах. В качестве расположения виртуальной машины обязательно укажите один из общих томов кластера C:\ClusterStorage\VolumeN .

Здесь же должен располагаться и виртуальный жесткий диск, вы также можете использовать уже существующие виртуальные жесткие диски, предварительно скопировав их в общее хранилище.

После создания виртуальной машины перейдите в ее Параметры и в пункте Процессоры - Совместимость установите флажок Выполнить перенос на физический компьютер с другой версией процессора , это позволит выполнять миграцию между узлами с разными моделями процессоров одного производителя . Миграция с Intel на AMD или наоборот невозможна .

Затем перейдите в Сетевой адаптер - Аппаратное ускорение и убедитесь, что выбранные опции поддерживаются сетевыми картами всех узлов кластера или отключите их.

Не забудьте настроить автоматические действия при запуске и завершении работы узла, при большом количестве виртуальных машин не забывайте устанавливать задержку запуска, чтобы избежать чрезмерной нагрузки на систему.

Закончив с Параметрами перейдите в Свойства виртуальной машины и укажите предпочтительные узлы владельцев данной роли в порядке убывания и приоритет, машины имеющие более высокий приоритет мигрируют первыми.

На закладке Обработка отказа задайте количество допустимых отказов для виртуальной машины за единицу времени, помните, что отказом считается не только отказ узла, но и потеря пульса виртуальной машины, например, ее зависание. На время настройки и тестов есть смысл указать значения побольше.

Также настройте Восстановление размещения , эта опция позволяет передавать виртуальные машины обратно наиболее предпочтительному владельцу при восстановлении его нормальной работы. Чтобы избежать чрезмерных нагрузок воспользуйтесь опцией задержки восстановления.

На этом настройка виртуальной машины закончена, можем запускать и работать с ней.

Теперь самое время проверить миграцию, для этого щелкните на машине правой кнопкой мыши и выберите Переместить - Динамическая миграция - Выбрать узел . Виртуалка должна переместиться на выбранную ноду не завершая работы.

Каким образом происходит миграция в рабочей обстановке? Допустим нам надо выключить или перезагрузить первый узел, на котором в данный момент выполняется виртуальная машина. Получив команду на завершение работы узел инициирует передачу виртуальных машин:

Завершение работы приостанавливается до тех пор, пока не будут переданы все виртуальные машины.

Когда работа узла будет восстановлена, кластер, если включено восстановление размещения, инициирует обратный процесс, передавая виртуальную машину назад предпочтительному владельцу.

Что произойдет если узел, на котором размещены виртуальные машины аварийно выключится или перезагрузится? Все виртуалки также аварийно завершат свою работу, но тут-же будут перезапущены на исправных узлах согласно списка предпочтительных владельцев.

Как мы уже говорили, прижившийся в отечественной технической литературе термин "отказоустойчивый" неверен и более правильно его было бы переводить как "с обработкой отказа", либо использовать понятие "высокая доступность", которое отражает положение дел наиболее верно.

Кластер Hyper-V не обеспечивает отказоустойчивости виртуальным машинам, отказ узла приводит к отказу всех размещенных на нем машин, но он позволяет обеспечить вашим службам высокую доступность, автоматически восстанавливая их работу и обеспечивая минимально возможное время простоя. Также он позволяет значительно облегчить администрирование виртуальной инфраструктуры позволяя перемещать виртуальные машины между узлами без прерывания их работы.

  • Теги:

Please enable JavaScript to view the

Андрей Бирюков

Разворачиваем кластер на основе Windows Server 2003

Отказоустойчивые кластеры широко распространены в сетях средних и крупных компаний. Но у многих администраторов внедрение и обслуживание кластерных систем по-прежнему вызывает много вопросов. Рассмотрим реализацию отказоустойчивого кластера на основе Windows Server 2003.

Приступая к работе

Одним из необходимых условий стабильного функционирования сети крупной организации является отказоустойчивость. Даже минутный сбой может привести к весьма неприятным последствиям.

Так, например, во время перезагрузки почтового сервера в разгар рабочего дня сотрудники компании будут получать сообщения об ошибке и, как правило, звонить в службу технической поддержки компании, прибавляя работы системным администраторам.

Это особенно неприятно, когда о недоступности почты или любого другого сервиса сообщает руководство. Избежать подобных проблем можно с помощью отказоустойчивых кластеров.

Кластер серверов – это группа независимых узлов, которые взаимодействуют как одна система. Они используют общую базу данных кластера, которая позволяет выполнять восстановление в случае отказа любого узла.

Данные решения могут быть как аппаратными, так и программными. Выбор зависит от размера вашей организации, критичных для бизнеса приложений и, естественно, бюджета, выделяемого на IT-инфраструктуру.

В своей статье я рассмотрю программную реализацию двухузлового кластера на основе службы Microsoft Clustering Service. Такое решение является наиболее приемлемым для организаций средних размеров с небольшим IT-бюджетом.

Прежде всего я поставлю задачу, решению которой будет посвящена эта статья.

У нас имеется два сервера с идентичной аппаратной частью. Требование идентичности не является обязательным, но желательно, чтобы мощность серверов была сходной.

Необходимо объединить их в отказоустойчивый кластер. В качестве примера настройки отказоустойчивого ресурса я настрою службу File Share.

Подробнее о типах кластеризуемых ресурсов мы поговорим чуть позже.

О редакциях и лицензиях

Перед тем как начать описание процесса установки и настройки кластера, нам необходимо определиться с редакциями операционной системы, которая будет использоваться, а также рассмотреть вопросы лицензирования.

При построении кластера следует запомнить, что наиболее распространенная редакция Windows Server 2003 Standard не поддерживает кластеризацию.

Таким образом, при построении отказоустойчивой системы следует использовать Windows Server 2003 Enterprise Edition.

Кстати, редакцию Enterprise нужно использовать и при построении кластеров для Microsoft Exchange и Microsoft SQL Server 2000. В противном случае вы не сможете кластеризовать почту и базы данных.

Что касается вопросов лицензирования, то необходимо приобретать серверную лицензию на операционную систему на каждый узел кластера. Плюс лицензии клиентского доступа (CAL) в том же количестве, что и для одного сервера.

Поясню на примере. Если у вас в организации 250 пользователей и вы разворачиваете двухузловой кластер, то вам необходимо приобрести две серверные лицензии на Windows Server 2003 и 250 лицензий клиентского доступа.

Таким образом, количество узлов в кластере не влияет на число клиентских лицензий.

Новые понятия

Для лучшего понимания концепции кластеризации мы рассмотрим несколько основных понятий.

Отказоустойчивый кластер, как правило, состоит из четырех узлов, использующих общий дисковый ресурс для обмена данными. Этот ресурс также именуется кворум-устройством (quorum).

В идеале это кворум-устройство должно представлять из себя отдельное аппаратное хранилище данных с собственной поддержкой отказоустойчивости (диски RAID 1, RAID 5), подключающееся ко всем узлам кластера.

Подобные решения предоставляют IBM, EMC и другие производители.

Но в случае ограниченных финансовых возможностей компании для создания кворум-устройства можно использовать диск на разделяемой SCSI-шине, подключенный ко всем узлам кластера.

Кластер содержит два различных типа сетей: частная сеть, которая используется для поддержки соединений между узлами кластера, и сеть общего пользования (локальная сеть), которая используется клиентами кластера для подсоединения к службам в этом кластере. Обе эти сети могут совместно использовать одну сетевую карту и одно физическое соединение, но лучше держать их отдельно.

Поскольку соединение между узлами кластера – это потенциальная точка отказа, оно всегда должно предусматривать избыточность.

В случае, если используются два сетевых интерфейса, то при отказе одного из них администратор сможет без особых усилий переключиться на использование второго. К тому же использование двух интерфейсов увеличивает скорость обмена данными и в конечном счете увеличивает скорость работы всего кластера в целом.

Следующим важным понятием кластеризации являются группы.

Группы – это блоки для перехода по отключению (failover). Каждая группа содержит один или несколько ресурсов. При отказе любого из ресурсов внутри группы для всей группы выполняется совместный переход по отключению согласно политике перехода по отключению, определенной для данной группы.

В любой момент времени группа может принадлежать только одному узлу. При отказе какого-либо ресурса внутри группы он должен быть перемещен в альтернативный узел вместе со всеми остальными ресурсами этой группы.

При устранении причины отказа исходного узла вся группа передается назад в исходный узел в соответствии с политикой возврата после восстановления (failback) для данной группы.

Ресурсы – наше все

Следующим понятием являются ресурсы – логические или физические элементы, которые можно подсоединять или отсоединять от сети.

В систему Windows Server 2003 Enterprise Edition включено несколько различных типов ресурсов:

  • Physical Disk;
  • DHCP;
  • WINS;
  • Print Spooler;
  • File Share;
  • Internet Protocol Address;
  • Local Quorum;
  • Majority Node Set;
  • Network Name;
  • Generic Application;
  • Generic Script;
  • Generic Service.

Несколько слов по каждому из видов ресурсов.

Physical Disk используется для кворум-ресурса. Требуется для всех серверов кластера.

DHCP и WINS используются в качестве ресурса кластера для обеспечения отказоустойчивости данных служб.

Print Spooler позволяет кластеризовать службы печати.

Тип ресурса File Share позволяет управлять разделяемыми файловыми системами тремя различными способами:

  • Стандартный разделяемый файловый ресурс , когда видна только папка верхнего уровня, представленная разделяемым именем.
  • С разделяемыми подпапками , когда папка верхнего уровня и каждая из ее непосредственных подпапок предоставляются для разделяемого доступа с различными именами.
  • Автономный корень распределенной файловой системы Dfs (Distributed File System). Но вы не можете использовать ресурс File Share кластерного сервера как часть отказоустойчивого корня Dfs.

Internet Protocol Address и Network Name используется для создания виртуального сервера, который позволяет клиентам использовать то же имя для доступа к кластеру даже после перехода по отключению failover.

Ресурс Local Quorum используется для управления системным диском в локальном узле кластера.

Majority Node Set применяется для управления конфигурацией данных кластера, которые могут располагаться на ЗУ кластера или вне этого устройства. Используется для согласования данных между географически разбросанными устройствами.

Тип ресурса Generic Application позволяет вам управлять в кластере обычными приложениями, не распознающими своего присутствия в кластере.

Generic Script – управление сценариями операционной системы как кластерным ресурсом.

Generic Service – позволяет управлять службами Windows Server 2003 как ресурсами кластера.

Важность планирования

Для стабильной работы кластера необходимо заранее спланировать, какие приложения будут выполняться, а также точно выбрать, без каких приложений вы можете обойтись и какие приложения должны поддерживаться при любых обстоятельствах.

Вначале необходимо определить количество групп или виртуальных серверов.

Приложения и ресурсы, находящиеся в одной группе, будут передаваться по отключению все вместе одному серверу. То есть вам необходимо определить, какие приложения зависят друг от друга, и им требуется совместная работа.

Таким образом, перед началом развертывания кластера вам необходимо составить список всех приложений в вашей среде, четко определить, для каких из них допускается отказ, а для каких требуется переход по отключению.

Обратите внимание на то, что ресурс не может охватывать группы, поэтому если несколько приложений зависят от ресурса, они должны содержаться в одной группе или в одном виртуальном сервере, тогда будут использоваться одни и те же политики перехода по отключению и после восстановления.

Приведу небольшой пример построения дерева зависимостей для ресурса File Share.

Очевидно, что этот ресурс зависит от Physical Disk, так как это основной ресурс, используемый всеми узлами кластера. Далее для ресурсов общего доступа важно сетевое имя Network Name. Но в свою очередь Network Name не может использоваться без IP Address.

Таким образом, получаем следующие зависимости: ресурс File Share явно зависит от Physical Disk и Network Name и неявно – от IP Address.

В случае, если вы забудете указать какую-либо зависимость, вы получите сообщение об ошибке в процессе установки ресурса.

Завершая тему планирования, хочу напомнить, что каждый из узлов кластера должен обладать достаточной мощностью и не быть перегружен дополнительными, некластеризованными приложениями, так как в случае, если после переключения хозяином ресурса оказался менее мощный сервер, это обязательно отразится на быстродействии приложений, и, возможно, приведет к сбоям.

Установка

Обсудив особенности реализации Microsoft Cluster Service, приступим непосредственно к развертыванию.

Первым делом на каждый из узлов устанавливаем Windows Server 2003 Enterprise Edition.

Сам процесс установки стандартный и описывать его в статье нет смысла. Единственное, о чем следует упомянуть, – это IP-адресация. Необходимо сразу выставить фиксированные адреса, чтобы впоследствии не возникло проблем с соединением.

После успешной установки необходимо дать имена каждому из узлов кластера. Для простоты назовем узлы Node1 и Node2.

В следующем окне необходимо указать имя домена, в котором находятся узлы, а также имя кластера (см. рис. 1).

Если проверка по всем пунктам закончилась успешно, то в следующем окне вам необходимо указать IP-адрес кластера.

Затем требуется указать учетную запись, из под которой кластер будет запускаться. Это может быть существующая или новая учетная запись. Данному пользователю будут предоставлены права локального администратора на всех узлах кластера.

Наконец, переходим к последней странице, в которой выводятся данные для подтверждения. Здесь можно указать кворум-устройство, как показано на рис. 3.

При нажатии «Next» запускается процесс установки кластера, внешне схожий с уже описанным анализом конфигурации.

После успешной установки должно открыться окно администрирования созданного нами нового кластера для дальнейшей работы.

Работа над ошибками

При установке кластера могут возникнуть различные проблемы. Я опишу решение некоторых из них. Как правило, большинство проблем выявляются на этапе анализа конфигурации кластера. На рис. 4 показано, как это может выглядеть.

Как видно, при анализе были обнаружены две ошибки, вернее, проблемы. Так как полоска Task Completed зеленого цвета, можно продолжать установку, но лучше сначала разрешить проблемы.

Итак, что же было найдено в процессе анализа системы:

  • Не найдено кворум-устройство. Как уже обсуждалось ранее, оно представляет собой SCSI-диск, используемый всеми узлами кластера. Если вы получили такое сообщение, проверьте правильность подключения к SCSI-шине серверов. Также проверьте наличие данного диска в разделе «Administrative Tools -> Computer Management -> Disk Management».
  • На сервере найден только один сетевой адаптер. Большинство промышленных серверов имеют две сетевые карты, так что это довольно редкая ошибка. Но если она появилась, то необходимо проверить работоспособность второго адаптера. В случае, если вы хотите использовать только один интерфейс, воспользуйтесь описанием из раздела «Добавляем узлы».

Еще одной ошибкой, проявляющейся в процессе анализа, является динамическое присвоение IP-адресов сетевым адаптерам. Как я уже упоминал, в процессе установки необходимо присвоить статические адреса сетевым адаптерам.

Для идентификации более сложных ошибок можно воспользоваться кнопкой «View Log» для просмотра детального журнала событий.

Добавляем узлы

Теперь необходимо добавить узел в кластер. Но прежде сделаем несколько дополнительных настроек. В консоли Cluster Administration выбираем «Cluster Configuration», далее «Networks» (см. рис. 5).

У каждого узла кластера два сетевых интерфейса, при этом один подключен к локальной сети (LAN), а второй используется для взаимодействия между узлами кластера (Heartbeat).

Поочередно откройте закладку «Properties» для каждого из этих сетевых интерфейсов.

Для LAN в свойствах необходимо указать «Client Access Only (public only)», а для Heartbeat выбираем «Internal Cluster Communications Only (private network)».

Таким образом, теперь у нас интерфейс LAN будет использоваться только для внешнего взаимодействия, а Heartbeat – только для обмена информацией между узлами кластера. Это позволяет увеличить быстродействие системы вцелом.

Только не забудьте также разграничить сегменты на сетевом уровне. То есть сегмент, содержащий соединения Heartbeat, должен быть подключен в отдельный коммутатор или концентратор (не в ту же физическую сеть что и LAN!) из соображений безопасности и надежности.

В данном случае использование концентратора может оказаться даже предпочтительнее, так как он не содержит кэш MAC-адресов, а сеть Heartbeat в данном случае используется только для проверки доступности узлов и выбора нового в случае отказа.

Если вы хотите использовать только один интерфейс, то укажите Internal and Client Access в свойствах LAN и Heartbeat. При этом и LAN и Heartbeat будут содержать один физический интерфейс.

Итак, мы оптимизировали настройки сетевых интерфейсов узла кластера и теперь переходим к следующему этапу – добавлению второго узла. Для этого на втором сервере также запускаем «Administrative Tools -> Cluster Administrator».

Только теперь выбираем «Add nodes to cluster» и указываем имя кластера.

На следующем шаге прописываем имя сервера, который будет использоваться в кластере.

Затем запускается анализ конфигурации. В случае завершения анализа без серьезных ошибок на следующем шаге указываем учетную запись, которая использовалась при создании кластера. Далее производится установка служб кластера на второй сервер. Полученный результат смотрите на рис. 6.

На этом, собственно, сам процесс установки кластера заканчивается. В случае, если необходимо добавить еще узлы, достаточно проделать вышеописанные операции по добавлению сервера.

Настраиваем ресурсы

Теперь необходимо подключить ресурсы, которые будут использоваться в нашем кластере.

Как упоминалось в начале статьи, мы будем настраивать ресурсы для службы File Share.

Для этого мы сначала создадим новую группу на виртуальном сервере HOME.

Перед созданием группы необходимо определиться с её расположением. Можно, конечно, поместить ресурсы в главную группу Clusters, но лучше сразу группировать в соответствии с их предназначением. Тем более потому, что управление политиками перехода по отключению осуществляется на уровне групп.

Поэтому для создания нашего ресурса типа File Share нужно сделать следующее:

  • создать группу, которая будет содержать нужные ресурсы;
  • создать ресурс типа Physical Disk;
  • создать ресурс типа IP Address;
  • создать ресурс типа Network Name;
  • создать ресурс типа File Share.

Начнем с создания кластерной группы.

Для этого в консоли «Cluster Administrator» щелкните на папке «Active Groups» для сервера, на котором будет находиться ресурс типа File Share, и выберите пункт «Group» в меню «New». Появится окно мастера создания группы «New Group Wizard» (см. рис. 7).

В следующем окне необходимо указать предпочтительных владельцев ресурса Preffered Owners. Здесь можно указать несколько узлов в зависимости от их предпочтительности.

К примеру, вполне логично в начале списка указать наиболее мощные и менее загруженные узлы кластера.

В нашем случае необходимо выбрать узел и нажать «Add», затем аналогично добавить Node 2. После нажатия кнопки «Finish» группа будет создана.

Но обратите внимание на то, что сейчас она находится в автономном состоянии, так как с ней не связаны никакие активные ресурсы.

Теперь пришло время создать ресурс типа Physical Disk. Для этого щелкните правой кнопкой мыши на только что созданной группе и выберите пункт «Resource».

Заполните поля Name и Description и выберите в раскрывающемся списке «Resource Type» вариант «Physical Disk».

На следующем шаге укажите возможных владельцев ресурса Possible Owners. Тут нужно указать те машины, которые могут содержать этот ресурс (Node1, Node2).

На следующем этапе указываем параметры диска (Disk Parameters). В раскрывшемся списке будут представлены все ресурсы типа Physical Disk, которыми может управлять служба кластера.

Следует обратить внимание на тот факт, что эта служба может управлять только базовыми дисками, но не динамическими, и все используемые службой кластера разделы этого диска должны быть отформатированы, как NTFS.

После указания диска нажмите на кнопку «Finish», чтобы создать этот ресурс.

Третьим по списку мы должны создать ресурс типа IP Address.

По аналогии с предыдущим разделом выбираем пункт «Resources» в нашей группе, далее – «New». Указываем тип ресурса – IP Address, затем – возможные владельцы.

В следующем окне, Dependencies, должен появиться уже созданный нами ресурс Physical Disk. Но выбирать его не нужно, так как в данном случае никакой зависимости нет.

На следующей странице необходимо указать настройки для IP-адреса. Затем нажимаем «Finish».

Создадим ресурс типа Network Name. Для этого необходимо еще раз проделать все те действия, которые мы выполняли ранее для других типов ресурсов.

Но в разделе Dependencies теперь необходимо указать зависимость от ресурса IP Address.

Приступаем к завершающему этапу в создании кластерного ресурса File Share.

Повторим все те же действия, но при указании зависимостей Dependencies необходимо выбрать все три элемента списка.

В разделе Advanced можно указать скрывать ли разделяемые ресурсы-поддиректории.

Разделяемый ресурс создан.

Обратите внимание на то, что по умолчанию для ресурса File Share будут заданы полномочия Read Only. Изменить эту установку можно в окне File Share Parameters.

Итак, мы получили отказоустойчивый ресурс в кластере и тем самым повысили доступность файловых ресурсов с помощью кластеров Microsoft.

Кластеры в виртуальной реальности

Последнее время все более широкое распространение получают виртуальные машины .

Виртуальные машины помимо прочего чрезвычайно удобны при разработке и тестировании различных систем, обучении и демонстрации.

Эти свойства особенно полезны при работе с кластерными системами, так как полноценная аппаратная реализация требует определенных, зачастую немалых, финансовых затрат. А с помощью виртуального кластера протестировать систему или подготовиться к сертификационному экзамену можно без каких-либо дополнительных расходов.

К примеру, для того чтобы развернуть двухузловой кластер на основе VMware, мне достаточно было рабочей станции с 1 Гб оперативной памяти. И никаких внешних SCSI-дисков, шумных серверов и прочей аппаратуры.

Так что, если вас интересует реализация кластеров на базе виртуальной машины VMware, то рекомендую обратиться к статье .

Заключение

Итак, мы развернули отказоустойчивый двухузловой кластер и установили разделяемый ресурс File Share.

Однако одним из наиболее распространенных применений службы Microsoft Cluster Services является организация кластеров почтовых серверов MS Exchange.

В следующей статье я подробно рассмотрю процесс установки и настройки отказоустойчивой почтовой системы Microsoft Exchange.

  1. Рассел Ч. Microsoft Windows Server 2003. Справочник администратора.
  2. Бережной А. Строим сетевую инфраструктуру на основе VMware Server. //Системный администратор, №3, 2007 г. – С. 14-18.
  3. Статья о развертывании кластера на VMware – http://www.rootpermissions.net/Files/MS_Windows_2003_Cluster_on_VMware_GFX_3.rar .

Вконтакте

Информационные технологии стремительно развиваются, если раньше виртуализация и кластера были уделом крупных организаций, то сегодня эти технологии становятся доступны даже небольшим предприятиям. Виртуализация позволяет существенно экономить на аппаратных ресурсах, но в тоже время предъявляет гораздо более серьезные требования к отказоустойчивости, поэтому еще на этапе планирования следует принять необходимые меры для ее обеспечения. Одна из таких мер - создание отказоустойчивого кластера.

Начнем с того, что термин отказоустойчивый не совсем применим к кластерным решениям, он возник в результате неверного перевода термина failover cluster . Правильный перевод - с обработкой отказа , хотя сегодня все чаще употребляется иной термин - высокой доступности (high availability) , который, на наш взгляд, наиболее точно отражает суть дел.

Чтобы понять, почему кластер не является отказоустойчивым, разберем более подробно его устройство и схему работы. Сразу уточним, что кластеры применяются не только для обеспечения отказоустойчивости, также кластерные схемы применяют для балансировки нагрузки или наращивания вычислительной мощности. Однако в рамках данного материала мы будем говорить именно о высокодоступных кластерах.

Классическая схема кластера содержит минимум два узла и общее хранилище, связанные между собой несколькими сетевыми соединениями.

Во-первых это служебная сеть кластера для передачи сигнала "пульса" (heartbeat) , по которому кластер следит за состоянием своих узлов (на схеме показана красным), сеть хранения данных (SAN, синяя), в недорогих решениях это чаще всего iSCSI через отдельную Ethernet-сеть, но это может быть также и FibreChanell или иные технологии. Для обслуживания клиентов кластер включается в существующую локальную сеть.

По схеме работы узлы могут работать в режиме активный-пассивный или активный-активный . В первом случае все клиентские запросы обслуживаются одним из узлов, второй узел вступает в работу только при отказе первого. Второй вариант предусматривает обработку клиентских запросов обоими узлами, при этом также можно осуществлять балансировку нагрузки и увеличивать вычислительные ресурсы, путем добавления новых узлов кластера. В случае отказа одного из узлов клиентские запросы обрабатывают оставшиеся ноды.

Важный момент - каждый клиентский запрос обслуживается только одним из узлов кластера и в случае его выхода из строя подключенные клиенты получат отказ в обслуживании, однако они могут тут-же переключиться на оставшиеся доступными узлы. Именно поэтому такая схема не является отказоустойчивой, отказ узла вызывает отказ в обслуживании, однако клиент всегда может подключиться к другому работающему узлу, что реализует как раз схему высокой доступности сервиса.

Внимательный читатель должен обратить внимание на существование в приведенной выше схеме точки отказа - хранилища. Действительно, для обеспечения высокой доступности хранилище также должно быть отказоустойчивым или высокодоступным. Это может быть реализовано как покупкой специальных аппаратных моделей, так и программно, в том числе и на базе открытого ПО.

Если в качестве хранилища используется iSCSI, то служебную сеть кластера и сеть хранения данных можно объединить. Но при этом у нас остается точка отказа - сеть, поэтому в ответственных системах следует использовать для доступа к SAN не менее двух сетей. Кроме повышения надежности данный подход позволяет повысить пропускную способность, что тоже актуально.

Нельзя не упомянуть и про программные решения, позволяющие создать отказоустойчивый кластер только на двух нодах, используя в качестве SAN виртуальное хранилище. Например, StarWind Virtual SAN, который создает виртуальное iSCSI хранилище на базе локальных дисков каждого из узлов. Это позволяет снизить затраты на создание и размещение отказоустойчивого хранилища, но в тоже время повышает требование к производительности сети между узлами кластера, так как при записи на диск все изменения тут-же синхронизируются между узлами.

После того, как вы создадите кластер, он появится в сетевом окружении как еще один хост со своим именем и IP-адресом. После чего нам потребуется развернуть на нем высокодоступные роли. Это могут быть файловые сервера, SQL или Exchange, а также иные, поддерживающие кластеризацию, приложения. Каждая отказоустойчивая роль кластера также появляется в сети в виде отдельного хоста, к которому происходит обращение клиентов. При этом клиент понятия не имеет, какой именно узел выполняет его запрос, в случае отказа, например, из-за выхода из строя одного из узлов, ему потребуется всего лишь повторить запрос к сервису.

В настоящее время кластера все чаще применяются для систем виртуализации, в этом случае виртуальные машины вручную распределяются администратором между узлами, с учетом их вычислительных ресурсов. Для каждой виртуалки указываются доступные узлы в порядке убывания приоритета. Это позволяет избежать попадания ресурсоемких виртуальных машин на слабые узлы. В случае корректного завершения работы одного из узлов кластера все работающие на нем виртуальные машины с помощью механизмов живой миграции передаются на другие узлы без остановки их работы или с постановкой на паузу.

При отказе узла все выполнявшиеся на нем виртуальные машины будут перезапущены на других узлах, согласно выставленного приоритета.

Чтобы избежать черезмерной нагрузки на хранилище и сеть хранения данных, в настройках виртуальных машин можно задать задержку восстановления, так критичные виртуалки могут быть перезапущены немедленно, второстепенные - спустя некоторое время.

В наших следующих материалах мы рассмотрим практическую реализацию отказоустойчивого кластера на базе Hyper-V.

  • Теги:

Please enable JavaScript to view the

Рекомендуем почитать

Наверх