По сети передается информация или данные. Передача данных

Электроника 19.06.2020
Электроника

Мы рассматривали историю развития компьютерных сетей. Рассмотрели все важные этапы становления сети Интернет и общие принципы ее работы.

Сегодняшняя наша тема будет называться: технологии передачи данных в сетях . Естественно, прежде всего, - компьютерных. В рамках данной статьи мы также рассмотрим основные средства передачи данных (понятия физических и логических интерфейсов), разберем основные технологии кодирования сигнала при его передаче, характеристики линий связи, а также - механизмы защиты от потерь.

Итак! Для чего существует сеть? Правильно, - для передачи по ней данных (информации). А как передается (распространяется) эта самая информация? Правильно, - через определенную среду передачи (кабельную инфраструктуру или - в диапазоне беспроводной связи).

Технологии передачи данных в своей работе используют (в зависимости от конкретной их реализации) различные физические интерфейсы.

Примечание: интерфейс это - физическая (или логическая) граница при взаимодействии нескольких независимых объектов - своеобразная прослойка между ними.

Интерфейсы делятся на две категории:

  1. физические интерфейсы
  2. интерфейсы логические

Физический интерфейс это - конечный порт подключения (разъем с группой электрических контактов). Например - интерфейс . А пара портов , соединенная с помощью разъемов и кабеля называется линией (каналом) передачи данных.


Логический интерфейс - это набор правил (протокол), который определяет саму логику обмена данными между связанными линией (сетью) устройствами.

Организация передачи данных в компьютерной сети происходит в тесном взаимодействии этих двух интерфейсов: физический компонент (сетевая карта) и логический (ее драйвер).

Обязательным условием для успешной реализации любой из технологий передачи данных является присутствие в потоке данных дополнительного компонента - протокола передачи .

Протокол передачи на логическом уровне представляет собой набор правил, которые определяют обмен данными между различными приложениями или устройствами. Эти правила задают единый способ передачи сообщений и обработки ошибок передачи. На физическом уровне протокол это - набор служебных данных, прикрепляющихся к основным пакетам (кадрам) информации, без которых просто невозможно эффективное взаимодействие в сети.

Протокол должен абстрагироваться (игнорировать) конкретную среду передачи, его задача - обеспечивать надежную связь между узлами в коммутационном облаке .


Давайте рассмотрим сам процесс организации передачи данных более подробно!

Сначала происходит вот что: приложение (программа) обращается к ОС за разрешением для сетевого взаимодействия с другим устройством (принтером, удаленным компьютером, камерой наблюдения и т.д.) Операционная система дает команду драйверу сетевой карты, который загружает в буфер карты первую порцию данных и инициирует работу интерфейса на передачу

На другом конце линии (сети) удаленное устройство принимает в буфер своей сетевой карты поступающие данные. После окончания передачи протокол проверяет нет ли в передаваемых частях (пакетах) данных ошибок (если надо запрашивает их повторную передачу) и загружает принятые данные из буфера карты в заранее зарезервированное пространство оперативной памяти. Оттуда уже конечное приложение (программа) извлекает информацию и работает с ней.

Вот - схемка, для наглядности (кликабельно):


На основании всего сказано выше, можно сделать такой вывод: технологии построения сети сводятся к тому, чтобы связать между собой удаленные устройства электрически и информационно! Т.е. - создать физическую среду передачи (кабель, беспроводная связь) и обеспечить общий протокол передачи данных по сети.

Клиент это - модуль (программа, служба, отдельный компьютер), служащий для формирования и передачи сообщений (запросов) к ресурсам удаленного устройства (серверу), с последующим приемом результатов от него и передачей их соответствующим приложениям на клиенте.

Сервер это - модуль (программа, служба...), который постоянно ожидает прихода из сети запросов от клиентов и обслуживающий (с участием локальной ОС) эти запросы.

Один сервер может обслуживать сразу множество клиентов.. Вот - еще пример: база данных, с которой работают клиенты. На них установлены клиентские модули программ, которые подключаются к базе и поддерживают только графический интерфейс работы с ней. Все вычисления и обработка, при этом, происходят на сервере и с использованием его ресурсов.


Познакомимся еще с одним определением! Клиент-серверная составляющая, которая предоставляет доступ к какому-то ресурсу компьютера через сеть называется сетевой службой . Причем, каждая служба связана с определенным типом сетевых ресурсов.

Например: служба печати позволяет нам распечатывать документы на сетевом принтере, а файловая служба - получать доступ к данным, находящимся на удаленных компьютерах. Для серфинга по Интернету есть своя веб-служба, которая состоит из серверной части (веб-сервера) и клиентской (веб-браузера) пользователя (IE, Opera, Firefox и т.д.)

В свете всего сказанного выше, технологии передачи данных должны опираться не просто на операционные системы, а на сетевые ОС, которые предоставляют пользователю доступ к информационным и аппаратным ресурсам других компьютеров. Причем эти операционные системы, согласно изложенным выше определениям, также делятся на два больших класса: серверные и клиентские ОС.

Клиентские системы обращаются, в основном, с запросами к серверным компонентам других компьютеров а серверные компоненты серверной ОС предоставляют эти услуги. Конечно, на данный момент, практически любая современная ОС способна выполнять как роль клиента, так и сервера. Серверные системы просто изначально созданы из расчета обслуживания ими максимального количества обращений и обладают лучшей отказоустойчивостью (надежностью).

Вот, к примеру, какая "игрушка" стоит у нас в серверной:


Но о ней - в другой раз:)

Давайте теперь с Вами поговорим вот о чем: современные (цифровые) технологии передачи сигнала связаны с его преобразованием (кодированием). Зачем нам это нужно? На то есть несколько причин:

  1. Предотвращение ошибок передачи данных (за счет уверенного распознавания сигнала принимающей стороной)
  2. Данные передаются быстрее (за счет более высокой плотности полезной информации в потоке)

Как видите, это - уже две весьма веские причины для того, чтобы уделить методам кодирования должное внимание:)

На фото ниже представлено два сигнала: аналоговый (красная линия) и цифровой (черные "ступеньки")


В данном случае аналоговая последовательность была оцифрована (дискретизирована) с определенной частотой. Чем выше будет частота дискритизации, тем меньший шаг будут иметь наши "ступеньки" и тем более похож будет оцифрованный сигнал на исходный (красный).

Похожие процессы происходят и при дискретизации (оцифровке) нашего голоса, снимаемого со входа микрофона .

В вычислительной технике используется двоичный код . Внутри компьютера это эквивалентно двум состояниям: наличию и отсутствию электрического напряжения (логический «ноль» или «единица»). Здесь - все просто: есть ток - "единица", нету - "ноль".

Современные технологии передачи данных позволяют производить кодирование сигнала и другими (более эффективными) способами. Но прежде, - еще одна небольшая классификация. По способу реализации процедура делится на:

  1. Физическое кодирование сигнала
  2. и - логическое (на более высоком уровне - поверх физического)

Давайте сначала обзорно рассмотрим первый пункт. Есть, к примеру, потенциальный способ кодирования , при котором единице соответствует один уровень напряжения (один потенциал), а нулю - другой. А при импульсном способе , для представления цифр используются импульсы разной полярности.

Для технологии кодирования определенная проблема при передаче данных состоит в том, что внешние (по отношению к самому компьютеру) линии передачи данных могут быть растянуты на большие расстояния и подвержены воздействию различных помех и наводок. Это приводит к искажению эталонных прямоугольных импульсов передачи сигнала и нужны новые (надежные) алгоритмы его кодирования и передачи.

В вычислительных сетях применяется как потенциальное , так и импульсное кодирование. Также применяется и такой способ передачи данных, как модуляция .

При модуляции дискретные данные передаются с помощью синусоидального сигнала той частоты, которую хорошо передает имеющаяся в распоряжении линия связи.


Первые два варианта преобразования применяются для линий высокого качества, а модуляция используется в каналах с сильными искажениями сигнала. Модуляция, к примеру, используется в глобальных сетях при передаче трафика через аналоговые телефонные каналы связи, которые были разработаны специально для передачи голоса (аналоговой составляющей) и поэтому плохо подходят для передачи цифровых импульсов.

На сам способ передачи оказывает влияние и такая вещь, как количество проводников (жил) в линиях связи. Для снижения их стоимости количество проводов, зачастую, снижается. При такой технологии передача данных осуществляется последовательно, а не параллельно (как это принято для линий связи внутри компьютера).

К способам кодирования на физическом уровне относятся такие алгоритмы, как NRZ (Non Return Zero), Манчестерский код (Manchester ), MLT-3 (Multi Level Transmission) и ряд других. Не вижу особого смысла останавливаться на них подробно, если будет интересно - Вы всегда сможете почитать о них в Интернете. Короче, я - отмазался! :)

Давайте пару слов скажем и о логическом кодировании. Как можно понять из названия, оно осуществляется по верху физического (накладываясь на него) и служит для обеспечения дополнительной надежности при передаче данных. Каким же образом?

Например: если характер передаваемого сигнала долгое время не изменяется (при передаче длинных последовательностей логических нулей или единиц) приемник может ошибиться при считывании очередного бита информации. Он просто не сможет разложить общий поток данных на отдельные составляющие и, как следствие, - правильно собрать в своем буфере из них исходную структуру.

Логическое кодирование (которому подвергается исходная последовательность данных) внедряет в длинные последовательности бит свои биты с противоположным значением, или - вообще заменяет их другими последовательностями. Кроме того, оно позволяет улучшить спектральные характеристики сигнала, в целом - упростить его расшифровку, а кроме того - передавать в общем потоке дополнительные служебные сигналы управления.

В основном, для логического преобразования применяются три технологии:

  1. вставка бит (bit stuffing)
  2. избыточное кодирование
  3. скремблирование

Также - не останавливаюсь отдельно (чтобы не занудить) :) основную идею Вы, надеюсь, уловили!

Коротко отчитаюсь следующим скриншотом:

На нем Вы можете видеть, как выглядит один и тот же сигнал, при наложении на него различных алгоритмов:

Технологии передачи данных имеют еще ряд проблем, с которыми приходится бороться. И одна из них - проблема взаимной синхронизации передатчика одного компьютера и приемника другого. Согласитесь, что сложно будет разобраться в потоке данных, если два устройства начнут генерировать его одновременно "навстречу" друг другу. Начнется бардак! :)

Проблема же синхронизации удаленных компьютеров может решаться разными способами: путем обмена специальными тактовыми синхроимпульсами или же - передачей служебных данных, не имеющих отношения к основному потоку информации. Один из стандартных приемов, служащий для повышения надежности передачи это - подсчет контрольной суммы каждого байта (блока байтов) и передача этого значения принимающей стороне.

Примечание: контрольная сумма это - некоторое значение, рассчитанное путем "наложения" на данные определённого алгоритма и используемое для проверки их целостности при передаче. Контрольные суммы могут использоваться для быстрого сравнения двух наборов данных на их идентичность. Отличающиеся данные будут иметь разные контрольные суммы..

Еще одна технология подтверждения целостности данных это - обмен между взаимодействующими устройствами служебными сигналами-квитанциями , подтверждающими правильность приема. Зачастую эта функция по умолчанию включается в сам протокол сетевого взаимодействия.

Технологии передачи данных подразумевают передачу информации от одного компьютера к другому - в обеих направлениях. Даже в том случае, когда нам кажется, что мы только принимаем данные (например - скачиваем музыку), то на самом деле - обмен идет в двух направлениях. Просто есть основной поток данных (который интересует нас - музыка) и вспомогательный (служебный), идущий в обратном направлении, образуемый квитанциями об успешной (или не успешной) передаче.

В зависимости от того, могут ли они передавать данные в обоих направлениях или нет, физические каналы делятся на несколько видов:

  • Дуплексный канал - обеспечивает одновременную передачу информации в обоих направлениях Дуплекс может состоять из двух независимых физических сред (один проводник на прием, второй - на передачу). Возможен и вариант, при котором одна среда используется для обеспечения дуплексного режима работы. В этом случае на клиентах применяются дополнительные алгоритмы выделения каждого потока данных из общего массива информации.
  • Полудуплексный канал - также обеспечивает передачу в обоих направлениях, но не одновременно, а - по очереди. Т.е. в течение определенного времени данные передаются в одном направлении, а затем - в обратном.
  • Симплексный канал - позволяет передавать информацию только в одном направлении. Дуплексный может состоять из двух симплексных каналов.

Ой, что-то много букв получилось:) Думаю, на сегодня - достаточно, будем продвигаться постепенно. В следующих статьях обязательно продолжим наше знакомство с , а пока что - до свидания, и - до следующих статей!

В завершение, посмотрите тематическое видео:

Пакет - единица информации, передаваемой по компьютерной сети.

    заголовок - часть пакета, содержащий следующую информацию:

    адрес источника;

    данные - это часть пакета, содержащая собственно передаваемые данные;

    трейлер (или концевик) - это часть пакета, содержащая информацию для проверки ошибок при приеме пакета.

Назначение пакетов

Данные обычно содержатся в больших по размерам файлах. Однако сети не будут нормально работать, если компьютер посылает этот блок данных целиком. Существует две причины, замедляющие работу сети при передаче по кабелю больших блоков данных.

Во-первых, такой блок, посылаемый одним компьютером, заполняет кабель и "связывает" работу всей сети, т.е. препятствует взаимодействию остальных сетевых компонентов.

Во-вторых, возникновение ошибок при передаче крупных блоков приводит к повторной передаче всего блока. А если поврежден небольшой блок данных, то требуется повторная передача именно этого небольшого блока, что значительно экономит время.

Чтобы быстро и легко, не тратя времени на ожидания, передавать по сети данные, надо разбить их на небольшие управляемые блоки. Эти блоки называются пакетами или кадрами. Хотя термины "пакет" и "кадр" синонимичны, полными синонимами они все-таки не являются. Существуют различия между этими терминами в компьютерных сетях некоторых типов.

Пакет - основная единица информации в компьютерных сетях. При разбиении данных на пакеты скорость их передачи возрастает настолько, что каждый компьютер в сети получает возможность принимать и передавать данные практически одновременно с остальными компьютерами. На целевом компьютере (компьютере-получателе) пакеты накапливаются и выстраиваются в должном порядке для восстановления исходного вида данных.

При разбиении данных на пакеты сетевая операционная система добавляет к каждому пакету специальную управляющую информацию. Она обеспечивает:

    передачу исходных данных небольшими блоками;

    сбор данных в надлежащем порядке (при их получении);

    проверку данных на наличие ошибок (после сборки).

Структура пакета

Пакеты могут содержать несколько типов данных:

    информацию (например, сообщения или файлы);

    определенные виды данных и команд, управляющих компьютером (например, запросы к службам);

    коды управления сеансом (например, запрос на повторную передачу для исправления ошибки).

Основные компоненты

Некоторые компоненты являются обязательными для всех типов пакетов:

    адрес источника (source), идентифицирующий компьютер-отправитель;

    передаваемые данные;

    адрес местоназначения (destination), идентифицирующий компьютер-получатель;

    инструкции сетевым компонентам о дальнейшем маршруте данных;

    информация компьютеру-получателю о том, как объединить передаваемый пакет с остальными, чтобы получить данные в исходном виде;

    информация для проверки ошибок, обеспечивающая корректность передачи.

Компоненты пакета группируются в три раздела: заголовок, данные и трейлер.

Примечание

Если вы еще помните, что такое тип данных MIME, то, взглянув на приведенные выше названия методов кодирования данных, сразу увидите, что это как раз типы MIME. Именно с их помощью задаются методы кодирования.

В подавляющем большинстве случаев используется метод кодирования application/x-www-form-uriencoded. Кстати, именно он применяется по умолчанию, если метод кодирования не задан. Метод кодирования multipart/form-data используется, если вы собираетесь отправить на Web-сервер файлы; он обеспечивает соответствующее такому случаю преобразование двоичных данных. Последний метод - text/plain -- представляет данные в виде обычного текста, что может быть полезно, если данные формы будут отправляться по электронной почте (иногда применяется и такой способ передачи данных).

Итак, с кодированием данных разобрались. Остается выяснить, как же эти данные передаются по каналам Сети.

Как вы уже знаете, для пересылки данных по Интернету, да и по любой локальной или глобальной компьютерной сети, используется особый набор.правил, называемый протоколом. Протокол определяет, каким образом данные будут шифроваться и упаковываться для последующей передачи по сети. Естественно, что и передающая, и принимающая программы должны поддерживать один и тот же протокол, чтобы "понять" друг друга. (Иначе возникнет так называемая несовместимость по протоколу передачи данных, штука весьма неприятная.) Собственно, уже говорилось об интернет-протоколах и повторяться сейчас нет смысла.

Также вы знаете, что для пересылки по Сети Web-страниц и связанных с ними файлов (графических изображений, звуков, архивов и т. п.) используется протокол HTTP. Он же применяется и для передачи данных, причем для этого предусмотрены два метода передачи данных. Оба способа широко используются в интернет-программировании и имеют свои преимущества и недостатки. Давайте их рассмотрим.

Первый способ носит название GET по значению соответствующего параметра формы. При его использовании данные передаются как часть интернет-адреса в HTTP-запросе.

Как вы помните, Web-обозреватель для того, чтобы получить от Web-сервера нужный ему файл, отправляет этому серверу так называемый HTTP-запрос, включающий в себя интернет-адрес необходимого файла. Так вот, данные могут быть переданы как часть этого адреса.

Возьмем, например, такой набор данных, приведенный чуть выше:

name1 = Ivan surname = Ivanovich name2 = Ivanov age = 30

Теперь подготовим его для пересылки по методу GET (сами данные выделены полужирным шрифтом):



Как видите, пересылаемые по методу GET данные помещаются в самый конец интернет-адреса и отделяются от него вопросительным знаком. При этом пары "имя" = "значение" отделяются друг от друга знаком "коммерческое и" ("&"). Все очень просто и наглядно.

Такая простота и наглядность представления данных - основное преимущество метода GET. Как говорится, все на виду. Также значительно упрощается отладка Web-страниц: поскольку передаваемый Web-серверу адрес отображается в строке адреса Web-обозревателя, вы всегда сможете увидеть, что именно было передано. (Однако, как вы понимаете, конфиденциальные данные таким методом не передашь - их увидят все, кто стоит за вашей спиной.)

http://www.mysite.ru/bin/choose.exe?chapter=3

Как видите, фактически это ссылки на серверную программу, содержащие один параметр chapter и его значение. Это значит, что все остальные страницы такого сайта формируются серверной программой динамически, на основании полученных параметров. По такому принципу очень часто строятся сайты-справочники, сайты-каталоги программ, электронные магазины и другие сайты, содержащие большое количество классифицированной информации.

К несчастью, метод GET обладает огромным недостатком: с его помощью невозможно передавать большие объемы данных. Это происходит из-за ограничения, накладываемого стандартами на длину интернет-адреса: не более 256 символов. Вычтите отсюда длину собственно адреса серверной программы - и вы получите максимально допустимый размер ваших данных. Второй недостаток метода GET - обратная сторона его достоинства. Данные, пересылаемые им, открыты для всеобщего обозрения и могут быть легко прочитаны в строке адреса Web-обозревателя.

Метод GET стоит использовать, если пересылаемые серверной программе данные заведомо невелики и не являются секретными. В частности, он используется для пересылки ключевых слов поисковым машинам, в сайтах, построенных на основе серверной программы (см. выше) и т. п. Если же вам нужно пересылать объемистые либо конфиденциальные данные, используйте второй метод передачи, называемый POST.

Метод POST передает данные серверной программе все в том же HTTP-запросе, но уже не частью интернет-адреса, а в виде так называемых дополнительных данных. Поскольку размер дополнительных данных не ограничен (по крайней мере, он может быть очень велик), вы можете передавать все, что угодно, в каких угодно количествах. В частности, именно этим способом Web-серверу могут передаваться даже файлы.

Достоинства метода POST: отсутствие ограничения на объем передаваемых данных и "невидимость" их. Недостатки: сложность расшифровки данных и трудность отладки. Методом POST передаются, например, анкетные данные, адреса покупателей в электронных магазинах, литературные произведения на сайты http://www.stihi.ru и http://www.proza.ru и т. п. В общем, то, что имеет большие объемы.

Как говорят, комитет WWWC намерен вообще со временем отказаться от метода GET и все данные передавать с помощью метода POST. Пока что метод GET просто объявлен не рекомендованным для использования во вновь создаваемых сайтах, реально же он еще поддерживается Web-обозревателями.

Передача данных - процесс переноса данных в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу. Словари упоминают заимствование (1640-е) учеными кругами латинского слова datum, означающего «вещь», «данность». Философия обосновывает связь понятий информации, знания, данных, свободы, приводит примеры. Высота горы преимущественно выступает данными. Параметр измеряют альтиметром, заполняют базы. Полученная информация, приняв конкретный облик, украшает книгу, изучаемую альпинистом. Бывалый горец придумывает лучший способ покорить вершину. Понимание особенностей процесса уже становится знанием.

Немедля появляется свобода выбора. Альпинист волен решать, принимая ответственность. Имеются группы, не вернувшиеся назад.

Виды данных

Исторически информацию представляли множеством способом. Оставим историкам иероглифы папирусов, разберем современные методики. Наибольший отпечаток наложило развитие электричества. Научись человек передаче мысли, символика вышла бы иной…

Аналоговый сигнал

Первыми попытками измерить аналоговые величины назовем опыты Вольты, измерявшего напряжение, ток. Следом сопротивление проводника сумел оценить Ом, Георг Ом. Каждый раз использовались аналоговые величины. Представление характеристик объекта в виде тока, напряжения дало мощный толчок развития современному миру. Электронно-лучевой кинескоп яркостью пикселей трех цветов отображает достаточно наглядную картинку.

Причины ухода от аналогового сигнала выявила Вторая мировая война. Система Зеленый шершень умела отлично шифровать информацию. 6-уровневый сигнал сложно назвать цифровым, однако намечается явный уклон. Исторически первой попыткой передачи бинарного кода назовем опыты Шиллинга 1832 года с телеграфом. Стремясь снизить количество соединяющих абонентов проводов, дипломат припомнил предложенные священниками методики двоичного счисления. Однако внедрение цифровой передачи потребовало от человечества пройти путь свыше полутора столетий.

Двоичный цифровой код

Двоичное счисление общеизвестно. Аналоговую величину представляют дискретным числом, затем производят кодирование. Полученный набор нулей, единиц обычно разбивают словами длиной 8 бит. Так, например, первые операционные системы Windows были 16-битными, графический модуль процессора обрабатывал числа с плавающей запятой разрядностью повыше. Еще более длинные слова используют специализированные вычислители графических карт. Специфика системы определяет конкретный способ представления информации.

Передача данных позволяет человечеству идти вперед быстрее. Люди обладают неодинаковыми способностями. Необязательно лучший сборщик, хранитель информации сможет извлечь выгоду (для себя, планеты, города…). Разумнее передать. Современный мир называют эпохой цифровой революции. Исторически оказалось, что двоичные данные передавать проще, появляется набор специфических возможностей:

  1. Исправление ошибок.
  2. Шифрование.
  3. Упрощение физических линий.
  4. Более эффективное использование спектра, снижение мощности передатчика, удельной плотности потока энергии.
  5. Распознавание ошибок (EDC, 1951).
  6. Возможность точного повтора, воспроизведения.

Вторая половина XX века дала сотни методик оцифровки аналоговых объектов. Главным признаком двоичного сигнала является дискретность. Аналоговую величину доподлинно передать код бессилен. Однако шаг дискретизации стал столь малым, что погрешностью пренебрегают. Яркий пример – изображения формата Full HD. Большое разрешение экрана гораздо лучше передает мелкие нюансы объекта. На некотором этапе разрешение цифровой техники обгоняет физиологические возможности человеческого зрения.

Значения термина

  1. Передача сведений.
  2. Компьютерная программа для Windows Phone, обеспечивающая копирование контактов меж мобильными устройствами.
  3. Научно-популярная программа с Марией Бачениной.

Этиология

Англичанами принято употреблять множественное число – data. Славянофилов просим избегнуть упреков. Современная наука развита Европой – наследницей Римской империи. Вопрос намеренного уничтожения отечественной истории обойдем, оставив прения историкам. Некоторые эксперты возводят этимологию к древнему индийскому слову dati (дар). Даль называет данными бесспорные, очевидные, известные факты произвольного толка.

Это интересно! Литературный английский язык (газета Нью-Йорк таймс) слово data лишает числа. Употребляют как придется: множественное, единственное. Учебники чаще проводят жесткое деление. Единственное число – datum. Отдельный вопрос касается артикля, здесь обсуждаться не будет. Эксперты склонны считать существительное «массовым».

Идея открытости

Идея свободного доступа к информации выдвинута отцом социологии, Робертом Кингом Мертоном, наблюдавшим Вторую мировую войну. Начиная 1946 годом, подразумевает передачу, хранение компьютерной информации. 1954 добавил возможность обработки. В декабре 2007 года желающие обсудить проблему собрались (Себастопол, Калифорния) и осмыслили программное обеспечение с открытым кодом, интернет, потенциал концепции массового доступа. Обама принял Меморандум о прозрачности и открытости действий правительства.

Осознание человечеством реального потенциала цивилизации сопровождается призывами совместно решать проблемы. Концепция открытости данных широко обсуждается документом (1995) Американского научного агентства. Текст затрагивает геофизику и экологию. Общеизвестен пример корпорации ДюПонт, использовавший некоторые спорные технологии производства Тефлона.

Термины

Термин передача данных чаще касается цифровой информации, включая преобразованный аналоговый сигнал. Наука смотрит шире. Данными именуют любые качественные, количественные описания объекта. Эпичным примером считают сведения, составляемые антропологами касательно редких народностей планеты. Информация широко собирается организациями: продажи, преступность, безработица, грамотность.

Передача информации – цифровой поток бит.

Метаданные – более высокий уровень данных, описывающих другие данные.

Данные измеряют, собирают, передают, анализируют, представляют графиками, таблицами, изображениями, цифрами. Программистам известны так называемые рядовые файлы, лишенные форматирования. Сбойный раздел жесткого диска получает метку RAW. Форматирование упрощает передачу, восприятие сведений. Процесс оформления касается визуального, логического представления. Иногда информацию кодируют, обеспечивая защиту, восстановление сбойных участков.

Формат – способ представления информации.

Протокол – набор соглашений интерфейса, определяющий порядок обмена информацией.

Каналы (способы)

Информация, распространяясь, преодолевает среду:

  • Медный кабель: RS-232 (1969), FireWire (1995), USB (1996).
  • Оптическое волокно.
  • Эфир (беспроводная передача).
  • Шины компьютера.

Специфика среды накладывает особенности. Немногим известно, что электрический ток разносится также электромагнитной волной. Проводимость воздуха намного ниже, что накладывает специфику. Разница нивелируется ионизацией – явлением, знакомым сварщикам. Процессы, сопровождающие движение электромагнитной волны, лишены научного объяснения. Физики просто констатируют факт, описывая явление набором сведений.

Долгое время разные частоты считали явлениями несвязными: свет, тепло, электричество, магнетизм. Важно понять: набор сред рожден эволюцией техники. Наверняка откроют иные методы передачи данных. Реализации сред различны, набор стандартов определен спецификой. Локальные соединения часто пользуются технологией WiFi, опирающейся на протокол канального уровня IEEE 802.11. Сотовые операторы применяют совершенно иные – GPS, LTE. Причем мобильные сети активно начинают внедрять IP, замыкая круг, унифицируя стиль использования цифрового оборудования.

Зачем много протоколов? Особенности реализации передачи данных через WiFi бессильны покрыть значительные расстояния. Лимитированы мощности передатчиков, структуры пакетов иные. Bluetooth вовсе ограничивает основные возможности передачей пары файлов с компьютера на телефон.

Форматирование

Физики быстро убедились: напрямую информация передается средой плохо. Медный провод может нести речь, однако эфир быстро убивает низкочастотные колебания. Попов первым догадался модулировать несущую полезной информацией – азбукой Морзе. Смысл включает изменение амплитуды радиоволны согласно закону сообщения так, чтобы принимающий абонент мог послание извлечь, воспроизвести.

Развивающееся вещание вызвало необходимость совершенствования методик оснащения несущей волны полезной информацией. В поздние 20-е годы Армстронг предложил слегка варьировать частоту, закладывая фундамент сообщения. Новый тип модуляции улучшил качество звука, успешно противостоя помехам. Меломаны немедля оценили новинку.

Военная система Зеленый шершень применяла дискретную методику частотной манипуляции – мгновенная смена частоты согласно закону передаваемого сообщения. Воющие стороны оценили преимущества связи. Внедрению мешали громадные размеры оборудования (1000 тонн). Изобретение транзисторов изменило ситуацию. Передача данных становилось цифровой.

Основу сетей заложил американский ARPANET. С ПК на ПК стали передавать пакеты. Тогда в сети начали применяться первые цифровые протоколы. Сегодня IP захватывает сегмент мобильной связи. Телефоны получают собственные адреса.

Слои протоколов

Передача цифровых данных модемом реализована в 1940 году. Сети появились 25 лет спустя.

Усложняющиеся системы связи потребовали введения новых методик описания процесса взаимодействия компьютерных систем. Концептуальная модель OSI вводит понятие протокольных (абстрактных, реально не существующих) слоев. Структура создана усилиями инженеров Международной организации по стандартизации (ISO), регламентирована стандартом ISO/IEC 7498-1. Параллельную работу вел французский комитет CCITT. В 1983 году разработанные документы объединили, получив модель протокольных слоев.

Концепция 7-слойной структуры представлена работами Чарльза Бэчмана. Модель OSI включает опыт разработки АRPANET, EIN, NPLNet, CYCLADES. Линейка полученных слоев взаимодействует по вертикали с соседями: верхний использует возможности нижнего.

Важно! Каждому уровню OSI соответствует набор протоколов, определяемый используемой системой.

В компьютерных линиях совокупность протоколов подразделяют на слои. Бывают:

  1. Физический (биты): USB, RS-232, 8P8C.
  2. Канальный (кадры): PPP (включая PPPoE, PPPoA), IEEE 802.22, Ethernet, DSL, ARP, LP2P. Устаревшие: Token Ring, FDDI, ARCNET.
  3. Сетевой (паеты): IP, AppleTalk.
  4. Транспортный (датаграммы, сегменты): TCP, UDP, PORTS, SCTP.
  5. Сеансовый: RPC, PAP.
  6. Представительский: ASCII, JPEG, EBCDIC.
  7. Прикладной: HTTP, FTP, DHCP, SNMP, RDP, SMTP.

Физический слой

Зачем разработчикам сто стандартов? Многие документы появились эволюционно, согласно возрастающим требованиям. Физический слой реализуют набором коннекторов, проводов, интерфейсов. Например, экранированная витая пара способна передавать высокие частоты, делая возможным реализацию протоколов битрейтом 100 Мбис/с. Оптоволокно пропускает свет, производится дальнейшее расширение спектра, возникают гигабитные сети.

Физический слой заведует схемами цифровой модуляции, физическим кодированием (формированием несущей, закладкой информации), опережающей коррекцией ошибок, синхронизацией, мультиплексированием каналов, выравниванием сигнала.

Канальный слой

Каждый порт управляется собственными машинными командами. Канальный слой показывает, как реализовать передачу форматированной информации, используя имеющееся железо. Например, PPPoЕ содержит рекомендации организации протокола PPP средствами сетей Ethernet, используемый традиционно порт – 8P8C. Эволюционной борьбой «эфирная сеть» смогла подавить соперников. Изобретатель концепции, основатель компании 3СОМ, Роберт Меткалф, сумел убедить несколько крупных производителей (Интел, DEC, Ксерокс) объединить усилия.

Попутно совершенствовались каналы: коаксиальный кабель → витая пара → оптическое волокно. Изменения преследовали цели:

  • удешевления;
  • повышения надежности;
  • внедрения дуплексного режима;
  • повышения помехоустойчивости;
  • гальванической развязки;
  • питания устройств посредством сетевого кабеля.

Оптический кабель повысил длину сегмента меж регенераторами сигнала. Канальный протокол больше описывает структуру сети, включая методы кодирования, битрейт, количество узлов, режим функционирования. Уровень вводит понятие кадра, реализует схемы расшифровки адреса MAC, детектирует ошибки, повторно отправляет запрос, контролирует частоту.

Информация - это набор единиц и нолей, значит задача состоит в точной передаче определенной последовательности этих единиц и нолей из точки А в точку Б, от приемника к передатчику.

Это происходит либо по проводу, по которому идет электрический сигнал, (или световой сигнал в опто-волоконном кабеле), либо в беспроводном случае, этот же сигнал передается с помощью радиоволн.

Чтобы передать последовательность из единиц и нулей нужно всего лишь договориться какой сигнал будет означать единицу, а какой ноль.

Может существовать множество видов таких модуляций столько же сколько и свойств у радиоволн.

  • У волн есть амплитуда. Отлично, можно использовать изменение амплитуды несущего колебания для кодирования наших нолей и единиц - это амплитудная модуляция, в таком случае амплитуда сигнала для передачи нуля может быть (например) в два раза меньше чем для единицы.
  • У волн есть частота. Изменение частоты тоже можно использовать - это уже будет частотная модуляция, такая модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
  • Кодирование с помощью изменений фазы несущего колебания - фазовая модуляция.
    Итак, вы разговариваете по телефону, звук попадает в микрофон, затем на преобразователь и на передатчик, передатчик излучает радиоволны модулированными, т. е. измененными так, что они несут определенный сигнал, в случае с телефоном - звуковой сигнал.

В антенне приемника, которая стоит на ближайшем доме/вышке под воздействием радиоволн возникают электрические колебания той же частоты, что и у радиоволны, приемник принимает сигнал, ну а дальше в дело вступает еще куча преобразователей передатчиков приемников и проводов между ними...

Принцип тот же, что и у радио, это практически одно и тоже. Для передачи информации используются электрмагнитные волны радиочастот (то есть с очень большой длиной волны). У волны выбирается какая-то характеристика (амплитуда или частота). Затем происходит так называемая модуляция. Грубо говоря (очень упрощенно) в случае мобильной связи характеристика исходной волны, несущей сигнал, ставится в соответствие с характеристикой акустической волны, то есть фактически с помощью информации, содержащейся в исходной волне, вашим телефоном создаются звуковые волны, которые способны воспринимать ваши уши.

Пусть изменяемый параметр волны несущего сигнала - частота, для примера. На пальцах: вот тут частота n Гц, тут m Гц, тогда этим частотам в соответсвие ставятся частоты звуковой волны, и уже вибратор в телефоне создает жти самые звуковые волны.

Ответить

Прокомментировать

В электронных устройствах существуют АЦП. И ЦАП. Первое преобразует аналоговый сигнал (звук) в цифру, а второе наоборот. Момент работы с цифрой - модуляция. Есть еще теорема Котельникова, которая говорит о том, что любой сигнал можно представить как сумму массива цифры от специальной функции sinc. В основном она и заточена уже в ПО. Для сглаживания сигнала или подавления мерцающих помех используют преобразование Фурье, и поиск максимального соотношения сигнал/(шум+помеха). Есть еще по критерию максимума и минимума (смысл просто в том, относительно чего считаем). Сглаживание - итеративное соединение значений i-х цифр (значений цифрового сигнала, то-есть обычной функции, например синуса) с определенным шагом h. Меньше h, больше i - лучше сглаживание. Но медленнее работа алгоритма.

Все пишут про телефонные разговоры, половина из всех пишет уже на полупрофессиональном "сленге"... Попросили же - как для абсолютных нулей в этом... Эх... Хоть мой ответ будет в самом низу, и до него никто не дойдет, считаю своим священным долгом рассказать:D

Про телефонию тут уже рассказали, а вот про блютуз и вайфай - нет. А там довольно интересно. Технология и там и там одинаковая: используются радиоволны определенного диапазона (все жестко регламентированно). Устройство А берет информацию, пляшет над ней с бубном, преобразует в 1010001, например, и отправляет радиоволнами, а устройство Б преобразует радиоволны в 1010001, пляшет обратный танец с бубном и получает исходную информацию. А теперь немного подробностей веселым и понятным языком:

Зашла Алиса в кафе Боба (ваш телефон оказался с вами в кафе с вайфаем или у друга в гостях). Она выключила музыку, сняла наушники (вы включили вайфай на телефоне), и сразу же услышала, как Боб с прилавка орет на всю кафешку так, что на улице слышно:

Меня зовут Боб (Wi-Fi сеть "Боб"), я рядом (Уровень сигнала: отличный), после кофе меня до сих пор штырит (Скорость передачи: 24,3 Mbps), я предохраняюсь (Безопасность: WPA2 PSK) и не даю незнакомцам (Защищено паролем).

"Какой-то озабоченый придурок... Ну, всяко лучше, чем никого", - подумала Алиса и поздоровалась (подключаясь к вайфаю, ваш телефон первым делом представляется).

Боб на нее посмотрел, подозрительно прищурился и спросил (введите пароль): "Мы ведь не встречались раньше, чего надо?"

"Для продавца в кафе это как-то слишком грубо...", - отметила про себя Алиса, но не стала хамить в ответ, а просто обиженым тоном сказала, что зашла купить кофе с пончиком.

А, простите, пожалуйста! У меня так мало посетителей-ПОКУПАТЕЛЕЙ в последнее время, в основном только школяры приходят поглазеть. Да и день в целом плохой, вот и сорвался нечаянно... Вы, Бога ради, не принимайте близко к сердцу, присаживайтесь, я сейчас все сделаю. Кстати, вот вам наша скидочная карта!

(После проверки пароля, если все верно, роутер выдает вашему телефону ID (как наклейку на лоб повесить - он вас будет узнавать с первого взгляда), и потом говорит ключ шифрования передаваемой информации)

Мноие представляют себе передачу информации радиоволнами как "Из точки А в точку Б. По прямой". На самом деле роутер посылает сигнал во все стороны. Ваш телефон, находясь "в зоне поражения" ловит его и отвечает тоже во все стороны. Роутер ловит сигнал, и т.д. В связи с этим (нет нескольких прямых подключений, а просто огромное облако перемешанных радиоволн) все устройства, посылающие информацию, каждый раз представляются, называют адресата и только потом говорят информацию.

То есть и Алиса и Боб будут всегда орать во весь голос (даже если рядом друг с другом) что-то вроде "Алиса Бобу [лырашубвлоубцло (зашифрованная информация)]", "Боб Алисе [фталлк]", "Боб Всем [Меня зовут Боб (и далее по тексту)]", "Боб Саре [аоыоароаоа]".

Блютуз и телефония работают так же, просто отличаются протоколы (правила, по которым стороны представляются, договариваются и взаимодействуют в целом).

Коротко для непрофессионалов:
1) Передача сигнала через эфир (без проводов) возможна ввиду наличия такого физического явления, как электромагнитные волны, или, короче, радиоволн. (Собственно без них даже жизнь невозможна - это одна из основ природы). Человечество более 100 лет назад научилось использовать радиоволны для передачи информации.
2) Как происходит в подробностях объяснить очень сложно и долго, хотя некоторые тут попытались. Ну вот я тоже попробую. Цифровые сигналы (нули и единицы) специальным образом кодируются, шифруются и преобразовываются. Из набора цифр удаляется избыточная информация (например, много нулей или единиц подряд нет смысла передавать, можно передать только информацию о том, сколько их), потом они специальным образом перемешиваются и добавляется немного избыточной информации - это для возможности восстановления утерянных данных (ошибки при передаче неизбежны), далее они модулируются. В модуляторе определённому набору единиц и цифр присваивается определённое состояние радиоволны (чаще всего это состояние фазы и амплитуды). Чем меньшую последовательность цифр мы кодируем, тем больше помехозащищенность, но меньшее количество информации можно передать за единицу времени (то есть скорость передачи информации будет меньше). Далее сигнал переносится на нужную частоту и оправляется в эфир. На приёмнике происходит обратное преобразование. В реальности для разных протоколов передачи информации добавляются свои дополнительные заморочки: шифрование, защитное кодирование, нередко модулированный сигнал ещё раз перемодулируется (иерархические модуляции). И всё для того, чтобы повысить скорость и качество передачи информации. Чем больше заморочек, тем больше цена устройств, но, когда какой-то протокол передачи информации становится массовым и стандартным, цена на чипы начинает падать, и устройства дешевеют. Так вот Wi-max так толком и не запустили - никак не могли инженеры различных фирм договориться о стандартизации, а LTE быстренько пошёл в массы.
Отличие передачи цифровых сигналов от аналоговых также в том, что цифровые передаются пакетами. Это позволяет работать на одной частоте приёмнику и передатчику по-очереди, а также распределять сигнал между несколькими пользователями одновременно так, что они этого обычно и не замечают. Некоторые протоколы позволяют работать нескольким разным передатчикам на одной частоте, а методы модуляции "справляются" с большой зашумлённостью и с проблемами многолучевого приёма (это когда на приёмник попадает несколько переотражённых копий одной радиоволны, что особенно характерно для городов).
Аналоговые сигналы (изображение и звук) перед передачей по цифровым каналам связи предварительно оцифровываются, то есть переводятся в последовательность нулей и единиц, над которыми, кстати, тоже "издеваются": удаляют излишнюю информацию, кодируют от ошибок и т.д.
Цифровые методы передачи информации позволяют нам эффективнее и экономичнее использовать ограниченный природный ресурс - радиочастотный спектр (совокупность всех возможных радиоволн), но, знаете (всплакнём), если когда-либо инопланетяне обнаружат наши цифровые сигналы, то вряд ли они их раскодируют и поймут - очень уж всё "закручено". По этой же причине мы скорее всего не разберём их сигналы.

О основных принципах передачи тут рассказали (ЦАП, АЦП, кодирование, радиоволны, модуляция и прочие прибамбасы радиофизики и радиотехники), но почему возможна передача?
Если в целом понятно, как происходит передача информации по обычному проводу (допустим электрический сигнал через ЮЗБ кабель), то распространение радиоволн процесс во многом зависящий от многих параметров среды и конфигурации самой волны (частота/ длина волны).
К примеру передача информации в оптоволоконнных сетях возможна благодаря явлению полного внутреннего отражения света(свет, как мы знаем, частично волна).

Некоторый волны распространяются (скажем грубо) прямо от источника к приемнику. Это так называемая область прямой видимости. Тут припишем телевидение и упомянутую в вопросе мобильную связь. Ну и всеми любимый вайфай. Используемые в них радиоволны относятся к УКВ диапазону (ультракороткие волны), а следовательно к СВЧ (сверх высокие частоты).
От чего зависит возможность распространения этого диапазона? Опять же от наличия препятствий. Различные препятствия (стены, потолки, мебель, металлические двери и т.д.), расположенные между Wi-Fi и устройствами, могут частично или значительно отражать/поглощать радиосигналы, что приводит к частичной или полной потере сигнала.

В городах с многоэтажной застройкой основным препятствием для радиосигнала являются здания. Наличие капитальных стен (бетон+арматура), листового металла, штукатурки на стенах, стальных каркасов и т.п. влияет на качество радиосигнала и может значительно ухудшать работу Wi-Fi-устройств.

Из-за чего это происходит? Открываем школьный учебник физики и находим явление дифракции, основным условие которого является соизмеримость длины волны с размером препятствий. У того же 4g длина волны составляет 1 см до 10 см(а теперь давайте прикинем высоту и длину стен пятиэтажки). Поэтому вышки мобильной связи стараются располагать выше городских зданий для того, чтобы волны не только огибали препятствия (дифракция), но буквально падали нам на голову.

Но не забываем еще о мощности сигнала! У маломощного сигнала больше вероятность попасть в небытие, чем у мощного.



Рекомендуем почитать

Наверх