3d max изменение опорной точки модели. Создание объектов и работа с ними

Детские товары 21.10.2019
Детские товары

Некоторые соображения о том, в каких случаях имеет смысл применять кластеры высокой готовности для защиты приложений.

Одна из основных задач при эксплуатации ИТ-системы в каком-либо бизнесе состоит в том, чтобы обеспечить непрерывность предоставляемого сервиса. Однако очень часто и инженеры, и руководители ИТ-служб не совсем четко представляют себе, в чем же выражается «непрерывность» конкретно в их бизнесе. На взгляд автора, это связано с неоднозначностью и расплывчатостью самого понятия непрерывности, из-за чего не всегда можно четко сказать, какой период дискретизации считать непрерывным и какой интервал будет промежутком недоступности. Усугубляет ситуацию и множество технологий, призванных в конечном счете решать одну общую задачу, но разными способами.

Какую технологию стоит выбрать в каждом конкретном случае для решения поставленных задач в рамках имеющегося бюджета? В данной статье мы подробно рассмотрим один из наиболее популярных подходов к защите приложений, а именно внесение аппаратной и программной избыточности, т. е. построение кластера высокой готовности. Задача эта, несмотря на кажущуюся простоту реализации, на самом деле весьма сложна в тонкой настройке и эксплуатации. Помимо описания хорошо известных конфигураций мы постараемся показать, какие еще возможности — не слишком часто используемые - имеются в таких решениях, как устроены разные реализации кластеров. Кроме того, часто хотелось бы, чтобы заказчик, серьезно взвесив все преимущества кластерного подхода, все же имел в виду и его недостатки, а потому рассматривал бы весь спектр возможных решений.

Что угрожает приложениям...

По разным оценкам, 55-60% приложений критичны для бизнеса компании - это означает, что отсутствие сервиса, который предоставляют данные приложения, серьезно отразится на финансовом благополучии фирмы. В связи с этим понятие доступности становится фундаментальным аспектом в деятельности вычислительного центра. Давайте посмотрим, откуда же исходят угрозы доступности приложений.

Разрушение данных. Одна из основных проблем в доступности сервиса. Простейший способ защиты - делать частые «мгновенные снимки» данных с тем расчетом, чтобы в любой момент времени иметь возможность вернуться к целостной копии.

Аппаратная неисправность. Производители аппаратных комплексов (серверов, дисковых хранилищ) выпускают решения с избыточностью компонентов - процессорных плат, системных контроллеров, блоков питания и т. п. Тем не менее в отдельных случаях аппаратная неисправность может привести к недоступности приложений.

Ошибка в приложении. Ошибка программиста в уже протестированном и запущенном в производство приложении может проявиться в одном случае на десятки и даже сотни тысяч, но если все же такой инцидент имеет место, то он приводит к непосредственной потере прибыли организации, поскольку прекращается обработка транзакций, а способ устранения ошибки неочевиден и требует времени.

Человеческая ошибка. Простой пример: администратор вносит изменения в настройку конфигурационных файлов, к примеру, DNS. Когда он тестирует изменения, сервис DNS работает, а вот сервис, который использует DNS, например, электронная почта, начинает испытывать проблемы, которые выявляются не сразу.

Плановое обслуживание. Обслуживание системы - замена компонентов, установка пакетов обновлений, перезагрузка - составляет основную причину недоступности. По оценке Gartner, 80% времени, в течение которого система недоступна, - это плановые простои.

Общие проблемы на вычислительной площадке. Даже если организация делает все, чтобы защититься от локальных проблем, это не гарантирует доступности сервиса в том случае, если по каким-то причинам оказывается недоступна вся площадка. Это также необходимо учитывать при планировании системы.

...и как с этим бороться

В зависимости от критичности задачи можно использовать следующие механизмы восстановления работоспособности вычислительной системы.

Резервное копирование данных на ленточный или дисковый носитель. Это базовый уровень обеспечения доступности - самый простой, дешевый, но и самый медленный.

Локальное зеркалирование. Предоставляет доступность данных в реальном времени, данные защищены от разрушения.

Локальная кластеризация. Как только организована защита данных, следующий шаг в обеспечении доступности приложений - локальная кластеризация, т. е. создание избыточности в части как оборудования, так и ПО.

Удаленная репликация. Здесь предполагается разнесение вычислительных площадок с целью создания копии данных в разнесенных ЦОД.

Удаленная кластеризация. Поскольку обеспечена доступность данных на разных площадках, есть возможность также поддерживать доступность сервиса с разных площадок путем организации доступа приложений к этим данным.

Мы не будем здесь останавливаться на описании всех этих способов, поскольку каждый пункт вполне может стать темой отдельной статьи. Идея прозрачна - чем большую избыточность мы вносим, тем выше стоимость решения, но тем лучше защищены приложения. Для каждого из перечисленных выше способов имеется арсенал решений от разных производителей, но с типовым набором возможностей. Для проектировщика решения очень важно держать в уме все эти технологии, так как только грамотное их сочетание приведет к исчерпывающему решению поставленной заказчиком задачи.

На взгляд автора, для понимания стратегии восстановления сервиса весьма удачен подход компании Symantec (рис. 1). Здесь есть два ключевых момента - точка, в которую система восстанавливается (recovery point objective, RPO), и время, требуемое на восстановление сервиса (recovery time objective, RTO).

Выбор того или иного средства зависит от конкретных требований, которые предъявляются к критичному приложению или базе данных.

Для самых критичных систем RTO и RPO не должны превышать 1 ч. Системы на основе ленточного резервного копирования предоставляют точку восстановления в два или более дней. Кроме того, восстановление с ленты не автоматизировано, администратор должен постоянно помнить, все ли он должным образом восстановил и запустил.

Более того, как уже упоминалось, при планировании схемы доступности одного средства оказывается недостаточно. Например, вряд ли имеет смысл применять только систему репликаций. Несмотря на то, что критичные данные располагаются на удаленной площадке, приложения должны быть запущены в соответствующем порядке вручную. Таким образом, репликацию без автоматического запуска приложений можно рассматривать как разновидность дорогого резервного копирования.

Если требуется предоставить RTO и RTS, измеряемое минутами, т. е. задача требует минимизации простоев (как плановых, так и незапланированных), то единственно верное решение - кластер высокой готовности. В настоящей статье рассматриваются именно такие системы.

Ввиду того, что понятие «вычислительный кластер» с некоторых пор перегружено из-за большого их разнообразия, вначале скажем немного о том, какие бывают кластеры.

Типы кластеров

В простейшем представлении кластер - это система функционирующих совместно компьютеров для совместного решения задач. Это не клиент-серверная модель обработки данных, где приложение может быть логически разделено таким образом, что клиенты могут направлять запросы к разным серверам. Идея кластера заключается в объединении вычислительных ресурсов связанных узлов для создания избыточных ресурсов, обеспечивающих большую совместную вычислительную мощность, высокую степень доступности и масштабируемость. Таким образом, кластеры не просто обрабатывают запросы клиентов к серверам, а одновременно используют множество компьютеров, представляя их как единую систему и тем самым обеспечивая существенно большие вычислительные возможности.

Кластер компьютеров должен быть самоорганизующейся системой - работа, выполняемая на одном из узлов, должна быть скоординирована с работой на других узлах. Это ведет к сложности конфигурационных связей, непростым коммуникациям между узлами кластера, необходимости решения проблемы доступа к данным в общей файловой системе. Существуют также вопросы эксплуатации, связанные с функционированием потенциально большого количества компьютеров как единого ресурса.

Кластеры могут существовать в различных формах. К наиболее общим типам кластеров относятся системы повышенной производительности (high performance computing, HPC) и системы высокой доступности (high availability, HA).

Кластеры высокопроизводительных вычислений используют параллельные методы вычислений при участии как можно большей мощности процессоров для решения поставленной задачи. Существует много примеров таких решений в сфере научных вычислений, где множество процессоров с невысокой стоимостью используются параллельно для выполнения большого числа операций.

Однако тема данной статьи - системы высокой доступности. Поэтому далее, говоря о кластерах, мы будем иметь в виду именно такие системы.

Как правило, при построении кластеров высокой степени доступности для создания надежного окружения используется избыточность, т. е. создается вычислительная система, в которой выход из строя одного или более компонентов (аппаратуры, ПО или сетевых средств) не оказывает существенного влияния на доступность приложения или системы в целом.

В простейшем случае это два идентично сконфигурированных сервера с доступом к разделяемой системе хранения данных (рис. 2). В процессе нормального функционирования прикладное ПО выполняется на одной системе, в то время как вторая система находится в ожидании запуска приложений при выходе из строя первой системы. При обнаружении сбоя вторая система переключает на себя соответствующие ресурсы (файловую систему, сетевые адреса и т. д.). Этот процесс обычно называется восстановлением после отказа (failover). Вторая система полностью заменяет собой отказавшую, и пользователю совершенно необязательно знать, что его приложения выполняются на различных физических машинах. Это и есть наиболее распространенная двухузловая ассиметричная конфигурация, где один сервер активен, другой пассивен, т. е. находится в состоянии ожидания на случай неисправности основного. На практике именно эта схема работает в большинстве компаний.

Однако необходимо задаться вопросом: насколько приемлемо держать дополнительный комплект оборудования, который фактически находится в резерве и большую часть времени не используется? Проблема с незагруженным оборудованием решается путем изменения кластерной схемы и распределения ресурсов в ней.

Конфигурации кластеров

Кроме упомянутой выше двухузловой ассиметричной структуры кластера возможны варианты, которые у разных производителей кластерного ПО могут носить различные названия, но суть их одинакова.

Симметричный кластер

Симметричный кластер также выполнен на двух узлах, но на каждом их них работает активное приложение (рис. 3). Кластерное ПО обеспечивает корректный автоматический переход приложения с сервера на сервер при отказе одного из узлов. В этом случае загрузка оборудования оказывается более эффективной, но при возникновении неисправности получается, что на одном сервере работают приложения всей системы, что может иметь нежелательные последствия в плане производительности. Кроме того, необходимо учитывать, возможна ли работа нескольких приложений на одном сервере.

Конфигурация N+1

В эту конфигурацию уже входит более двух узлов, и среди них имеется один выделенный, резервный (рис. 4). Иначе говоря, на N работающих серверов приходится один, находящийся в горячем резерве. В случае неисправности приложение с проблемного узла «переедет» на выделенный свободный узел. В дальнейшем администратор кластера сможет заменить неисправный узел и назначить его резервным.

Разновидность N+1 - менее гибкая конфигурация N к 1, когда резервный узел всегда остается постоянным для всех рабочих узлов. В случае выхода из работы активного сервера сервис переключается на резервный, и система остается без резерва до тех пор, пока не будет активирован вышедший из строя узел.

Из всех конфигураций кластеров N+1, наверное, самая эффективная по соотношению сложности и эффективности использования оборудования. Приведенная ниже табл. 1 подтверждает эту оценку.

Конфигурация N к N

Это самая эффективная конфигурация по уровню использования вычислительных ресурсов (рис. 5). Все серверы в ней рабочие, на каждом из них работают приложения, входящие в кластерную систему. При возникновении неисправности на одном из узлов приложения перемещаются с него в соответствии с установленными политиками на оставшиеся серверы.

При проектировании такой системы необходимо учитывать совместимость приложений, их связи при «переезде» с узла на узел, загрузку серверов, пропускную способность сети и многое другое. Эта конфигурация наиболее сложна в проектировании и эксплуатации, но она обеспечивает максимальную отдачу от оборудования при использовании кластерного резервирования.

Оценка кластерных конфигураций

В табл. 1 суммируется сказанное выше о различных конфигурациях кластеров. Оценка дается по четырехбалльной шкале (4 - высший балл, 1 – низший).

Из табл. 1 видно, что наиболее проста в плане проектирования и эксплуатации классическая ассиметричная система. И если ее заказчик может эксплуатировать самостоятельно, то остальные было бы правильно передать на внешнее обслуживание.

В заключение разговора о конфигурациях хотелось бы сказать несколько слов о критериях, в соответствии с которыми ядро кластера может автоматически дать команду на «переезд» приложения с узла на узел. Подавляющее число администраторов в конфигурационных файлах определяют лишь один критерий - недоступность какой-либо составляющей узла, т. е. программно-аппаратная ошибка.

Между тем современное кластерное ПО предоставляет возможность балансировки нагрузки. Если нагрузка на одном из узлов достигает критического значения, при правильно настроенной политике приложение на нем корректно погасится и запустится на другом узле, где текущая загрузка позволяет это сделать. Причем средства контроля загрузки сервера могут быть как статическими - приложение в конфигурационном файле кластера само указывает, сколько ресурсов ему потребуется, - так и динамическими, когда средство балансировки нагрузки интегрируется с внешней утилитой (например, Precise), которая вычисляет текущую загрузку системы.

Теперь, чтобы понять, как работают кластеры в конкретных реализациях, рассмотрим основные составляющие любой системы высокой доступности.

Основные компоненты кластера

Как любой сложный комплекс, кластер независимо от конкретной реализации состоит из аппаратной и программной составляющих.

Что касается аппаратуры, на которой собирается кластер, основная составляющая здесь - межузловое соединение или внутренний кластерный интерконнект, обеспечивающий физическую и логическую связь серверов. На практике это внутренняя сеть Ethernet с продублированными соединениями. Ее назначение - во первых, передача пакетов, подтверждающих целостность системы (так называемых heartbeat), а во-вторых, при определенном дизайне или схеме, возникшей после возникновения неисправности, - обмен между узлами информационным трафиком, предназначенным для передачи вовне. Другие компоненты очевидны: узлы, на которых запущена ОС с кластерным ПО, дисковые хранилища, к которым имеют доступ узлы кластера. И наконец, общая сеть, через которую идет взаимодействие кластера с внешним миром.

Программные компоненты обеспечивают управление работой кластерного приложения. Прежде всего это общая ОС (необязательно общая версия). В среде этой ОС работает ядро кластера - кластерное ПО. Те приложения, которые кластеризуются, т. е. могут мигрировать с узла на узел, управляются - запускаются, останавливаются, тестируются - небольшими скриптами, так называемыми агентами. Для большинства задач имеются стандартные агенты, однако на стадии проектирования обязательно необходимо проверить по матрице совместимости, есть ли агенты для конкретных приложений.

Реализации кластеров

На рынке ПО существует много реализаций описанных выше кластерных конфигураций. Практически все крупнейшие производители серверов и ПО - например, Microsoft, HP, IBM, Sun, Symantec - предлагают свои продукты в этой области. Компания «Микротест» имеет опыт работы с решениями Sun Cluster Server (SC) от Sun Microsystems (www.sun.com) и Veritas Cluster Server (VCS) от Symantec (www.symantec.com). С точки зрения администратора по функционалу эти продукты очень похожи - предоставляют одинаковые возможности настройки и реакций на события. Однако по своей внутренней организации это совершенно разные продукты.

SC разработан Sun для собственной ОС Solaris и потому работает только в среде этой ОС (как на платформе SPARC, так и на x86). Как следствие SC при инсталляции глубоко интегрируется с ОС и становится ее частью, частью ядра Solaris.

VCS - продукт многоплатформенный, работает практически со всеми популярными ныне ОС - AIX, HP-UX, Solaris, Windows, Linux, и представляет собой надстройку - приложение, которое управляет работой других приложений, подлежащих кластеризации.

Мы рассмотрим внутреннюю реализацию этих двух систем - SC и VCS. Но еще раз подчеркнем, что несмотря на различие в терминологии и совершенно разное внутреннее устройство основные компоненты обеих систем, с которыми взаимодействует администратор, по сути своей одинаковы.

Программные компоненты Sun Cluster Server

В качестве ядра SC (рис. 6) выступает ОС Solaris 10 (или 9) с надстроенной оболочкой, обеспечивающей функцию высокой доступности (ядро выделено зеленым цветом). Далее идут глобальные компоненты (светло-зеленого цвета), которые предоставляют свои службы, полученные от кластерного ядра. И наконец, на самом верху - пользовательские компоненты.

HA framework - это компонент, расширяющий ядро Solaris для предоставления кластерных служб. Задача framework начинается с инициализации кода, загружающего узел в кластерный режим. Основные задачи framework - межузловое взаимодействие, управление состоянием кластера и членством в нем.

Модуль межузлового взаимодействия передает сообщения heartbeating между узлами. Это короткие сообщения, подтверждающие отклик соседнего узла. Взаимодействием данных и приложений также управляет HA framework как частью межузлового взаимодействия. Кроме того, framework управляет целостностью кластерной конфигурации и при необходимости выполняет задачи восстановления и обновления. Целостность поддерживается через кворум-устройство; при необходимости выполняется реконфигурация. Кворум-устройство - это дополнительный механизм проверки целостности узлов кластера через небольшие участки общей файловой системы. В последней версии кластера SC 3.2 появилась возможность назначать кворум-устройство вне кластерной системы, т. е. использовать дополнительный сервер на платформе Solaris, доступный по TCP/IP. Неисправные члены кластера выводятся из конфигурации. Элемент, который вновь оказывается работоспособен, автоматически включается в конфигурацию.

Функции глобальных компонентов вытекают из HA framework. Сюда относятся:

  • глобальные устройства с общим пространством имен устройств кластера;
  • глобальная файловая служба, организующая доступ к каждому файлу системы для каждого узла так, как будто он находится в своей локальной файловой системе;
  • глобальная сетевая служба, предоставляющая балансировку нагрузки и возможность получать доступ к кластерным службам через единый IP.

Пользовательские компоненты управляют кластерной средой на верхнем уровне прикладного интерфейса. Есть возможность вести администрирование как через графический интерфейс, так и через командную строку. Модули, которые отслеживают работу приложений, запускают и останавливают их, называются агентами. Существует библиотека готовых агентов для стандартных приложений; с каждым релизом этот список пополняется.

Программные компоненты Veritas Cluster Server

Схематически двухузловой VCS-кластер представлен на рис. 7. Межузловое взаимодействие в VCS основано на двух протоколах - LLT и GAB. Для поддержки целостности кластера VCS использует внутреннюю сеть.

LLT (Low Latency Transport) - это разработанный Veritas протокол, функционирующий поверх Ethernet как высокоэффективная замена IP-стека и используемый узлами во всех внутренних взаимодействиях. Для требуемой избыточности в межузловых коммуникациях требуется как минимум две полностью независимые внутренние сети. Это необходимо, чтобы VSC мог различить сетевую и системную неисправность.

Протокол LLT выполняет две основные функции: распределение трафика и отправку heartbeating. LLT распределяет (балансирует) межузловое взаимодействие между всеми доступными внутренними связями. Такая схема гарантирует, что весь внутренний трафик случайно распределен между внутренними сетями (их может быть максимум восемь), что повышает производительность и устойчивость к отказу. В случае неисправности одного линка данные будут перенаправлены на оставшиеся другие. Кроме того, LLT отвечает за отправку через сеть heartbeat-трафика, который используется GAB.

GAB (Group Membership Services/Atomic Broadcast) - это второй протокол, используемый в VCS для внутреннего взаимодействия. Он, как и LLT, ответственен за две задачи. Первая - это членство узлов в кластере. GAB получает через LLT heartbeat от каждого узла. Если система долго не получает отклика от узла, то она маркирует его состояние как DOWN - нерабочий.

Вторая функция GAB - обеспечение надежного межкластерного взаимодействия. GAB предоставляет гарантированную доставку бродкастов и сообщений «точка-точка» между всеми узлами.

Управляющая составляющая VCS - VCS engine, или HAD (High Availability daemon), работающая на каждой системе. Она отвечает за:

  • построение рабочих конфигураций, получаемых из конфигурационных файлов;
  • распределение информации между новыми узлами, присоединяемыми к кластеру;
  • обработку ввода от администратора (оператора) кластера;
  • выполнение штатных действий в случае сбоя.

HAD использует агенты для мониторинга и управления ресурсами. Информация о состоянии ресурсов собирается от агентов на локальных системах и передается всем членам кластера. HAD каждого узла получает информацию от других узлов, обновляя свою собственную картину всей системы. HAD действует как машина репликации состояния (replicated state machine RSM), т. е. ядро на каждом узле имеет полностью синхронизированную со всеми остальными узлами картину состояния ресурсов.

Кластер VSC управляется либо через Java-консоль, либо через Web.

Что лучше

Вопрос о том, когда какой кластер лучше использовать, мы уже обсуждали выше. Еще раз подчеркнем, что продукт SC написан Sun под собственную ОС и глубоко с ней интегрирован. VCS - продукт многоплатформенный, а следовательно, более гибкий. В табл. 2 сопоставлены некоторые возможности этих двух решений.

В заключение хотелось бы привести еще один аргумент в пользу применения SC в среде Solaris. Используя и оборудование, и ПО от единого производителя - Sun Microsystems, заказчик получает сервис в «едином окне» на все решение. Несмотря на то что вендоры сейчас создают общие центры компетенции, время на трансляцию запросов между производителями ПО и оборудования снизит скорость отклика на инцидент, что не всегда устраивает пользователя системы.

Территориально распределенный кластер

Мы рассмотрели, как строится и работает кластер высокой доступности в рамках одной площадки. Такая архитектура способна защитить только от локальных проблем в рамках одного узла и связанных с ним данных. В случае проблем, затрагивающих всю площадку, будь то технические, природные или еще какие-то, вся система окажется недоступной. Сегодня все чаще возникают задачи, критичность которых требует обеспечить миграцию служб не только внутри площадки, но и между территориально разнесенными ЦОД. При проектировании таких решений приходится учитывать новые факторы - расстояние между площадками, пропускную способность каналов и т. д. Какую репликацию предпочесть - синхронную или асинхронную, хостовую или средствами массивов, какие протоколы использовать? От решения этих вопросов может зависеть успех проекта.

Репликация данных с основной площадки на резервную чаще всего выполняется при помощи одного из популярных пакетов: Veritas Volume Replicator, EMC SRDF, Hitachi TrueCopy, Sun StorageTek Availability Suite.

При неисправности оборудования или проблеме с приложением или базой данных кластерное ПО вначале попытается перевести прикладной сервис на другой узел основной площадки. Если основная площадка по какой либо причине оказывается недоступной для внешнего мира, все службы, включая DNS, мигрируют на резервную площадку, где благодаря репликации уже присутствуют данные. Таким образом, для пользователей сервис возобновляется.

Недостаток такого подхода - огромная стоимость развертывания дополнительной «горячей» площадки с оборудованием и сетевой инфраструктурой. Однако преимущество полной защиты может перевесить эти дополнительные расходы. Если центральный узел в течение длительного времени не в состоянии предоставлять сервис, это может привести к крупным потерям и даже к гибели бизнеса.

Испытание системы до катастрофы

Согласно результатам проведенного компанией Symantec исследования, испытание плана аварийного восстановления проводит только 28% компаний. К сожалению, большинство заказчиков, с которыми автору приходилось беседовать по этому вопросу, вообще не имели такого плана. Причины, по которым не проводится тестирование, - отсутствие времени у администраторов, нежелание делать это на «живой» системе и отсутствие тестового оборудования.

Для испытаний можно привлечь симулятор, входящий в пакет VSC. Пользователи, выбравшие в качестве кластерного ПО VCS, могут провести испытания своих настроек на Cluster Server Simulator, который позволит на ПК проверить стратегию миграции приложений между узлами.

Заключение

Задача предоставления сервиса с высоким уровнем доступности весьма затратна как по стоимости оборудования и ПО, так и по стоимости дальнейшего обслуживания и технической поддержки системы. Несмотря на кажущуюся простоту теории и несложную инсталляцию, кластерная система при углубленном ее изучении оказывается сложным и дорогим решением. В данной статье техническая сторона работы системы рассматривалась только в общих чертах, между тем по отдельным вопросам работы кластера, например, определения членства в нем, можно было бы написать отдельную статью.

Кластеры обычно строятся для задач, критичных для бизнеса, где единица простоя выливается в большие потери, например, для биллинговых систем. Можно было бы рекомендовать следующее правило, определяющее, где разумно использовать кластеры: там, где время простоя сервиса не должно превышать полутора часов, кластер - подходящее решение. В остальных случаях можно рассмотреть менее дорогие варианты.


кафедра 29 "Управляющие Интеллектуальные Системы"

Реферат на тему:

Кластерные системы

Выполнил:

студент группы К9-292

Попов И.А

МОСКВА 2001

1. Введение

2. Основные классы современных параллельных компьютеров

3. Кластерная архитектура параллельных компьютеров

4. Цели создания кластерных систем

5. Отказоустойчивые кластеры

6. Высокопроизводительные кластеры

7. Проект Beowulf

8. Заключение

9. Литература

Введение

Развитие многопроцессорных вычислительных систем

Развитие традиционных архитектур построения вычислительных систем, таких как SMP, MPP, векторных параллельных систем идет достаточно быстрыми темпами. Повышается производительность, растет надежность и отказоустойчивость. Однако у этих архитектур есть один недостаток - стоимость создаваемых систем, подчас недоступная для многих пользователей таких систем - образовательных и научно-исследовательских организаций. Она оказывает очень высокой из-за усложнения аппаратных и программных составляющих системы, которые требуются для обеспечения таких темпов роста производиельности. Однако потребность в вычислительных ресурсах в настоящее время очень высока во многих сферах научной и практической деятельности и для ее обеспечения не хватает ресурсов традиционных суперкомпьютерных систем.

Кластерные системы возникли как более дешевое решение проблемы недостатка вычислительных ресурсов, и основываются на использовании в своей архитектуре широко распространенных и относительно дешевых технологий, аппаратных и программных средств, таких как PC, Ethernet, Linux и т.д. Использование массовых технологии в кластерных системах стало возможным благодаря значительному прогрессу в развитии компонентов обычных вычислительных систем, таких как центральные процессоры, операционные системы, коммуникационные среды.

Так как кластерные системы архитектурно являются развитием систем с массовым параллелизмом MPP, то главную роль в их развитии является прогресс в области сетевых технологий. К настоящему времени появились недорогие, но эффективные коммуникационные решения. Это и предопределило быстрое появление и развитие кластерных вычислительных систем. Также прогрессу развития кластерных систем способствовали и другие факторы.

Производительность персональных компьютеров на базе процессоров Intel в последние годы также значительно выросла. Такие компьютеры стали создавать серьезную конкуренцию рабочим станциям на базе более дорогих и мощных RISC процессоров. Одновременно стала приобретать все большую популярность ОС Linux - бесплатно распространяемая версия UNIX. При этом в научных организациях и университетах, где и разрабатывается большинство кластерных систем, как правило, имеются специалисты по ОС Linux.

Высокую степень развития кластерных систем на сегоднящний день показывает тот факт, что в списке самых мощных суперкомпьютеров мира Top500 – числится 11 кластерных установок.


Основные классы современных параллельных компьютеров

Кластерные системы являются развитием параллельных систем. Чтобы проказать место кластерных систем среди остальных типов параллельных архитектур вычислительных систем нужно привести их классификацию. Параллельные системы могут быть класифицированы по различным критериям.

С аппаратной точки зрения, основным параметром классификации паралелльных компьютеров является наличие общей (SMP) или распределенной памяти (MPP). Нечто среднее между SMP и MPP представляют собой NUMA-архитектуры, где память физически распределена, но логически общедоступна.

Симметричные мультипроцессорные системы

SMP система состоит из нескольких однородных процессоров и массива общей памяти. Один из часто используемых в SMP архитектурах подходов для формирования масштабируемой, общедоступной системы памяти, состоит в однородной организации доступа к памяти посредством организации масштабируемого канала память-процессоры:

Каждая операция доступа к памяти интерпретируется как транзакция по шине процессоры-память. Когерентность кэшей поддерживается аппаратными средствами.

В SMP каждый процессор имеет по крайней мере одну собственную кэш-память (а возможно, и несколько).

Можно сказать, что SMP система - это один компьютер с несколькими равноправными процессорами. Все остальное - в одном экземпляре: одна память, одна подсистема ввода/вывода, одна операционная система. Слово "равноправный" означает, что каждый процессор может делать все, что любой другой. Каждый процессор имеет доступ ко всей памяти, может выполнять любую операцию ввода/вывода, прерывать другие процессоры и т.д.

Недостатком данной архитектуры является необходимость организации канала процессоры-память с очень высокой пропускной способностью.

Массивно-параллельные системы

Массивно-параллельная система MPP состоит из однородных вычислительных узлов, включающих в себя:

  • один или несколько центральных процессоров (обычно RISC)
  • локальную память (прямой доступ к памяти других узлов невозможен)
  • коммуникационный процессор или сетевой адаптер
  • жесткие диски и/или другие устройства В/В

К системе могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Узлы связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т.п.)

Системы с неоднородным доступом к памяти NUMA

NUMA (nonuniform memory access) в отличие от привычной SMP архитектуры с разделяемой памятью представляет собой несколько отдельных процессоров, каждый из которых, кроме собственного кэша, обладает также локальной памятью:

В подобной архитектуре процессор и модули памяти тесно интегрированы, следовательно, скорость доступа к локальной памяти гораздо выше, чем к памяти “соседнего” процессора. Подсистемы ввода-вывода могут быть частью каждого узла или консолидированы на выделенных узлах ввода-вывода. Если во всей системе поддерживается когерентность кэшей, то такую архитектуру называют cc-NUMA.

Проще всего охарактеризовать NUMA-систему, представив себе большую систему SMP, разделенную на несколько частей, эти части связаны коммуникационной магистралью, подключенной к системным шинам, и каждая часть включает собственную основную память и подсистему ввода/вывода. Это и есть NUMA: большая SMP, разбитая на набор более мелких и простых SMP. Основной проблемой NUMA является обеспечение когерентности кэшей. Аппаратура позволяет работать со всеми отдельными устройствами основной памяти составных частей системы (называемых обычно узлами) как с единой гигантской памятью.

Кластерная архитектура

Рассмотрим место кластерной архитектуры вычислительных систем в данной классификации.

Кластер - это связанный набор полноценных компьютеров, используемый в качестве единого ресурса. Под понятием "полноценный компьютер" понимается завершенная компьютерная система, обладающая всем, что требуется для ее функционирования, включая процессоры, память, подсистему ввода/вывода, а также операционную систему, подсистемы, приложения и т.д. Обычно для этого годятся персональные компьютеры или параллельные системы, которые могут обладать архитектурой SMP и даже NUMA. Кластеры являются слабосвязанными системами, связи узлов используется одна из стандартных сетевых технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Поэтому они являются более дешевой в построении модификацией MPP архитектуры.

Кластерная архитектура параллельных компьютеров

Общие принципы

Как уже было сказано раньше вычислительный кластер - это совокупность компьютеров, объединенных в рамках некоторой сети для решения одной задачи (рис.3), которая для пользователя представляется в качестве единого ресурса. Такую концепцию кластера впервые предложила и реализовала в начале 80-х корпорация Digital Equipment, которая и по сей день развивает эту технологию

Понятие "единый ресурс" означает наличие программного обеспечения, дающего возможность пользователям, администраторам и прикладным программам считать, что имеется только одна сущность, с которой они работают - кластер. Например, система пакетной обработки кластера позволяет послать задание на обработку кластеру, а не какому-нибудь отдельному компьютеру. Более сложным примером являются системы баз данных. Практически у всех производителей систем баз данных имеются версии, работающие в параллельном режиме на нескольких машинах кластера. В результате приложения, использующие базу данных, не должны заботиться о том, где выполняется их работа. СУБД отвечает за синхронизацию параллельно выполняемых действий и поддержание целостности базы данных.

Компьютеры, образующие кластер, - так называемые узлы кластера - всегда относительно независимы, что допускает остановку или выключение любого из них для проведения профилактических работ или установки дополнительного оборудования без нарушения работоспособности всего кластера.

В качестве вычислительных узлов в кластере обычно используются однопроцессорные персональные компьютеры, двух- или четырехпроцессорные SMP-серверы. Каждый узел работает под управлением своей копии операционной системы, в качестве которой чаще всего используются стандартные операционные системы: Linux, NT, Solaris и т.п. Состав и мощность узлов может меняться даже в рамках одного кластера, давая возможность создавать неоднородные системы. Выбор конкретной коммуникационной среды определяется многими факторами: особенностями класса решаемых задач, необходимостью последующего расширения кластера и т.п. Возможно включение в конфигурацию специализированных компьютеров, например, файл-сервера, и, как правило, предоставлена возможность удаленного доступа на кластер через Internet.

Из определения архитектуры кластерных систем следует, что она включает в себя очень широкий спектр систем. Рассматривая крайние точки, кластером можно считать как пару ПК, связанных локальной 10-мегабитной сетью Ethernet, так и вычислительную систему, создаваемую в рамках проекта Cplant в Национальной лаборатории Sandia: 1400 рабочих станций на базе процессоров Alpha, связанных высокоскоростной сетью Myrinet.

Таким образом видно, что различных вариантов построения кластеров очень много. При этом в архитектуре кластера большое значение имеют используемые коммуникационные технологии и стандарты. Они во многом определяют круг задач, для решения которых можно использовать кластеры, построенные на основе этих технологий.

Коммуникационные технологии построения кластеров

Кластеры могут стоится как на основе специализированных высокоскоростных шин передачи данных, так и на основе массовых сетевых технологий. Среди массовых коммуникационных стандартов сейчас чаще всего используется сеть Ethernet или более ее производительный вариант - Fast Ethernet, как правило, на базе коммутаторов. Однако большие накладные расходы на передачу сообщений в рамках Fast Ethernet приводят к серьезным ограничениям на спектр задач, которые можно эффективно решать на таком кластере. Если от кластера требуется большая производительность и универсальность, то необходимо применять более скоростные и специализированные технологии. К ним относятся SCI, Myrinet, cLAN, ServerNet и др. Сравнительная характеристика параметров этих технологий приведена в
таблице 1.

ServerNet

Fast Ethernet

Латентность (MPI)

Пропускная способность(MPI)

180 Мбайт/c

Пропускная способность (аппаратная)

400 Мбайт/c

160 Мбайт/c

150 Мбайт/c

12,5 Мбайт/c

Реализация MPI

HPVM, MPICH-GM и др.

Таблица 1.

Производительность коммуникационных сетей в кластерных системах определяется несколькими числовыми характеристиками. Основных характеристик две: латентность – время начальной задержки при посылке сообщений и пропускная способность сети, определяющая скорость передачи информации по каналам связи. При этом важны не столько пиковые характеристики, заявленные в стандарте, сколько реальные, достигаемые на уровне пользовательских приложений, например, на уровне MPI-приложений. В частности, после вызова пользователем функции посылки сообщения Send() сообщение последовательно пройдет через целый набор слоев, определяемых особенностями организации программного обеспечения и аппаратуры, прежде, чем покинуть процессор – поэтому существует существенный разбром по стандартам значений латентности. Наличие латентности приводит к тому, что максимальная скорость передачи по сети не может быть достигнута на сообщениях с небольшой длиной.

Скорость передачи данных по сети в рамках технологий Fast Ethernet и Scalable Coherent Interface (SCI) зависит от длины сообщения. Для Fast Ethernet характерна большая величина латентности – 160-180 мкс, в то время как латентность для SCI это величина около 5,6 мкс. Максимальная скорость передачи для этих же технологий 10 Мбайт/c и 80 Мбайт/с соответственно.

Цели создания кластерных систем

Разработчики архитектур кластерных систем приследовали различные цели при их создании. Первой была фирма Digital Equipment с кластерами VAX/VMS. Целью создания этой машины было повышение надежности работы системы, обеспечение высокой готовности и отказоустойчивости системы. В настоящее время существует множество аналогичных по архитектуре систем от других производителей.

Другой целью создания кластерных систем является создание дешевых высокопроизводительных параллельных вычислительных систем. Один из первых проектов, давший имя целому классу параллельных систем – кластер Beowulf – возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf начался летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Эта система оказалась очень удачной по отношению цена/производительность, поэтому такую архитектуру стали развивать и широко использовать в других научных организациях и институтах.

Для каждого класса кластеров характерны свои особенности архитекуры и применяемые аппаратные средства. Рассмотрим их более подробно.

Отказоустойчивые кластеры

Принципы построения

Для обеспечения надежности и отказоустойчивости вычислительных систем применяется множество различных аппаратурных и программных решений. Например, в системе может дублироваться все подверженные отказам элементы - источники питания, процессоры, оперативная и внешняя память. Такие отказоустойчивые системы с резервированием компонентов применяются для решения задач, в которых недостаточно надежности обычных вычислительных систем, оцениваемой в настоящий момент вероятностью безотказной работы 99%. В таких задачах требуется вероятность 99,999% и выше. Такую надежность можно достичь применяя отличные от приведенного выше методы повышения отказоустойчивости. В зависимости от уровня готовности вычислительной системы к использованию выделяют четыре типа надежности:

Уровень готовности, %

Мaкс. время простоя

Тип системы

3,5 дня в год

Обычная (Conventional)

8,5 часов в год

Высокая надежность (High Availability)

1 час в год

Отказоустойчивая (Fault Resilient)

5 минут в год

Безотказная (Fault Tolerant)

Таблица 2.

В отличие от отказоустойчивых систем с избыточными компонентами, а также различных вариантов многопроцессорности, кластеры объединяют относительно независимые друг от друга машины, каждую из которых можно остановить для профилактики или реконфигурирования, не нарушая при этом работоспособности кластера в целом. Высокая производительность кластера и сведение к минимуму времени простоев приложений достигается благодаря тому, что:

  • в случае сбоя ПО на одном из узлов приложение продолжает функционировать или автоматически перезапускается на других узлах кластера;
  • выход из строя одного из узлов (или нескольких) не приведет к краху всей кластерной системы;
  • профилактические и ремонтные работы, реконфигурацию или смену версий программного обеспечения, как правило, можно осуществлять в узлах кластера поочередно, не прерывая работы других узлов.

Неотъемлемой частью кластера является специальное программное обеспечение, которое, собственно, и решает проблему восстановления узла в случае сбоя, а также решает другие задачи. Кластерное ПО обычно имеет несколько заранее заданных сценариев восстановления работоспособности системы, а также может предоставлять администратору возможности настройки таких сценариев. Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов - приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Кластеры могут иметь разделяемую память на внешних дисках, как правило, на дисковом массиве RAID. Дисковый массив RAID - это серверная подсистема ввода- вывода для хранения данных большого объема. В массивах RAID значительное число дисков относительно малой емкости используется для хранения крупных объемов данных, а также для обеспечения более высокой надежности и избыточности. Подобный массив воспринимается компьютером как единое логическое устройство.

Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов - приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Узлы кластера контролируют работоспособность друг друга и обмениваются специфической «кластерной» информацией, например, о конфигурации кластера, а также передавать данные между разделяемыми накопителями и координировать их использование. Контроль работоспособности осуществляется с помощью специального сигнала, который узлы кластера передают друг другу, для того чтобы подтвердить свое нормальное функционирование. Прекращение подачи сигналов с одного из узлов сигнализирует кластерному программному обеспечению о произошедшем сбое и необходимости перераспределить нагрузку на оставшиеся узлы. В качестве примера рассмотрим отказоустойчивый кластер VAX/VMS.

Кластера VAX/VMS

Компания DEC первой анонсировала концепцию кластерной системы в 1983 году, определив ее как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации. По существу VAX-кластер представляет собой слабосвязанную многомашинную систему с общей внешней памятью, обеспечивающую единый механизм управления и администрирования.

VAX-кластер обладает следующими свойствами:

Разделение ресурсов. Компьютеры VAX в кластере могут разделять доступ к общим ленточным и дисковым накопителям. Все компьютеры VAX в кластере могут обращаться к отдельным файлам данных как к локальным.

Высокая готовность. Если происходит отказ одного из VAX-компьютеров, задания его пользователей автоматически могут быть перенесены на другой компьютер кластера. Если в системе имеется несколько контроллеров HSC и один из них отказывает, другие контроллеры HSC автоматически подхватывают его работу.

Высокая пропускная способность . Ряд прикладных систем могут пользоваться возможностью параллельного выполнения заданий на нескольких компьютерах кластера.

Удобство обслуживания системы . Общие базы данных могут обслуживаться с единственного места. Прикладные программы могут инсталлироваться только однажды на общих дисках кластера и разделяться между всеми компьютерами кластера.

Расширяемость . Увеличение вычислительной мощности кластера достигается подключением к нему дополнительных VAX-компьютеров. Дополнительные накопители на магнитных дисках и магнитных лентах становятся доступными для всех компьютеров, входящих в кластер.

Работа VAX-кластера определяется двумя главными компонентами. Первым компонентом является высокоскоростной механизм связи, а вторым - системное программное обеспечение, которое обеспечивает клиентам прозрачный доступ к системному сервису. Физически связи внутри кластера реализуются с помощью трех различных шинных технологий с различными характеристиками производительности.

Основные методы связи в VAX-кластере представлены на рис. 4.

Рис. 4 VAX/VMS-кластер

Шина связи компьютеров CI (Computer Interconnect) работает со скоростью 70 Мбит/с и используется для соединения компьютеров VAX и контроллеров HSC с помощью коммутатора Star Coupler. Каждая связь CI имеет двойные избыточные линии, две для передачи и две для приема, используя базовую технологию CSMA, которая для устранения коллизий использует специфические для данного узла задержки. Максимальная длина связи CI составляет 45 метров. Звездообразный коммутатор Star Coupler может поддерживать подключение до 32 шин CI, каждая из которых предназначена для подсоединения компьютера VAX или контроллера HSC. Контроллер HSC представляет собой интеллектуальное устройство, которое управляет работой дисковых и ленточных накопителей.

Компьютеры VAX могут объединяться в кластер также посредством локальной сети

Ethernet, используя NI - Network Interconnect (так называемые локальные VAX-кластеры), однако производительность таких систем сравнительно низкая из-за необходимости делить пропускную способность сети Ethernet между компьютерами кластера и другими клиентами сети.

Также кластера могут стоиться на основе шины DSSI (Digital Storage System Interconnect). На шине DSSI могут объединяться до четырех компьютеров VAX нижнего и среднего класса. Каждый компьютер может поддерживать несколько адаптеров DSSI. Отдельная шина DSSI работает со скоростью 4 Мбайт/с (32 Мбит/с) и допускает подсоединение до 8 устройств. Поддерживаются следующие типы устройств: системный адаптер DSSI, дисковый контроллер серии RF и ленточный контроллер серии TF. DSSI ограничивает расстояние между узлами в кластере 25 метрами.

Системное программное обеспечение VAX-кластеров

Для гарантии правильного взаимодействия процессоров друг с другом при обращениях к общим ресурсам, таким, например, как диски, компания DEC использует распределенный менеджер блокировок DLM (Distributed Lock Manager). Очень важной функцией DLM является обеспечение когерентного состояния дисковых кэшей для операций ввода/вывода операционной системы и прикладных программ. Например, в приложениях реляционных СУБД DLM несет ответственность за поддержание согласованного состояния между буферами базы данных на различных компьютерах кластера.

Задача поддержания когерентности кэш-памяти ввода/вывода между процессорами в кластере подобна задаче поддержания когерентности кэш-памяти в сильно связанной многопроцессорной системе, построенной на базе некоторой шины. Блоки данных могут одновременно появляться в нескольких кэшах и если один процессор модифицирует одну из этих копий, другие существующие копии не отражают уже текущее состояние блока данных. Концепция захвата блока (владения блоком) является одним из способов управления такими ситуациями. Прежде чем блок может быть модифицирован должно быть обеспечено владение блоком.

Работа с DLM связана со значительными накладными расходами. Накладные расходы в среде VAX/VMS могут быть большими, требующими передачи до шести сообщений по шине CI для одной операции ввода/вывода. Накладные расходы могут достигать величины 20% для каждого процессора в кластере.

Высокопроизводительные кластеры

Принципы построения

Архитектура высокопроизводительных кластеров появилась как развитие принципов построения систем MPP на менее производительных и массовых компонентах, управляемых операционной ситемой общего назначения. Кластеры также как и MPP системы состоят из слабосвязанных узлов, которые могут быть как однородными, так и, в отличие от MPP, различными или гетерогенными. Особое внимание при проектировании высокопроизводительной кластерной архутектуры уделяется обеспечению высокой эффективности коммуникационной шины, связывающей узлы кластера. Так как в кластерах нередко применяются массовые относительно низкопроизводительные шины, то приходится принимать ряд мер по исключению их низкой пропускной способности на производительность кластеров и организацию эффективного распараллеливания в кластере. Так например пропускная способность одной из самых высокоскоростных технологий Fast Ethernet на порядки ниже, чем у межсоединений в современных суперкомпьютерах МРР-архитектуры.

Для решения проблем низкой производительности сети применяют несколько методов:

Кластер разделяется на несколько сегментов, в пределах которых узлы соединены высокопроизводительной шиной типа Myrinet, а связь между узлами разных сегментов осуществляется низкопроизводительными сетями типа Ethernet/Fast Ethernet. Это позволяет вместе с сокращением расходов на коммуникационную среду существенно повысить производительность таких кластеров при решении задач с интенсивным обменом данными между процессами.

Применение так называемого «транкинга», т.е. объединение нескольких каналов Fast Ethernet в один общий скоростной канал, соединяющий несколько коммутаторов. Очевидным недостатком такого подхода является «потеря» части портов, задействованных в межсоединении коммутаторов.

Для повышения производительности создаются специальные протоколы обмена информацией по таким сетям, которые позволяют более эффективно использовать пропускную способность каналов и снимают некоторые ограничения накладываемые стандартными протоколами (TCP/IP,IPX). Такой метод часто используют в ситемах класса Beowulf.

Основным качеством, которым должен обладать высокопроизводительный кластер являтся горизонтальная масштабируемость, так как одним из главных преимуществ, которые предоставляет кластерная архитектура является возможность наращивать мощность существующей системы за счет простого добавления новых узлов в систему. Причем увеличение мощности происходит практически пропорционально мощности добавленных ресурсов и может производиться без остановки системы во время ее функционирования. В системах с другой архитектурой (в частности MPP) обычно возможна только вертикальная масштабируемость: добавление памяти, увеличение числа процессоров в многопроцессорных системах или добавление новых адаптеров или дисков. Оно позволяет временно улучшить производительность системы. Однако в системе будет установлено максимальное поддерживаемое количество памяти, процессоров или дисков, системные ресурсы будут исчерпаны, и для увеличеия производительности придется создавать новую систему или существенно перерабатывать старую. Кластерная система также допускает вертикальную масштабируемость. Таким образом, за счет вертикального и горизонтального масштабирования кластерная модель обеспечивает большую гибкость и простоту увеличения производительности систем.

Проект Beowulf

Beowulf - это скандинавский эпос, повествующий о событиях VII - первой трети VIII века, участником которых является одноименный герой, прославивший себя в сражениях.

Одним из примеров реализации кластерной системы такой структуры являются кластеры Beowulf. Проект Beowulf объединил около полутора десятков организаций (главным образом университетов) в Соединенных Штатах. Ведущие разработчики проекта - специалисты агентства NASA. В данном виде кластеров можно выделить следующие основные особенности:

Кластер Beowulf состоит из нескольких отдельных узлов, объединенных в общую сеть, общие ресурсы узлами кластера не используются;

Оптимальным считается построение кластеров на базе двухпроцессорных SMP систем;

Для уменьшения накладных расходов на взаимодействие между узлами применяют полнодуплексный 100 MB Fast Ethernet (реже используют SCI), создают несколько сетевых сегментов или соединяют узлы кластера через коммутатор;

В качестве программного обеспечения применяют ОС Linux, и бесплатно распространяемые коммуникационные библиотеки (PVM и MPI);

История проекта Beowulf

Проект начался летом 1994 года в научно-космическом центре NASA - Goddard Space Flight Center (GSFC), точнее в созданном на его основе CESDIS (Center of Excellence in Space Data and Information Sciences).

Первый Beowulf-кластер был создан на основе компьютеров Intel архитектуры под ОС Linux. Это была система, состоящая из 16 узлов (на процессорах 486DX4/100MHz, 16MB памяти и 3 сетевых адаптера на каждом узле, 3 "параллельных" Ethernet-кабеля по 10Mbit). Он создавался как вычислительный ресурс проекта "Earth and Space Sciences Project" (ESS).

Далее в GSFC и других подразделениях NASA были собраны другие, более мощные кластеры. Например, кластер theHIVE (Highly-parallel Integrated Virtual Environment) содержит 64 узла по 2 процессора Pentium Pro/200MHz и 4GB памяти в каждом, 5 коммутаторов Fast Ethernet. Общая стоимость этого кластера составляет примерно $210 тыс. В рамках проекта Beowulf был разработан ряд высокопроизводительных и специализированных сетевых драйверов (в частности, драйвер для использования нескольких Ethernet-каналов одновременно).

Архитектура Beowulf

Узлы кластера.

Это или однопроцессорные ПК, или SMP-сервера с небольшим числом процессоров (2-4, возможно до 6). По некоторым причинам оптимальным считается построение кластеров на базе двухпроцессорных систем, несмотря на то, что в этом случае настройка кластера будет несколько сложнее (главным образом потому, что доcтупны относительно недорогие материнские платы для 2 процессоров Pentium II/III). Стоит установить на каждый узел 64-128MB оперативной памяти (для двухпроцессорных систем 64-256MB).

Одну из машин следует выделить в качестве центральной (головной) куда следует установить достаточно большой жесткий диск, возможно более мощный процессор и больше памяти, чем на остальные (рабочие) узлы. Имеет смысл обеспечить (защищенную) связь этой машины с внешним миром.

При комплектации рабочих узлов вполне возможно отказаться от жестких дисков - эти узлы будут загружать ОС через сеть с центральной машины, что, кроме экономии средств, позволяет сконфигурировать ОС и все необходимое ПО только 1 раз (на центральной машине). Если эти узлы не будут одновременно использоваться в качестве пользовательских рабочих мест, нет необходимости устанавливать на них видеокарты и мониторы. Возможна установка узлов в стойки (rackmounting), что позволит уменьшить место, занимаемое узлами, но будет стоить несколько дороже.

Возможна организация кластеров на базе уже существующих сетей рабочих станций, т.е. рабочие станции пользователей могут использоваться в качестве узлов кластера ночью и в выходные дни. Системы такого типа иногда называют COW (Cluster of Workstations).

Количество узлов следует выбирать исходя из необходимых вычислительных ресурсов и доступных финансовых средств. Следует понимать, что при большом числе узлов придется также устанавливать более сложное и дорогое сетевое оборудование.

Основные типы локальных сетей, задействованные в рамках проекта Beowulf, - это Gigabit Ethernet, Fast Ethernet и 100-VG AnyLAN. В простейшем случае используется один сегмент Ethernet (10Mbit/sec на витой паре). Однако дешевизна такой сети, вследствие коллизий оборачивается большими накладными расходами на межпроцессорные обмены; а хорошую производительность такого кластера следует ожидать только на задачах с очень простой параллельной структурой и при очень редких взаимодействиях между процессами (например, перебор вариантов).

Для получения хорошей производительности межпроцессорных обменов используют полнодуплексный Fast Ethernet на 100Mbit/sec. При этом для уменьшения числа коллизий или устанавливают несколько "параллельных" сегментов Ethernet, или соединяют узлы кластера через коммутатор (switch).

Более дорогостоящим, но также популярным вариантом являются использование коммутаторов типа Myrinet (1.28Gbit/sec, полный дуплекс).

Менее популярными, но также реально используемыми при построении кластеров сетевыми технологиями являются технологии сLAN, SCI и Gigabit Ethernet.

Иногда для связи между узлами кластера используют параллельно несколько физичеких каналов связи - так называемое «связывание каналов» (channel bonding), которое обычно применяется для технологии Fast Ethernet. При этом каждый узел подсоединяется к коммутатору Fast Ethernet более чем одним каналом. Чтобы достичь этого, узлы оснащаются либо несколькими сетевыми платами, либо многопортовыми платами Fast Ethernet. Применение связывания каналов в узлах под управлением ОС Linux позволяет организовать равномерное распределение нагрузки приема/передачи между соответствующими каналами.

Системное ПО

Операционная система. Обычно используется система Linux в версиях, специально оптимизированных под распределенные параллельные вычисления. Была проведена доработку ядра Linux 2.0. В процессе построения кластеров выяснилось, что стандартные драйверы сетевых устройств в Linux весьма неэффективны. Поэтому были разработаны новые драйверы, в первую очередь для сетей Fast Ethernet и Gigabit Ethernet, и обеспечена возможность логического объединения нескольких параллельных сетевых соединений между персональными компьютерами (аналогично аппаратному связыванию каналов) , что позволяет из дешевых локальных сетей, обладающих низкой пропускной способностью, соорудить сеть с высокой совокупной пропускной способностью.

Как и в любом кластере, на каждом узле кластера исполняется своя копия ядра ОС. Благодаря доработкам обеспечена уникальность идентификаторов процессов в рамках всего кластера, а не отдельных узлов.

Коммуникационные библиотеки. Наиболее распространенным интерфейсом параллельного программирования в модели передачи сообщений является MPI. Рекомендуемая бесплатная реализация MPI - пакет MPICH, разработанный в Аргоннской Национальной Лаборатории. Для кластеров на базе коммутатора Myrinet разработана система HPVM, куда также входит реализация MPI.

Для эффективной организации параллелизма внутри одной SMP-cистемы возможны два варианта:

  1. Для каждого процессора в SMP-машине порождается отдельный MPI-процесс. MPI-процессы внутри этой системы обмениваются сообщениями через разделяемую память (необходимо настроить MPICH соответствующим образом).
  2. На каждой машине запускается только один MPI-процесс. Внутри каждого MPI-процесса производится распараллеливание в модели "общей памяти", например с помощью директив OpenMP.

После установки реализации MPI имеет смысл протестировать реальную производительность сетевых пересылок.

Кроме MPI, есть и другие библиотеки и системы параллельного программирования, которые могут быть использованы на кластерах.

Пример реализации кластера Beowulf - Avalon

В 1998 году в Лос-аламосской национальной лаборатории астрофизик Michael Warren и другие ученые из группы теоретической астрофизики построили суперкомпьютер Avalon, который представляет из себя Beowulf -кластер на базе процессоров DEC Alpha/533MHz. Avalon первоначально состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено 256MB оперативной памяти, EIDE-жесткий диск на 3.2GB, сетевой адаптер от Kingston (общая стоимость узла - $1700). Узлы соединены с помощью 4-х 36-портовых коммутаторов Fast Ethernet и расположенного "в центре" 12-портового коммутатора Gigabit Ethernet от 3Com.

Общая стоимость Avalon - $313 тыс., а его производительность по LINPACK (47.7 GFLOPS) позволила ему занять 114 место в 12-й редакции списка Top500 (рядом с 152-процессорной системой IBM SP2). 70-процессорная конфигурация Avalon по многим тестам показала такую же производительность, как 64-процессорная система SGI Origin2000/195MHz стоимость которой превышает $1 млн.

В настоящее время Avalon активно используется в астрофизических, молекулярных и других научных вычислениях. На конференции SC"98 создатели Avalon представили доклад, озаглавленный "Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k" и заслужили премию по показателю цена/производительность ("1998 Gordon Bell Price/Performance Prize").

Заключение

Ведущие производители микропроцессоров: Sun Microsystems, Dell и IBM придерживаются одинаковой точки зрения на будущее отрасли суперкомпьютеров: на смену отдельным, независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер. Уже сегодня распределенные кластерные системы опережают современные классические суперкомпьютеры по производительности: самый мощный на сегодняшний день компьютер в мире - IBM ASCI White - обладает производительностью в 12 ТераФЛОП, производительность сети SETI@Home оценивается примерно в 15 ТераФЛОП. При этом, IBM ASCI White был продан за 110 миллионов долларов, а за всю историю существования SETI@Home было потрачено около 500 тысяч долларов.

Литература

2. http://www.beowulf.com

3. http://newton.gsfc.nasa.gov/thehive/

4. LoBoS, http://www.lobos.nih.gov

5. http://parallel.ru/news/kentucky_klat2.html

6. http://parallel.ru/news/anl_chibacity.html

7. http://parallel.ru/cluster/

8. http://www.ptc.spbu.ru

MIMD компьютеры

MIMD компьютер имеет N процессоров, независимо исполняющих N потоков команд и обрабатывающих N потоков данных. Каждый процессор функционирует под управлением собственного потока команд, то есть MIMD компьютер может параллельно выполнять совершенно разные программы.


MIMD архитектуры далее классифицируются в зависимости от физической организации памяти, то есть имеет ли процессор свою собственную локальную память и обращается к другим блокам памяти, используя коммутирующую сеть, или коммутирующая сеть подсоединяет все процессоры к общедоступной памяти. Исходя из организации памяти, различают следующие типы параллельных архитектур:

  • Компьютеры с распределенной памятью (Distributed memory )
    Процессор может обращаться к локальной памяти, может посылать и получать сообщения, передаваемые по сети, соединяющей процессоры. Сообщения используются для осуществления связи между процессорами или, что эквивалентно, для чтения и записи удаленных блоков памяти. В идеализированной сети стоимость посылки сообщения между двумя узлами сети не зависит как от расположения обоих узлов, так и от трафика сети, но зависит от длины сообщения.

  • Компьютеры с общей (разделяемой) памятью (True shared memory )
    Все процессоры совместно обращаются к общей памяти, обычно, через шину или иерархию шин. В идеализированной PRAM (Parallel Random Access Machine - параллельная машина с произвольным доступом) модели, часто используемой в теоретических исследованиях параллельных алгоритмов, любой процессор может обращаться к любой ячейке памяти за одно и то же время. На практике масштабируемость этой архитектуры обычно приводит к некоторой форме иерархии памяти. Частота обращений к общей памяти может быть уменьшена за счет сохранения копий часто используемых данных в кэш-памяти, связанной с каждым процессором. Доступ к этому кэш-памяти намного быстрее, чем непосредственно доступ к общей памяти.

  • Компьютеры с виртуальной общей (разделяемой) памятью (Virtual shared memory )
    Общая память как таковая отсутствует. Каждый процессор имеет собственную локальную память и может обращаться к локальной памяти других процессоров, используя "глобальный адрес". Если "глобальный адрес" указывает не на локальную память, то доступ к памяти реализуется с помощью сообщений, пересылаемых по коммуникационной сети.

Примером машин с общей памятью могут служить:

  • Sun Microsystems (многопроцессорные рабочие станции)
  • Silicon Graphics Challenge (многопроцессорные рабочие станции)
  • Sequent Symmetry
  • Convex
  • Cray 6400.

Следующие компьютеры относятся к классу машин с распределенной памятью

  • IBM-SP1/SP2
  • Parsytec GC
  • CM5 (Thinking Machine Corporation)
  • Cray T3D
  • Paragon (Intel Corp.)
  • nCUBE
  • Meiko CS-2
  • AVX (Alex Parallel Computers)
  • IMS B008

MIMD архитектуры с распределенной памятью можно так же классифицировать по пропускной способности коммутирующей сети. Например, в архитектуре, в которой пары из процессора и модуля памяти (процессорный элемент) соединены сетью с топологий реш§тка , каждый процессор имеет одно и то же число подключений к сети вне зависимости от числа процессоров компьютера. Общая пропускная способность такой сети растет линейно относительно числа процессоров. С другой стороны в архитектуре, имеющей сеть с топологий гиперкуб , число соединений процессора с сетью является логарифмической функцией от числа процессоров, а пропускная способность сети растет быстрее, чем линейно по отношению к числу процессоров. В топологии клика каждый процессор должен быть соединен со всеми другими процессорами.


Сеть с топологией 2D реш§тка (тор )

Сеть с топологией 2D тор


Сеть с топологией клика

Национального Центра Суперкомпьютерных Приложений (университет шт. Иллинойс, Urbana-Champaign)

MPI: The Message Passing Interface

Название "интерфейс передачи сообщений", говорит само за себя. Это хорошо стандартизованный механизм для построения параллельных программ в модели обмена сообщениями. Существуют стандартные "привязки" MPI к языкам С/С++, Fortran 77/90. Существуют бесплатные и коммерческие реализации почти для всех суперкомпьютерных платформ, а также для сетей рабочих станций UNIX и Windows NT. В настоящее время MPI - наиболее широко используемый и динамично развивающийся интерфейс из своего класса.

Beowulf - кластеры на базе ОС Linux

Михаил Кузьминский

"Открытые системы"

На пороге тысячелетий мы имеем все шансы стать свидетелями монополизации компьютерной индустрии, которая может охватить как микропроцессоры, так и операционные системы. Конечно же, речь идет о микропроцессорах от Intel (Merced грозит вытеснить процессоры архитектуры RISC) и ОС от Microsoft.

В обоих случаях успех во многом определяется мощью маркетинговой машины, а не только "потребительскими" свойствами выпускаемых продуктов. По моему мнению, компьютерное сообщество еще не осознало масштабов возможных последствий.

Некоторые специалисты сопоставляют потенциальную монополизацию компьютерного рынка с наблюдавшимся в 70-е годы монопольным господством IBM - как в области мэйнфреймов, так и операционных систем. Я долгое время работаю с этой техникой и по мере распространения в нашей стране ОС Unix все больше осознаю многие преимущества операционной системы MVS производства IBM. Тем не менее я разделяю распространенную точку зрения, что подобная монополия не способствовала ускорению прогресса.

Западные университеты, которые в свое время одними из первых перешли к использованию Unix, по-прежнему в своих перспективных разработках опираются на эту систему, причем в качестве платформы все чаще избирается Linux. Одной из поучительных академических разработок и посвящена эта статья.

Linux как общественное явление

Мы уже не удивляемся тому, что Linux cтала заметным явлением компьютерной жизни. В сочетании с богатейшим набором свободно распространяемого программного обеспечения GNU эта операционная система стала чрезвычайно популярна у некоммерческих пользователей как у нас, так и за рубежом. Ее популярность все возрастает. Версии Linux существуют не только для платформы Intel x86, но и для других процессорных архитектур, в том числе DEC Alрha, и широко используются для приложений Internet, а также выполнения задач расчетного характера. Одним словом, Linux стала своеобразной "народной операционной системой". Hельзя, впрочем, сказать, что у Linux нет слабых мест; одно из них - недостаточная поддержка SMР-архитектур.

Самый дешевый способ нарастить компьютерные ресурсы, в том числе вычислительную мощность, - это построить кластер. Массивно-параллельные суперкомпьютеры с физически и логически распределенной оперативной памятью также можно рассматривать как своеобразные кластеры. Наиболее яркий пример такой архитектуры - знаменитый компьютер IBM SР2.

Весь вопрос в том, что связывает компьютеры (узлы) в кластер. В "настоящих" суперкомпьютерах для этого используется специализированная и поэтому дорогая аппаратура, призванная обеспечить высокую пропускную способность. В кластерах, как правило, применяются обычные сетевые стандарты - Ethernet, FDDI, ATM или HiРРI.

Кластерные технологии с использованием операционной системы Linux начали развиваться несколько лет назад и стали доступны задолго до появления Wolfрack для Windows NT. Так в середине 90-х годов и возник проект Beowulf.

Герой эпической поэмы

"Беовульф" - это скандинавский эпос, повествующий о событиях VII - первой трети VIII века, участником которых является одноименный герой, прославивший себя в сражениях. Неизвестно, задумывались ли авторы проекта, с кем ныне будет сражаться Beowulf (вероятно, с Windows NT?), однако героический образ позволил объединить в консорциум около полутора десятков организаций (главным образом университетов) в Соединенных Штатах. Нельзя сказать, что среди участников проекта доминируют суперкомпьютерные центры, однако кластеры "Локи" и "Мегалон" установлены в таких известных в мире высокопроизводительных вычислений центрах, как Лос-Аламос и лаборатория Sandia Министерства энергетики США; ведущие разработчики проекта - специалисты агентства NASA. Вообще, все без исключения кластеры, созданные участниками проекта, получают громкие имена.

Кроме Beowulf, известна еще одна близкая кластерная технология - NOW. В NOW персональные компьютеры обычно содержат информацию о самих себе и поставленных перед ними задачах, а в обязанности системного администратора такого кластера входит формирование данной информации. Кластеры Beowulf в этом отношении (то есть с точки зрения системного администратора) проще: там отдельные узлы не знают о конфигурации кластера. Лишь один выделенный узел содержит информацию о конфигурации; и только он имеет связь по сети с внешним миром. Все остальные узлы кластера объединены локальной сетью, и с внешним миром их связывает только "тоненький мостик" от управляющего узла.

Узлами в технологии Beowulf являются материнские платы ПК. Обычно в узлах задействованы также локальные жесткие диски. Для связи узлов используются стандартные типы локальных сетей. Этот вопрос мы рассмотрим ниже, сначала же остановимся на программном обеспечении.

Его основу в Beowulf составляет обычная коммерчески доступная ОС Linux, которую можно приобрести на CD-ROM. Первое время большинство участников проекта ориентировались на компакт-диски, издаваемые Slackware, а сейчас предпочтение отдаетcя версии RedHat.

В обычной ОС Linux можно инсталлировать известные средства распараллеливания в модели обмена сообщениями (LAM MРI 6.1, РVM 3.3.11 и другие). Можно также воспользоваться стандартом р-threads и стандартными средствами межпроцессорного взаимодействия, входящими в любую ОС Unix System V. В рамках проекта Beowulf были выполнены и серьезные дополнительные разработки.

Прежде всего следует отметить доработку ядра Linux 2.0. В процессе построения кластеров выяснилось, что стандартные драйверы сетевых устройств в Linux весьма неэффективны. Поэтому были разработаны новые драйверы (автор большинства разработок - Дональд Бекер), в первую очередь для сетей Fast Ethernet и Gigabit Ethernet, и обеспечена возможность логического объединения нескольких параллельных сетевых соединений между персональными компьютерами, что позволяет из дешевых локальных сетей, обладающих более чем скромной скоростью, соорудить сеть с высокой совокупной пропускной способностью.

Как и во всяком кластере, в каждом узле живет своя копия ядра ОС. Благодаря доработкам обеспечена уникальность идентификаторов процессов в рамках всего кластера, а не отдельных узлов, а также "удаленная доставка" сигналов ОС Linux.

Кроме того, надо отметить функции загрузки по сети (netbooting) при работе с материнскими платами Intel РR 440FX, причем они могут применяться и для работы с другими материнскими платами, снабженными AMI BIOS.

Очень интересные возможности предоставляют механизмы сетевой виртуальной памяти (Network Virtual Memory) или разделяемой распределенной памяти DSM (Distributed Shared Memory), позволяющие создать для процесса определенную "иллюзию" общей оперативной памяти узлов.

Сеть - дело тонкое

Поскольку для распараллеливания суперкомпьютерных приложений вообще, и кластерных в частности, необходима высокая пропускная способность и низкие задержки для обмена сообщениями между узлами, сетевые характеристики становятся параметрами, определяющими производительность кластера. Выбор микропроцессоров для узлов очевиден - это стандартные процессоры производства Intel; а вот с топологией кластера, типом сети и сетевых плат можно поэкспериментировать. Именно в этой области и проводились основные исследования.

При анализе различных сетевых плат ПК, представленных сегодня на рынке, особое внимание было уделено таким характеристикам, как эффективная поддержка широковещательной рассылки (multicasting), поддержка работы с пакетами больших размеров и т. д. Основные типы локальных сетей, задействованные в рамках проекта Beowulf, - это Gigabit Ethernet, Fast Ethernet и 100-VG AnyLAN. (Возможности ATM-технологии также активно исследовались, но, насколько известно автору, это делалось вне рамок данного проекта.)

Как самому собрать суперкомпьютер

Проанализировав итоги работ, выполненных в рамках проекта Beowulf, можно прийти к следующему выводу: найденные решения позволяют самостоятельно собрать высокопроизводительный кластер на базе стандартных для ПК компонентов и использовать обычное программное обеспечение. Среди самых крупных экземпляров нельзя не отметить 50-узловой кластер в CESDIS, включающий 40 узлов обработки данных (на базе одно- и двухпроцессорных плат Рentium Рro/200 МГц) и 10 масштабирующих узлов (двухпроцессорная плата Рentium Рro/166 МГц). Соотношение стоимость/пиковая производительность в таком кластере представляется очень удачным. Вопрос в том, насколько эффективно удается распараллелить приложения - иными словами, какова будет реальная, а не пиковая производительность. Над решением этой проблемы сейчас и работают участники проекта.

Следует отметить, что построение кластеров из обычных ПК становится сегодня достаточно модным в научной среде. Некоторые академические институты в нашей стране также планируют создать подобные кластеры.

При объединении в кластер компьютеров разной мощности или разной архитектуры, говорят о гетерогенных (неоднородных) кластерах. Узлы кластера могут одновременно использоваться в качестве пользовательских рабочих станций. В случае, когда это не нужно, узлы могут быть существенно облегчены и/или установлены в стойку.

Используются стандартные для рабочих станций ОС, чаще всего, свободно распространяемые - Linux/FreeBSD, вместе со специальными средствами поддержки параллельного программирования и распределения нагрузки. Программирование, как правило, в рамках модели передачи сообщений (чаще всего - MPI). Более подробно она рассмотрена в следующем параграфе.

История развития кластерной архитектуры.

Компания DEC первой анонсировала концепцию кластерной системы в 1983 году, определив ее как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации.

Один из первых проектов, давший имя целому классу параллельных систем – кластеры Beowulf – возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf стартовал летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Для работы в такой конфигурации были разработаны специальные драйверы, распределяющие трафик между доступными сетевыми картами.

Позже в GSFC был собран кластер theHIVE – Highly-parallel Integrated Virtual Environment , структура которого показана на рис. 2. Этот кластер состоит из четырех подкластеров E, B, G, и DL, объединяя 332 процессора и два выделенных хост-узла. Все узлы данного кластера работают под управлением RedHat Linux.

В 1998 году в Лос-Аламосской национальной лаборатории астрофизик Майкл Уоррен и другие ученые из группы теоретической астрофизики построили суперкомпьютер Avalon, который представляет собой Linux-кластер на базе процессоров Alpha 21164A с тактовой частотой 533 МГц. Первоначально Avalon состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено по 256 Мбайт оперативной памяти, жесткий диск на 3 Гбайт и сетевой адаптер Fast Ethernet. Общая стоимость проекта Avalon составила 313 тыс. долл., а показанная им производительность на тесте LINPACK – 47,7 GFLOPS, позволила ему занять 114 место в 12-й редакции списка Top500 рядом с 152-процессорной системой IBM RS/6000 SP. В том же 1998 году на самой престижной конференции в области высокопроизводительных вычислений Supercomputing’98 создатели Avalon представили доклад «Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k», получивший первую премию в номинации «наилучшее отношение цена/производительность».

В апреле текущего года в рамках проекта AC3 в Корнелльском Университете для биомедицинских исследований был установлен кластер Velocity+, состоящий из 64 узлов с двумя процессорами Pentium III/733 МГц и 2 Гбайт оперативной памяти каждый и с общей дисковой памятью 27 Гбайт. Узлы работают под управлением Windows 2000 и объединены сетью cLAN компании Giganet.

Проект Lots of Boxes on Shelfes реализован в Национальном Институте здоровья США в апреле 1997 года и интересен использованием в качестве коммуникационной среды технологии Gigabit Ethernet. Сначала кластер состоял из 47 узлов с двумя процессорами Pentium Pro/200 МГц, 128 Мбайт оперативной памяти и диском на 1,2 Гбайт на каждом узле. В 1998 году был реализован

следующий этап проекта – LoBoS2, в ходе которого узлы были преобразованы в настольные компьютеры с сохранением объединения в кластер. Сейчас LoBoS2 состоит из 100 вычислительных узлов, содержащих по два процессора Pentium II/450 МГц, 256 Мбайт оперативной и 9 Гбайт дисковой памяти. Дополнительно к кластеру подключены 4 управляющих компьютера с общим RAID-массивом емкостью 1,2 Тбайт.

Одной из последних кластерных разработок стал суперкомпьютер AMD Presto III, представляющий собой кластер Beowulf из 78 процессоров Athlon. Компьютер установлен в Токийском Технологическом Институте. На сегодняшний день AMD построила 8 суперкомпьютеров, объединенных в кластеры по методу Beowulf, работающих под управлением ОС Linux.

Кластеры IBM

RS/6000

Компания IBM предлагает несколько типов слабо связанных систем на базе RS/6000, объединенных в кластеры и работающих под управлением программного продукта High-Availability Clastered Multiprocessor/6000 (HACMP/6000).

Узлы кластера работают параллельно, разделяя доступ к логическим и физическим ресурсам пользуясь возможностями менеджера блокировок, входящего в состав HACMP/6000.

Начиная с объявления в 1991 году продукт HACMP/6000 постоянно развивался. В его состав были включены параллельный менеджер ресурсов, распределенный менеджер блокировок и параллельный менеджер логических томов, причем последний обеспечил возможность балансировки загрузки на уровне всего кластера. Максимальное количество узлов в кластере возросло до восьми. В настоящее время в составе кластера появились узлы с симметричной многопроцессорной обработкой, построенные по технологии Data Crossbar Switch, обеспечивающей линейный рост производительности с увеличением числа процессоров.

Кластеры RS/6000 строятся на базе локальных сетей Ethernet, Token Ring или FDDI и могут быть сконфигурированы различными способами с точки зрения обеспечения повышенной надежности:

  • Горячий резерв или простое переключение в случае отказа. В этом режиме активный узел выполняет прикладные задачи, а резервный может выполнять некритичные задачи, которые могут быть остановлены в случае необходимости переключения при отказе активного узла.
  • Симметричный резерв. Аналогичен горячему резерву, но роли главного и резервного узлов не фиксированы.
  • Взаимный подхват или режим с распределением нагрузки. В этом режиме каждый узел в кластере может "подхватывать" задачи, которые выполняются на любом другом узле кластера.

IBM SP2

IBM SP2 лидируют в списке крупнейших суперкомпьютеров TOP500 по числу инсталляций (141 установка, а всего в мире работает 8275 таких компьютеров с общим числом узлов свыше 86 тыс. В основу этих суперкомпьютеров заложенный в основу архитектуры кластерный подход с использованием мощного центрального коммутатора. IBM использует этот подход уже много лет.

Общая архитектура SP2

Общее представление об архитектуре SP2 дает рис. 1. Основная ее особенность архитектуры - применение высокоскоростного коммутатора с низкими задержками для соединения узлов между собой. Эта внешне предельно простая схема, как показал опыт, оказалась чрезвычайно гибкой. Сначала узлы SP2 были однопроцессорными, затем появились узлы с SMP-архитектурой.

Собственно, все детали скрываются в строении узлов. Мало того, узлы бывают различных типов, причем даже процессоры в соседних узлах могут быть разными. Это обеспечивает

большую гибкость выбора конфигураций. Общее число узлов в вычислительной системе может достигать 512. Узлы SP2 фактически являются самостоятельными компьютерами, и их прямые аналоги продаются корпорацией IBM под самостоятельными названиями. Наиболее ярким примером этого является четырехпроцессорный SMP-сервер RS/6000 44P-270 c микропроцессорами Power3-II, который сам по себе можно отнести к классу компьютеров среднего класса или даже к мини-суперкомпьютерам.

Устанавливавшиеся в узлах SP2 микропроцессоры развивались по двум архитектурным линиям: Power - Power2 - Power3 - Power3-II и по линии PowerPC вплоть до модели 604e с тактовой частотой 332 МГц.

Традиционными для SP2 являются «тонкие» (Thin Node) и «широкие» (Wide Node) узлы, обладающие SMP-архитектурой. В них могут устанавливаться как PowerPC 604e (от двух до четырех процессоров), так и Power3-II (до четырех). Емкость оперативной памяти узлов составляет от 256 Мбайт до 3 Гбайт (при использовании Power3-II - до 8 Гбайт). Основные отличия между тонкими и широкими узлами касаются подсистемы ввода/вывода. Широкие узлы предназначены для задач, требующих более мощных возможностей ввода/вывода: в них имеется по десять слотов PCI (в том числе три 64-разрядных) против двух слотов в тонких узлах. Соответственно, и число монтажных отсеков для дисковых устройств в широких узлах больше.

Быстродействие коммутатора характеризуется низкими величинами задержек: 1,2 мс (до 2 мс при числе узлов свыше 80). Это на порядок лучше того, что можно получить в современных Linux-кластерах Beowulf. Пиковая пропускная способность каждого порта: она составляет 150 Мбайт/с в одном направлении (то есть 300 Мбайт/с при дуплексной передаче). Той же пропускной способностью обладают и расположенные в узлах SP2 адаптеры коммутатора. IBM приводит также отличные результаты по задержкам и пропускной способности.

Наиболее мощные узлы SP2 - «высокие» (High Node). Высокий узел - это комплекс, состоящий из вычислительного узла с подсоединенными устройствами расширения ввода/вывода в количестве до шести штук. Такой узел также обладает SMP-архитектурой и содержит до 8 процессоров Power3 с тактовой частотой 222 или 375 МГц.

Кроме того, узел этого типа содержит плату ввода/вывода, которая также подсоединена к системной плате. Плата ввода/вывода содержит два симметричных логических блока SABER, через которые осуществляется передача данных к внешним устройствам, таким

как диски и телекоммуникационное оборудование. На плате ввода/вывода имеется четыре слота 64-разрядной шины PCI и один 32-разрядный слот (частота 33 МГц), а также интегрированы контроллеры UltraSCSI, Ethernet 10/100 Мбит/с, три последовательных и один параллельный порт.

C появлением высоких узлов и микропроцессоров Power3-II/375 МГц на тестах Linpack parallel системы IBM SP2 достигли производительности 723,4 GFLOPS. Этот результат достигнут при использовании 176 узлов (704 процессора). Учитывая, что узлов можно установить до 512, этот результат показывает, что серийно выпускаемые IBM SP2 потенциально близки к отметке 1 TFLOPS.

Кластерные решения Sun Microsystems

Sun Microsystems предлагает кластерные решения на основе своего продукта SPARCclaster PDB Server, в котором в качестве узлов используются многопроцессорные SMP-серверы SPARCserver 1000 и SPARCcenter 2000. Максимально в состав SPARCserver 1000 могут входить до восьми процессоров, а в SPARCcenter 2000 до 20 процессоров SuperSPARC. В комплект базовой поставки входят следующие компоненты: два кластерных узла на основе SPARCserver 1000/1000E или SPARCcenter 2000/2000E, два дисковых массива SPARCstorage Array, а также пакет средств для построения кластера, включающий дублированное оборудование для осуществления связи, консоль управления кластером Claster Management Console, программное обеспечение SPARCclaster PDB Software и пакет сервисной поддержки кластера.

Для обеспечения высокой производительности и готовности коммуникаций кластер поддерживает полное дублирование всех магистралей данных. Узлы кластера объединяются с помощью каналов SunFastEthernet с пропускной способностью 100 Мбит/с. Для подключения дисковых подсистем используется оптоволоконный интерфейс Fibre Channel с пропускной способностью 25 Мбит/с, допускающий удаление накопителей и узлов друг от друга на расстояние до 2 км. Все связи между узлами, узлами и дисковыми подсистемами дублированы на аппаратном уровне. Аппаратные, программные и сетевые средства кластера обеспечивают отсутствие такого места в системе, одиночный отказ или сбой которого выводил бы всю систему из строя.

Университетские проекты

Интересная разработка Университета штата Кентукки – кластер KLAT2 (Kentucky Linux Athlon Testbed 2 ). Система KLAT2 состоит из 64 бездисковых узлов с процессорами AMD Athlon/700 МГц и оперативной памятью 128 Мбайт на каждом. Программное обеспечение, компиляторы и математические библиотеки (SCALAPACK, BLACS и ATLAS) были доработаны для эффективного использования технологии 3DNow! процессоров AMD, что позволило увеличить производительность. Значительный интерес представляет и использованное сетевое решение, названное «Flat Neighbourghood Network» (FNN). В каждом узле установлено четыре сетевых адаптера Fast Ethernet от Smartlink, а узлы соединяются с помощью девяти 32-портовых коммутаторов. При этом для любых двух узлов всегда есть прямое соединение через один из коммутаторов, но нет необходимости в соединении всех узлов через единый коммутатор. Благодаря оптимизации программного обеспечения под архитектуру AMD и топологии FNN удалось добиться рекордного соотношения цена/производительность – 650 долл. за 1 GFLOPS.

Идея разбиения кластера на разделы получила интересное воплощение в проекте Chiba City , реализованном в Аргоннской Национальной лаборатории. Главный раздел содержит 256 вычислительных узлов, на каждом

из которых установлено два процессора Pentium III/500 МГц, 512 Мбайт оперативной памяти и локальный диск емкостью 9 Гбайт. Кроме вычислительного раздела в систему входят раздел визуализации (32 персональных компьютера IBM Intellistation с графическими платами Matrox Millenium G400, 512 Мбайт оперативной памяти и дисками 300 Гбайт), раздел хранения данных (8 серверов IBM Netfinity 7000 с процессорами Xeon/500 МГц и дисками по 300 Гбайт) и управляющий раздел (12 компьютеров IBM Netfinity 500). Все они объединены сетью Myrinet, которая используется для поддержки параллельных приложений, а также сетями Gigabit Ethernet и Fast Ethernet для управляющих и служебных целей. Все разделы делятся на «города» (town) по 32 компьютера. Каждый из них имеет своего «мэра», который локально обслуживает свой «город», снижая нагрузку на служебную сеть и обеспечивая быстрый доступ к локальным ресурсам.

Кластерные проекты в России

В России всегда была высока потребность в высокопроизводительных вычислительных ресурсах, и относительно низкая стоимость кластерных проектов послужила серьезным толчком к широкому распространению подобных решений в нашей стране. Одним из первых появился кластер «Паритет», собранный в ИВВиБД и состоящий из восьми процессоров Pentium II, связанных сетью Myrinet. В 1999 году вариант кластерного решения на основе сети SCI был апробирован в НИЦЭВТ, который, по сути дела, и был пионером использования технологии SCI для построения параллельных систем в России.

Высокопроизводительный кластер на базе коммуникационной сети SCI, установлен в Научно-исследовательском вычислительном центре Московского государственного университета . Кластер НИВЦ включает 12 двухпроцессорных серверов «Эксимер» на базе Intel Pentium III/500 МГц, в общей сложности 24 процессора с суммарной пиковой производительностью 12 млрд. операций в секунду. Общая стоимость системы – около 40 тыс. долл. или примерно 3,33 тыс. за 1 GFLOPS.

Вычислительные узлы кластера соединены однонаправленными каналами сети SCI в двумерный тор 3x4 и одновременно подключены к центральному серверу через вспомогательную сеть Fast Ethernet и коммутатор 3Com Superstack. Сеть SCI – это ядро кластера, делающее данную систему уникальной вычислительной установкой суперкомпьютерного класса, ориентированной на широкий класс задач. Максимальная скорость обмена данными по сети SCI в приложениях пользователя составляет более 80 Мбайт/с, а время латентности около 5,6 мкс. При построении данного вычислительного кластера использовалось интегрированное решение Wulfkit, разработанное компаниями Dolphin Interconnect Solutions и Scali Computer (Норвегия).

Основным средством параллельного программирования на кластере является MPI (Message Passing Interface) версии ScaMPI 1.9.1. На тесте LINPACK при решении системы линейных уравнений с матрицей размера 16000х16000 реально полученная производительность составила более 5,7 GFLOPS. На тестах пакета NPB производительность кластера сравнима, а иногда и превосходит производительность суперкомпьютеров семейства Cray T3E с тем же самым числом процессоров.

Основная область применения вычислительного кластера НИВЦ МГУ – это поддержка фундаментальных научных исследований и учебного процесса.

Из других интересных проектов следует отметить решение, реализованное в Санкт-Петербургском университете на базе технологии Fast Ethernet : собранные кластеры могут использоваться и как полноценные независимые учебные классы, и как единая вычислительная установка, решающая единую задачу. В Самарском научном центре

пошли по пути создания неоднородного вычислительного кластера, в составе которого работают компьютеры на базе процессоров Alpha и Pentium III. В Санкт-Петербургском техническом университете собирается установка на основе процессоров Alpha и сети Myrinet без использования локальных дисков на вычислительных узлах. В Уфимском государственном авиационном техническом университете проектируется кластер на базе двенадцати Alpha-станций, сети Fast Ethernet и ОС Linux.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

По дисциплине:«Конструирование, производство и эксплуатация средств вычислительной техники»

На тему:«Состояние и перспективы развития кластерных систем»

г. Город - 2014г

Введение

1. Понятие кластер

2. Основные классы современных параллельных ЭВМ

3. Краткая история появления и обзор первых кластерных с истем

5. Виды кластерных систем

Заключение

Литература

Введение

В течение последних лет наблюдался бурный рост производительности микропроцессоров и вычислительной техники на их основе. Однако, не смотря на это, потребность в суперкомпьютерах не снизилась, а наоборот продолжает расти. Многие задачи, требующие решения, являются весьма требовательными к вычислительным ресурсам. А это требует создания вычислительных систем, превышающих самые современные микропроцессоры по производительности во много раз. Становится очевидным, что единственным выходом из этой ситуации становится использование многопроцессорных технологий. Эти технологии имеют массу преимуществ. Одним из них является возможность масштабирования этих систем, а именно изменения объёма вычислительных ресурсов за счёт числа процессоров, используемых в системе. Поэтому многопроцессорность в настоящее время перестаёт быть чертой, исключительно присущей суперкомпьютерам.

Сама же идея параллельной обработки данных была выдвинута более сотни лет назад до появления первого компьютера Чарльзом Бэббиджем, но существовавшие на тот момент технологии не могли позволить ему реализовать её. И вот, с появлением ЭВМ эти идеи стали воплощаться в жизнь. До недавнего времени этим воплощением были супер ЭВМ, но и им появилась альтернатива. И эта альтернатива - кластер .

Кластерные системы возникли как более дешевое решение проблемы недостатка вычислительных ресурсов, и основываются на использовании в своей архитектуре широко распространенных и относительно дешевых технологий, аппаратных и программных средств, таких как PC, Ethernet, Linux и т.д. Использование массовых технологии в кластерных системах стало возможным благодаря значительному прогрессу в развитии компонентов обычных вычислительных систем, таких как центральные процессоры, операционные системы, коммуникационные среды.

1. Понятие кластер

Один из первых архитекторов кластерной технологии Грегори Пфистер дал кластеру следующее определение:

«Кластер -- это разновидность параллельной или распределённой системы, которая: состоит из нескольких связанных между собой компьютеров; используется как единый, унифицированный компьютерный ресурс».

Кластер всегда состоит из узлов, являющихся полноценными компьютерами, которые соединены сетью для выполнения обмена данными. При этом, эти компьютеры не обязательно должны быть однотипными, система может быть и гетерогенной, объединяя в себе компьютеры различной архитектуры - от персональных ЭВМ до сверхпроизводительных супер ЭВМ.

Кластер может быть как территориально сосредоточен, так и распределён. Построению распределённых кластеров способствует развитие глобальной сети Internet. На наш взгляд, в будущем будет происходить преобладание именно этого типа кластеров, что позволит получить вычислительные мощности огромных объёмов, которые не будут уступать отдельным супер ЭВМ.

При построении кластеров можно выделить два следующих подхода:

· в кластерную систему собираются все доступные компьютеры, которые также могут функционировать и отдельно. Например в такую кластерную систему можно объединить компьютеры, находящиеся в учебной аудитории или подключённые к университетской сети;

· в кластерную систему целенаправленно соединяются промышленно выпускаемые ЭВМ. При это создаётся мощный вычислительный ресурс. Этот подход позволяет удешевить саму кластерную систему, т.к. не требуется снабжать каждый отдельный узел монитором, клавиатурой и другими периферийными устройствами.

Отметим, что при использовании второго подхода узлы кластера располагаются в специальных стойках, а для управления кластером и мониторинга его состояния выделяются один или несколько полнофункциональных компьютеров. Эти компьютеры называются хост-компьютерами. Подобный подход использован, например, в кластере CliC (Chemnitzer Linux Cluster) Кемнитцкого технического университета (TU Chemnitz), Германия.

Обычно различают следующие основные виды кластеров:

1. Отказоустойчивые кластеры (High-availability clusters, HA, кластеры высокой доступности)

2. Кластеры с балансировкой нагрузки (Load balancing clusters)

3. Вычислительные кластеры (High perfomance computing clusters, HPC)

4. Системы распределенных вычислений

2. Основные классы современных параллельных ЭВМ

Кластерные системы являются развитием параллельных систем. Чтобы показать место кластерных систем среди остальных типов параллельных архитектур вычислительных систем нужно привести их классификацию. Параллельные системы могут быть классифицированы по различным критериям.

Одним из наиболее распространенных способов классификации ЭВМ является систематика Флинна (Flynn), в рамках которой основное внимание при анализе архитектуры вычислительных систем уделяется способам взаимодействия последовательностей (потоков) выполняемых команд и обрабатываемых данных.

SISD (Single Instruction, Single Data) - системы, в которых существует одиночный поток команд и одиночный поток данных. К такому типу можно отнести обычные последовательные ЭВМ;

SIMD (Single Instruction, Multiple Data) - системы c одиночным потоком команд и множественным потоком данных. Подобный класс составляют многопроцессорные вычислительные системы, в которых в каждый момент времени может выполняться одна и та же команда для обработки нескольких информационных элементов; такой архитектурой обладают, например, многопроцессорные системы с единым устройством управления. Этот подход широко использовался в предшествующие годы (системы ILLIAC IV или CM-1 компании Thinking Machines), в последнее время его применение ограничено, в основном, созданием специализированных систем;

MISD (Multiple Instruction, Single Data) - системы, в которых существует множественный поток команд и одиночный поток данных. Относительно этого типа систем нет единого мнения: ряд специалистов считает, что примеров конкретных ЭВМ, соответствующих данному типу вычислительных систем, не существует и введение подобного класса предпринимается для полноты классификации; другие же относят к данному типу, например, систолические вычислительные системы или системы с конвейерной обработкой данных;

MIMD (Multiple Instruction, Multiple Data) - системы c множественным потоком команд и множественным потоком данных. К подобному классу относится большинство параллельных многопроцессорных вычислительных систем.

Рис.1 Классификация многопроцессорных вычислительных систем

Кластерные системы относятся к MIMD параллельным многопроцессорным вычислительным системам.

Основные классы многопроцессорных систем:

SMP (symmetric multiprocessing) - симметричная многопроцессорная архитектура . Система состоит из нескольких однородных процессоров и массива общей памяти.

Рис.2 Устройства системы с симметричной мультипроцессрностью.

MPP (massive parallel processing) - массивно - параллельная архитект у ра . Главная особенность такой архитектуры состоит в том, что память физически разделена. В этом случае система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти (ОП).

NUMA (Nonuniform memory access) - неоднородный доступ к памяти память физически распределена по различным частям системы, но логически она является общей , так что пользователь видит единое адресное простра н ство .

Рис.3 Non-Uniform Memory Access

Сlusters - Кластерная архитектура, группа компьютеров, объединённых высокоскоростными каналами связи, представляющая с точки зрения пользователя единый аппаратный ресурс.

3. Краткая история появления и обзор первых кластерных систем

Идея построения кластеров зародилась ещё в начале 80-х годов, когда компанией Digital Equipment был представлен кластер VAXCluster, использовавший операционную систему OpenVMS. Далее пришло время кластеров на основе Unix-подобных операционных систем. Это было связано с тем, что всё большее число компаний стало использовать Unix для критичных приложений, что само собою ставило вопрос надёжности и высокой готовности, а, значит, и кластеризации.

Таблица 2 Список производителей параллельных вычислительных систем.

Rmax

Rpeak

Processors

В 90-х годах начался процесс интенсивного развития кластерных технологий. В эту область пришло большое количество разработчиков и производителей. В следующей таблице приведен список производителей параллельных вычислительных систем с указанием их доли.

Перечислим наиболее интересные проекты, связанные с кластерными технологиями. электронный кластер компьютерный вычисление

Проект Beowulf (Этот проект возник летом 1994 года в научно-космическом центре NASA - Goddard Space Flight Center (GSFC ), точнее в созданном на его основе CESDIS (Center of Excellence in Space Data and Information Sciences). Всё начиналось сборкой в GSFC 16-процессорного кластера (на процессорах 486DX4/100MHz, 16MB памяти и 3 сетевых адаптера на каждом узле, 3 "параллельных" Ethernet-кабеля по 10Mbit). Этим проектом занимались Томас Стерлинг (Thomas Sterling) и Дон Бэкер (Don Becker). Этот кластер положил начало целому семейству кластеров, а его название стало для них нарицательным. В ходе выполнения этого проекта было также разработано специализированное программное обеспечение (в частности высокопроизводительные сетевые драйвера).

Проект Avalon . Avalon берёт своё начало в 1998 году в Лосаламосской национальной лаборатории для группы теоретической астрофизики. Этот проект возглавил Майкл Уоррен (Michael Warren). Avalon представляет из себя Linux-кластер на базе процессоров DEC Alpha/533MHz. Первоначально он состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено 256MB оперативной памяти, EIDE-жесткий диск на 3.2GB, сетевой адаптер от Kingston (общая стоимость узла - $1700). Узлы соединены с помощью 4-х 36-портовых коммутаторов Fast Ethernet и расположенного "в центре" 12-портового коммутатора Gigabit Ethernet от 3Com . Общая стоимость Avalon - $313 тыс. , а его производительность по LINPACK (47.7 GFLOPS ) позволила ему занять 114 место в 12-й редакции списка Top500 (рядом с 152-процессорной системой IBM SP2). 70-процессорная конфигурация Avalon по многим тестам показала такую же производительность, как 64-процессорная система SGI Origin2000 /195MHz стоимость которой превышает $1 млн.

В настоящее время Avalon активно используется в астрофизических, молекулярных и других научных вычислениях . На конференции SC"98 создатели Avalon представили доклад, озаглавленный "Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k" и заслужили премию по показателю цена/производительность ("1998 Gordon Bell Price/Performance Prize").

Кластера VAX/VMS - Компания DEC первой анонсировала концепцию кластерной системы в 1983 году, определив ее как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации. По существу VAX-кластер представляет собой слабосвязанную многомашинную систему с общей внешней памятью, обеспечивающую единый механизм управления и администрирования.

VAX-кластер обладает следующими свойствами:

· Разделение ресурсов. Компьютеры VAX в кластере могут разделять доступ к общим ленточным и дисковым накопителям. Все компьютеры VAX в кластере могут обращаться к отдельным файлам данных как к локальным.

· Высокая готовность. Если происходит отказ одного из VAX-компьютеров, задания его пользователей автоматически могут быть перенесены на другой компьютер кластера. Если в системе имеется несколько контроллеров HSC и один из них отказывает, другие контроллеры HSC автоматически подхватывают его работу.

· Высокая пропускная способность. Ряд прикладных систем могут пользоваться возможностью параллельного выполнения заданий на нескольких компьютерах кластера.

· Удобство обслуживания системы. Общие базы данных могут обслуживаться с единственного места. Прикладные программы могут инсталлироваться только однажды на общих дисках кластера и разделяться между всеми компьютерами кластера.

· Расширяемость. Увеличение вычислительной мощности кластера достигается подключением к нему дополнительных VAX-компьютеров. Дополнительные накопители на магнитных дисках и магнитных лентах становятся доступными для всех компьютеров, входящих в кластер.

Работа VAX-кластера определяется двумя главными компонентами. Первым компонентом является высокоскоростной механизм связи, а вторым - системное программное обеспечение, которое обеспечивает клиентам прозрачный доступ к системному сервису. Физически связи внутри кластера реализуются с помощью трех различных шинных технологий с различными характеристиками производительности.

Основные методы связи в VAX-кластере представлены на рис. 4

Рис. 4 VAX/VMS-кластер

· Шина связи компьютеров CI (Computer Interconnect) работает со скоростью 70 Мбит/с и используется для соединения компьютеров VAX и контроллеров HSC с помощью коммутатора Star Coupler. Каждая связь CI имеет двойные избыточные линии, две для передачи и две для приема, используя базовую технологию CSMA, которая для устранения коллизий использует специфические для данного узла задержки. Максимальная длина связи CI составляет 45 метров. Звездообразный коммутатор Star Coupler может поддерживать подключение до 32 шин CI, каждая из которых предназначена для подсоединения компьютера VAX или контроллера HSC. Контроллер HSC представляет собой интеллектуальное устройство, которое управляет работой дисковых и ленточных накопителей.

· Компьютеры VAX могут объединяться в кластер также посредством локальной сети Ethernet, используя NI - Network Interconnect (так называемые локальные VAX-кластеры), однако производительность таких систем сравнительно низкая из-за необходимости делить пропускную способность сети Ethernet между компьютерами кластера и другими клиентами сети.

· Также кластера могут строиться на основе шины DSSI (Digital Storage System Interconnect). На шине DSSI могут объединяться до четырех компьютеров VAX нижнего и среднего класса. Каждый компьютер может поддерживать несколько адаптеров DSSI. Отдельная шина DSSI работает со скоростью 4 Мбайт/с (32 Мбит/с) и допускает подсоединение до 8 устройств. Поддерживаются следующие типы устройств: системный адаптер DSSI, дисковый контроллер серии RF и ленточный контроллер серии TF. DSSI ограничивает расстояние между узлами в кластере 25 метрами.

Также внимания заслуживают следующие кластерные системы:

* CLiC (Chemnitzer Linux Cluster, www.tu-chemnitz.de ), созданный в Техническом университете города Кемнитц (Chemnitz), Германия. Использует операционную систему Linux и содержит 528 узлов;

* Lots of Boxes on Shelves (LoBoS, www.lobos.nih.gov ), реализованный в Национальном Институте здоровья США в 1997 году. Представляет интерес тем, что в качестве среды коммуникаций используется технология Gigabit Ethernet.

4. Цели создания кластерных систем

Разработчики архитектур кластерных систем преследовали различные цели при их создании. Первой была фирма «Digital Equipment» с кластерами VAX/VMS. Целью создания этой машины было повышение надежности работы системы, обеспечение высокой готовности и отказоустойчивости системы. В настоящее время существует множество аналогичных по архитектуре систем от других производителей.

Другой целью создания кластерных систем является создание дешевых высокопроизводительных параллельных вычислительных систем. Один из первых проектов, давший имя целому классу параллельных систем - кластер «Beowulf», который состоит из широко распространённого аппаратного обеспечения, работающий под управлением операционной системы, распространяемой с исходными кодами (например, Linux или FreeBSD). Он возник в центре NASA для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf начался летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Эта система оказалась очень удачной по отношению цена/производительность, поэтому такую архитектуру стали развивать и широко использовать в других научных организациях и институтах.

Особенностью такого кластера также является масштабируемость, то есть возможность увеличения количества узлов системы с пропорциональным увеличением производительности. Узлами в кластере могут служить любые серийно выпускаемые автономные компьютеры, количество которых может быть от 2 до 1024 и более. Для распределения обработки данных между узлами обычно используются технологии MPI или PVM. Для каждого класса кластеров характерны свои особенности архитектуры и применяемые аппаратные средства. Рассмотрим их более подробно.

5. Виды кластерных систем

Отказоустойчивые кластеры

Для обеспечения надежности и отказоустойчивости вычислительных систем применяется множество различных аппаратурных и программных решений. Например, в системе может дублироваться все подверженные отказам элементы -- источники питания, процессоры, оперативная и внешняя память. Такие отказоустойчивые системы с резервированием компонентов применяются для решения задач, в которых недостаточно надежности обычных вычислительных систем, оцениваемой в настоящий момент вероятностью безотказной работы 99%. В таких задачах требуется вероятность 99,999% и выше. Такую надежность можно достичь применяя отличные от приведенного выше методы повышения отказоустойчивости. В зависимости от уровня готовности вычислительной системы к использованию выделяют четыре типа надежности:

Таблица 1. Уровень доступности

Уровень готовности, %

Мaкс. время простоя

Тип системы

3,5 дня в год

Обычная (Conventional)

8,5 часов в год

Высокая надежность (High Availability)

1 час в год

Отказоустойчивая (Fault Resilient)

5 минут в год

Безотказная (Fault Tolerant)

В отличие от отказоустойчивых систем с избыточными компонентами, а также различных вариантов многопроцессорности, кластеры объединяют относительно независимые друг от друга машины, каждую из которых можно остановить для профилактики или реконфигурирования, не нарушая при этом работоспособности кластера в целом. Высокая производительность кластера и сведение к минимуму времени простоев приложений достигается благодаря тому, что:

· в случае сбоя ПО на одном из узлов приложение продолжает функционировать или автоматически перезапускается на других узлах кластера;

· выход из строя одного из узлов (или нескольких) не приведет к краху всей кластерной системы;

· профилактические и ремонтные работы, реконфигурацию или смену версий программного обеспечения, как правило, можно осуществлять в узлах кластера поочередно, не прерывая работы других узлов.

Неотъемлемой частью кластера является специальное программное обеспечение, которое, собственно, и решает проблему восстановления узла в случае сбоя, а также решает другие задачи. Кластерное ПО обычно имеет несколько заранее заданных сценариев восстановления работоспособности системы, а также может предоставлять администратору возможности настройки таких сценариев. Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов -- приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Кластеры могут иметь разделяемую память на внешних дисках, как правило, на дисковом массиве RAID. Дисковый массив RAID -- это серверная подсистема ввода- вывода для хранения данных большого объема. В массивах RAID значительное число дисков относительно малой емкости используется для хранения крупных объемов данных, а также для обеспечения более высокой надежности и избыточности. Подобный массив воспринимается компьютером как единое логическое устройство.

Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов -- приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Узлы кластера контролируют работоспособность друг друга и обмениваются специфической «кластерной» информацией, например, о конфигурации кластера, а также передавать данные между разделяемыми накопителями и координировать их использование. Контроль работоспособности осуществляется с помощью специального сигнала, который узлы кластера передают друг другу, для того чтобы подтвердить свое нормальное функционирование. Прекращение подачи сигналов с одного из узлов сигнализирует кластерному программному обеспечению о произошедшем сбое и необходимости перераспределить нагрузку на оставшиеся узлы. В качестве примера рассмотрим отказоустойчивый кластер VAX/VMS.

Высокопроизводительные кластеры

Архитектура высокопроизводительных кластеров появилась как развитие принципов построения систем MPP на менее производительных и массовых компонентах, управляемых операционной системой общего назначения. Кластеры также как и MPP системы состоят из слабосвязанных узлов, которые могут быть как однородными, так и, в отличие от MPP, различными или гетерогенными. Особое внимание при проектировании высокопроизводительной кластерной архитектуры уделяется обеспечению высокой эффективности коммуникационной шины, связывающей узлы кластера. Так как в кластерах нередко применяются массовые относительно низко производительные шины, то приходится принимать ряд мер по исключению их низкой пропускной способности на производительность кластеров и организацию эффективного распараллеливания в кластере. Так например пропускная способность одной из самых высокоскоростных технологий Fast Ethernet на порядки ниже, чем у межсоединений в современных суперкомпьютерах МРР-архитектуры.

Для решения проблем низкой производительности сети применяют несколько методов:

· кластер разделяется на несколько сегментов, в пределах которых узлы соединены высокопроизводительной шиной типа Myrinet, а связь между узлами разных сегментов осуществляется низкопроизводительными сетями типа Ethernet/Fast Ethernet. Это позволяет вместе с сокращением расходов на коммуникационную среду существенно повысить производительность таких кластеров при решении задач с интенсивным обменом данными между процессами.

· применение так называемого «транкинга», т.е. объединение нескольких каналов Fast Ethernet в один общий скоростной канал, соединяющий несколько коммутаторов. Очевидным недостатком такого подхода является «потеря» части портов, задействованных в межсоединении коммутаторов.

· для повышения производительности создаются специальные протоколы обмена информацией по таким сетям, которые позволяют более эффективно использовать пропускную способность каналов и снимают некоторые ограничения накладываемые стандартными протоколами (TCP/IP,IPX). Такой метод часто используют в системах класса Beowulf.

Основным качеством, которым должен обладать высоко производительный кластер является горизонтальная масштабируемость, так как одним из главных преимуществ, которые предоставляет кластерная архитектура является возможность наращивать мощность существующей системы за счет простого добавления новых узлов в систему. Причем увеличение мощности происходит практически пропорционально мощности добавленных ресурсов и может производиться без остановки системы во время ее функционирования. В системах с другой архитектурой (в частности MPP) обычно возможна только вертикальная масштабируемость: добавление памяти, увеличение числа процессоров в многопроцессорных системах или добавление новых адаптеров или дисков. Оно позволяет временно улучшить производительность системы. Однако в системе будет установлено максимальное поддерживаемое количество памяти, процессоров или дисков, системные ресурсы будут исчерпаны, и для увеличения производительности придется создавать новую систему или существенно перерабатывать старую. Кластерная система также допускает вертикальную масштабируемость. Таким образом, за счет вертикального и горизонтального масштабирования кластерная модель обеспечивает большую гибкость и простоту увеличения производительности систем.

Кластеры распределения нагрузки

Кластеры распределения нагрузки (Network Load Balancing) - Принцип их действия строится на распределении запросов через один или несколько входных узлов, которые перенаправляют их на обработку в остальные, вычислительные узлы. Первоначальная цель такого кластера -- производительность, однако, в них часто используются также и методы, повышающие надёжность. Подобные конструкции называются серверными фермами. Программное обеспечение (ПО) может быть как коммерческим (OpenVMS, MOSIX, Platform LSF HPC, Solaris Cluster, Moab Cluster Suite, Maui Cluster Scheduler), так и бесплатным (OpenMosix, Sun Grid Engine, Linux Virtual Server).

Системы распределенных вычислений

Системы распределенных вычислений (Grid ) - Такие системы не принято считать кластерами, но их принципы в значительной степени сходны с кластерной технологией. Их также называют grid-системами. Главное отличие -- низкая доступность каждого узла, то есть невозможность гарантировать его работу в заданный момент времени (узлы подключаются и отключаются в процессе работы), поэтому задача должна быть разбита на ряд независимых друг от друга процессов. Такая система, в отличие от кластеров, не похожа на единый компьютер, а служит упрощённым средством распределения вычислений. Нестабильность конфигурации, в таком случае, компенсируется большим числом узлов.

Заключение

Как уже было отмечено, в настоящий момент происходит бурное развитие параллельных вычислительных систем и кластерных систем в частности. Как показывает статистика распределения различных параллельных систем в мире, кластерные системы занимают не последнее место по производительности (как максимальной, так и пиковой).

Итак, подведём итог сказанному, перечислив преимущества и недостатки кластеров.

Преимущества кластеров .

1. Наличие общедоступного ПО.

2. Возможность использования существующей сетевой инфраструктуры.

3. Не требуется приобретать специализированное оборудование.

4. Возможность создания гетерогенных вычислительных систем.

5. Возможность создания систем с произвольным количеством узлов(от двух до нужного количества).

6. Возможность использования кластера несколькими пользователями одновременно, причём каждый пользователь резервирует лишь необходимые для его вычислений ресурсы.

Недостатки кластеров .

1. Скорость обмена между узлами зависит от используемого сетевого оборудования. А, следовательно, желательно использовать наиболее современное и дорогостоящее оборудование.

Как мы видим из перечисленного, кластерные технологии являются наиболее перспективным направлением для разработок и исследований в области высокопроизводительных вычислительных систем. Они позволяют добиться приемлемых результатов при приемлемом уровне затрат, что является одним из основных аргументов в их пользу.

Рассмотрев вопрос организации параллельных вычислений, без использования суперкомпьютеров, напрашивается вывод, что собрать кластерную систему можно и дома, потратив на это небольшие денежные средства, так как кластерные системы являются «дешевой альтернативой» суперкомпьютеров и собираются из готовых серийно-выпускаемых компьютеров, достаточно лишь локальной сети и планировщика задач. Также кластерная система удобна потому, что в неё можно включить SMP-узлы.

Литература

1. Андреев, A.M. Многопроцессорные вычислительные системы. Теоретический анализ, математические модели и применение / A.M. Андреев, Г.П. Можаров, В.В. Сюзев - М.: МГТУ им. Н. Э. Баумана, 2011. - 336с.

2. Воеводин, B.B. Параллельные вычисления / B.B. Воеводин - M.: Книга по Требованию, 2004. - 602 c.

3. Гергель, В.П. Высокопроизводительные вычисления для многопроцессорных многоядерных систем / В.П. Гергель - М.: Издательство МГУ, 2010. - 544с.

4. Черемисинов, Д.И. Проектирование и анализ параллелизма в процессах и программах / Черемисинов, Д.И. - M.: Беларуская Навука, 2011. - 302c.

Размещено на Allbest.ru

Подобные документы

    Описание кластерных систем и характеристика библиотек параллелизма. Аналоги PVM. Организация параллельных вычислений. Описание оборудования и программного обеспечения кластера. Гипотеза Гольдбаха. Процесс компиляции собственной программы для работы с PVM.

    курсовая работа , добавлен 05.12.2014

    Историческое развитие средств вычислений. Структурные схемы вычислительных систем. Развитие элементной базы и развитие архитектуры самих систем. Основные классы вычислительных машин. Каналы передачи данных. Требования к составу периферийных устройств.

    реферат , добавлен 09.01.2011

    Главный недостаток систем с общей шиной. Использование матричного коммутатора в схемах. Соединения между процессорами с системах с распределенной памятью. Схема соединений процессоров в компьютере BBN Butterfly. Топологии типа гиперкуб. Архитектура NUMA.

    лекция , добавлен 22.10.2014

    Классификации архитектур вычислительных систем. Организация компьютерных систем. Устройство центрального процессора. Принципы разработки современных компьютеров. Эволюция микропроцессорных систем. Увеличение числа и состава функциональных устройств.

    дипломная работа , добавлен 29.01.2009

    Классификация ЭВМ: по принципу действия, этапам создания, назначению, размерам и функциональным возможностям. Основные виды электронно-вычислительных машин: суперЭВМ, большие ЭВМ, малые ЭВМ, МикроЭВМ, серверы.

    реферат , добавлен 15.03.2004

    Классификация Флинна как наиболее ранняя и известная классификация архитектур вычислительных систем, ее структура и содержание, признаки. Общая характеристика используемых классов. Описание и значение других распространенных методов классификации.

    лекция , добавлен 22.10.2014

    Пути достижения параллелизма вычислений. Понятие и разновидности, а также сферы и особенности использования суперкомпьютеров. Параллельные вычисления как процессы решения задач, в которых могут выполняться одновременно несколько вычислительных операций.

    презентация , добавлен 11.10.2014

    Роль распределенных вычислительных систем в решении современных задач. Инструментальная система DVM для разработки параллельных программ. Средства построения формальной модели графического интерфейса. Требования к графическому интерфейсу DVM-системы.

    курсовая работа , добавлен 15.10.2010

    Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат , добавлен 01.04.2014

    Структуры вычислительных машин и систем. Фон-неймановская архитектура, перспективные направления исследований. Аналоговые вычислительные машины: наличие и функциональные возможности программного обеспечения. Совокупность свойств систем для пользователя.

Кластерные вычислительные системы стали продолжением развития идей, заложенных в архитектуре MPA-систем. Если в MPAсистеме в качестве законченного вычислительного узла выступает процессорный модуль, то в кластерных системах в качестве таких вычислительных узлов используют серийно выпускаемые компьютеры. Развитие коммуникационных технологий, а именно, появление высокоскоростного сетевого оборудования и специальных программных библиотек, например, MPI (Message Passing Interface), реализующих механизм передачи сообщений по стандартным сетевым протоколам, сделали кластерные технологии общедоступными. В настоящее время создается множество небольших кластерных систем посредством объединения вычислительных мощностей компьютеров лаборатории или учебного класса.

Привлекательной чертой кластерных технологий является то, что для достижения необходимой производительности они позволяют строить гетерогенные системы, т. е. объединять в единые вычислительные системы компьютеры самого разного типа, начиная от персональных компьютеров и заканчивая мощными суперкомпьютерами. Широкое распространение кластерные технологии получили как средство создания систем суперкомпьютерного класса из составных частей массового производства, что значительно удешевляет стоимость вычислительной системы. В частности, одним из первых в 1998 году был реализован проект The COst effective COmputing Array (COCOA), в котором на базе 25 двухпроцессорных персональных компьютеров общей стоимостью порядка 100000 долларов была создана система с производительностью, эквивалентной 48-процессорному Cray T3D стоимостью несколько миллионов долларов.

Лайал Лонг (Lyle Long), профессор аэрокосмической инженерии в университете штата Пенсильвания (Penn State University), считает, что относительно дешевые кластерные вычислительные системы вполне могут служить альтернативой дорогим суперкомпьютерам в научных организациях. Под его руководством в университете был построен кластер COCOA. В рамках данного проекта объединены 25 ра-

бочих станций от DELL, каждая из которых включает два процессора Pentium II/400 МГц, 512 МБ оперативной памяти, 4-гигабайтный жесткий диск SCSI и сетевой адаптер Fast Ethernet. Для связи узлов используется 24-портовый коммутатор Baynetworks 450T с одним модулем расширения. Установленное программное обеспечение включает операционную систему RedHat Linux, компиляторы Fortran 90 и HPF от Portland Group, свободно распространяемую реализацию MPI - Message Passing Interface Chameleon (MPICH) и систему поддержки очередей DQS.

В работе, представленной на 38-й конференции Aerospace Science Meeting and Exhibit, Лонг описывает параллельную версию расчетной программы с автоматическим распределением вычислительной нагрузки, используемой для предсказания уровня шума от вертолетов в различных точках. Для сравнения данная расчетная программа была запущена на трех различных 48-процессорных компьютерах для расчета шума в 512 точках. На системе Cray T3E расчет занял 177 секунд, на системе SGI Origin2000 - 95 секунд, а на кластере COCOA - 127 секунд. Таким образом, кластеры являются очень эффективной вычислительной платформой для задач такого класса.

Преимущество кластерных систем перед суперкомпьютерами состоит еще и в том, что их владельцам не приходится делить процессорное время с другими пользователями, как в крупных суперкомпьютерных центрах. В частности, COCOA обеспечивает более 400 тысяч часов процессорного времени в год, тогда как в суперкомпьютерных центрах бывает трудно получить 50 тысяч часов.

Конечно, о полной эквивалентности этих систем говорить не приходится. Как известно, производительность систем с распределенной памятью очень сильно зависит от производительности коммутационной среды, которую можно охарактеризовать двумя параметрами: латентностью - временем задержки при посылке сообщения, и пропускной способностью - скоростью передачи информации. Например, для компьютера Cray T3D эти параметры составляют соответственно 1 мкс и 480 Мб/с, а для кластера, в котором в качестве коммутационной среды использована сеть Fast Ethernet, - 100 мкс и 10 Мб/с. Это отчасти объясняет очень высокую стоимость суперкомпьютеров. При таких параметрах, как у рассматриваемого кластера, найдется не так много задач, которые могут эффективно решаться на достаточно большом числе процессоров.

На основе вышеизложенного дадим определение: кластер - это связанный набор полноценных компьютеров, используемый в качестве единого вычислительного ресурса. В качестве узлов кластеров могут использоваться как одинаковые (гомогенные кластеры), так и разные (гетерогенные кластеры) вычислительные машины. По своей архитектуре кластерная вычислительная система является слабосвязанной. Для создания кластеров обычно используются либо простые однопроцессорные персональные компьютеры, либо двухили четырехпроцессорные SMP-серверы. При этом не накладывается никаких ограничений на состав и архитектуру узлов. Каждый из узлов может функционировать под управлением своей собственной операционной системы. Чаще всего используются стандартные операционные системы Linux, FreeBSD, Solaris, Tru64 Unix, Windows NT.

В литературе отмечают четыре преимущества, достигаемые с помощью кластеризации вычислительной системы:

абсолютная масштабируемость;

наращиваемая масштабируемость;

высокий коэффициент готовности;

соотношение цена/производительность.

Поясним каждую из перечисленных выше особенностей кластерной вычислительной системы.

Свойство абсолютной масштабируемости означает, что возможно создание больших кластеров, превосходящих по вычислительной мощности даже самые производительные одиночные вычислительные машины. Кластер может содержать десятки узлов, каждый из которых представляет собой мультипроцессор.

Свойство наращиваемой масштабируемостиозначает, что кластер можно наращивать, добавляя новые узлы небольшими порциями. Таким образом, пользователь может начать с малой системы, расширяя ее по мере необходимости.

Поскольку каждый узел кластера - самостоятельная вычислительная машина или система, отказ одного из узлов не приводит к потере работоспособности кластера. Во многих системах отказоустойчивость автоматически поддерживается программным обеспечением.

И наконец, кластерные системы обеспечивают недостижимое для суперкомпьютеров соотношение цена/качество . Кластеры любой производительности можно создать, используя стандартные «строительные блоки», при этом стоимость кластера будет ниже, чем оди-

ночной вычислительной машины с эквивалентной вычислительной мощностью.

Таким образом, на аппаратном уровне кластер - совокупность независимых вычислительных систем, объединенных сетью. Решения могут быть простыми, основывающимися на аппаратуре Ethernet, или сложными с высокоскоростными сетями с пропускной способностью в сотни мегабайтов в секунду.

Неотъемлемая часть кластера - специализированное ПО, на которое возлагается задача поддержания вычислений при отказе одного или нескольких узлов. Такое ПО производит перераспределение вычислительной нагрузки при отказе одного или нескольких узлов кластера, а также восстановление вычислений при сбое в узле. Кроме того, при наличии в кластере совместно используемых дисков кластерное ПО поддерживает единую файловую систему.

Классификация архитектур кластерных систем

В литературе описываются различные способы классификации кластерных систем. Простейшая классификация основана на способе использования дисковых массивов: совместно либо раздельно.

На рис. 5.5.1 и5.5.2 приведены структуры кластеров из двух узлов, координация работы которых обеспечивается высокоскоростной линией, используемой для обмена сообщениями. Это может быть локальная сеть, применяемая также и не входящими в кластер компьютерами, либо выделенная линия. В случае выделенной линии один или несколько узлов кластера будут иметь выход на локальную или глобальную сеть, благодаря чему обеспечивается связь между серверным кластером и удаленными клиентскими системами.

Различие между представленными кластерами заключается в том, что в случае локальной сети узлы используют локальные дисковые массивы, а в случае выделенной линии узлы совместно используют один избыточный массив независимых жестких дисков или так называемый RAID (Redundant Array of Independent Disks). RAID состоит из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива могут обеспечиваться различные степени отказоустойчивости и быстродействия.

Процессор

Процессор

Высокоскоростная

Процессор

Процессор

магистраль

Устройство

Устройство

Устройство

Устройство

ввода/вывода

ввода/вывода

ввода/вывода

ввода/вывода

Дисковый

Дисковый

Рис. 5.5.1. Конфигурация кластера без совместно используемых дисков

Дисковый

Устройство

Устройство

Процессор

Процессор

ввода/вывода

ввода/вывода

Процессор

Процессор

Устройство

Устройство

Устройство

Устройство

ввода/вывода

ввода/вывода

ввода/вывода

ввода/вывода

Дисковый

Высокоскоростная

Дисковый

магистраль

Рис. 5.5.2. Конфигурация кластера с совместно используемыми дисками

Рассмотрим наиболее распространенные типы дисковых масси-

RAID0 (striping - чередование) - дисковый массив из двух или более жестких дисков с отсутствием резервирования. Информация разбивается на блоки данных и записывается на оба (несколько) дисков одновременно. Достоинство - существенное повышение производительности. Недостаток - надежность RAID0 заведомо ниже надежности любого из дисков в отдельности и снижается с увеличением количества входящих в RAID0 дисков, так как отказ любого из дисков приводит к неработоспособности всего массива.

RAID1 (mirroring - зеркалирование) - массив, состоящий как минимум из двух дисков. Достоинствами являются приемлемая скорость записи и выигрыш в скорости чтения при распараллеливании запросов, а также высокая надежность: работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска. На практике при выходе из строя одного из дисков следует срочно принимать меры: вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва. Достоинство такого подхода - поддержание постоянной доступности. Недостаток заключается в том, что приходится оплачивать стоимость двух жестких дисков, получая полезный объем одного жесткого диска.

RAID10 - зеркалированный массив, данные в котором записываются последовательно на несколько дисков, как в RAID0. Эта архитектура представляет собой массив типа RAID0, сегментами которого вместо отдельных дисков являются массивы RAID1. Соответственно, массив этого уровня должен содержать как минимум четыре диска. RAID10 сочетает высокую отказоустойчивость и производительность.

Более полное представление о кластерных вычислительных системах дает классификация кластеров по используемым методам кластеризации, которые определяют основные функциональные особенности системы:

кластеризация с пассивным резервированием;

кластеризация с активным резервированием;

самостоятельные серверы;

серверы с подключением ко всем дискам;

серверы с совместно используемыми дисками.

Кластеризация с резервированием - наиболее старый и универсальный метод. Один из серверов берет на себя всю вычислительную нагрузку, в то время как другой остается неактивным, но готовым принять вычисления при отказе основного сервера. Активный (или первичный) сервер периодически посылает резервному (вторичному) серверу тактирующее сообщение. При отсутствии тактирующих сообщений, что рассматривается как отказ первичного сервера, вторичный сервер берет управление на себя. Такой подход повышает коэффициент готовности, но не улучшает производительности. Более того, если единственный вид общения между узлами - обмен сообщениями, и если оба сервера кластера не используют диски совместно, то резервный сервер не имеет доступа к базам данных, управляемым первичным сервером.

Пассивное резервирование для кластеров нехарактерно. Термин «кластер» относят ко множеству взаимосвязанных узлов, активно участвующих в вычислительном процессе и совместно создающих иллюзию одной мощной вычислительной машины. К такой конфигурации обычно применяют понятие системы с активным вторичным сервером, и здесь выделяют три метода кластеризации: самостоятельные серверы, серверы без совместного использования дисков и серверы с совместным использованием дисков.

В первом методе каждый узел кластера рассматривается как самостоятельный сервер с собственными дисками, причем ни один из дисков в системе не является совместно используемым. Схема обеспечивает высокую производительность и высокий коэффициент готовности, однако требует специального ПО для планирования распределения запросов клиентов по серверам так, чтобы добиться сбалансированного и эффективного использования всех серверов. Необходимо, чтобы при отказе одного из узлов в процессе выполнения какого-либо приложения другой узел кластера мог перехватить и завершить это приложение. Для этого данные в системе должны постоянно копироваться, чтобы каждый сервер имел доступ ко всем наиболее свежим данным в системе. Из-за этих издержек высокий коэффициент готовности обеспечивается лишь за счет потери производительности.

Для сокращения коммуникационных издержек большинство кластеров в настоящее время состоят из серверов, подключенных к общим дискам, обычно представленных дисковым массивом RAID (см. рис. 5.5.2 ).

Один из вариантов такого подхода предполагает, что совместное использование дисков не применяется. Общие диски разбиваются на разделы, и каждому узлу кластера выделяется свой раздел. Если один из узлов отказывает, кластер может быть реконфигурирован так, что права доступа к его разделу общего диска передаются другому узлу.

При другом варианте множество серверов разделяют во времени доступ к общим дискам, так что любой узел имеет доступ ко всем разделам всех общих дисков. Такой подход требует наличия каких-либо средств блокировки, гарантирующих, что в любой момент времени доступ к данным будет иметь только один из серверов.

Кластеры обеспечивают высокий уровень доступности - в них отсутствуют единая операционная система и совместно используемая память, т. е. нет проблемы когерентности кэш-памяти. Кроме того, специальное ПО в каждом узле постоянно контролирует работоспособность всех остальных узлов. Этот контроль основан на периодической рассылке каждым узлом сигнала «Я еще бодрствую». Если сигнал от некоторого узла не поступает, то такой узел считается вышедшим из строя; ему не предоставляется возможность выполнять ввод/вывод, его диски и другие ресурсы (включая сетевые адреса) переназначаются другим узлам, а выполнявшиеся в нем программы перезапускаются в других узлах.

Производительность кластеров хорошо масштабируется при добавлении узлов. В кластере может выполняться несколько отдельных приложений, но для масштабирования отдельного приложения требуется, чтобы его части взаимодействовали путем обмена сообщениями. Однако нельзя не учитывать, что взаимодействия между узлами кластера занимают гораздо больше времени, чем в традиционных вычислительных системах. Возможность практически неограниченного наращивания числа узлов и отсутствие единой операционной системы делают кластерные архитектуры исключительно хорошо масштабируемыми. Успешно используются системы с сотнями и тысячами узлов.

При разработке кластеров можно выделить два подхода. Первый подход состоит в создании небольших кластерных систем. В кластер объединяются полнофункциональные компьютеры, которые продолжают работать как самостоятельные единицы, например, компьютеры учебного класса или рабочие станции лаборатории. Второй подход заключается в целенаправленном создании мощных вычислительных ресурсов. Системные блоки компьютеров компактно размещают-

ся в специальных стойках, а для управления системой и запуска задач выделяется один или несколько полнофункциональных компьютеров, называемых хост-компьютерами. В этом случае нет необходимости снабжать компьютеры вычислительных узлов графическими картами, мониторами, дисковыми накопителями и другим периферийным оборудованием, что значительно удешевляет стоимость системы.

Разработано множество технологий объединения компьютеров в кластер. Наиболее широко в данное время применяется технология Ethernet, что обусловлено простотой ее использования и низкой стоимостью коммуникационного оборудования. Однако за это приходится расплачиваться заведомо недостаточной скоростью обменов.

Разработчики пакета подпрограмм ScaLAPACK, предназначенного для решения задач линейной алгебры на многопроцессорных системах, в которых велика доля коммуникационных операций, формулируют требование к многопроцессорной системе следующим образом: «Скорость межпроцессорных обменов между двумя узлами, измеренная в МБ/с, должна быть не менее 1/10 пиковой производительности вычислительного узла, измеренной в MFLOPS».

Топологии кластеров

Рассмотрим топологии, характерные для так называемых «малых» кластеров, состоящих из двух - четырех узлов.

Топология кластерных пар используется при организации двухили четырехузловых кластеров (рис.5.5.3 ). Узлы группируются попарно, дисковые массивы присоединяются к обоим узлам, входящим в состав пары, причем каждый узел пары имеет доступ ко всем дисковым массивам данной пары. Один из узлов пары используется как резервный для другого.

Четырехузловая кластерная пара представляет собой простое расширение двухузловой топологии. Обе кластерные пары с точки зрения администрирования и настройки рассматриваются как единое целое.

Данная топология может быть применена для организации кластеров с высокой готовностью данных, но отказоустойчивость реализуется только в пределах пары, так как принадлежащие паре устройства хранения информации не имеют физического соединения с другой парой.

Коммутатор

кластера

кластера

кластера

кластера

Дисковый

Дисковый

Дисковый

Дисковый

Рис. 5.5.3. Топология кластерных пар

Топология + 1 позволяет создавать кластеры из двух, трех и четырех узлов (рис.5.5.4 ). Каждый дисковый массив подключается только к двум узлам кластера. Дисковые массивы организованы по схеме RAID1 (mirroring). Один сервер имеет соединение со всеми дисковыми массивами и служит в качестве резервного для всех остальных (основных или активных) узлов. Резервный сервер может использоваться для обеспечения высокой степени готовности в паре с любым из активных узлов.

Топология рекомендуется для организации кластеров с высокой готовностью данных. В тех конфигурациях, где имеется возможность выделить один узел для резервирования, эта топология позволяет уменьшить нагрузку на активные узлы и гарантировать, что нагрузка вышедшего из строя узла будет воспроизведена на резервном узле без потери производительности. Отказоустойчивость обеспечивается между любым из основных узлов и резервным узлом. В то же время топология не позволяет реализовать глобальную отказоустойчивость, поскольку основные узлы кластера и их системы хранения информации не связаны друг с другом.

Топология × аналогично топологии + 1 позволяет создавать кластеры из двух, трех и четырех узлов, но в отличие от нее обладает большей гибкостью и масштабируемостью (рис.5.5.5 ).

Коммутатор

кластера

кластера

кластера

кластера

Коммутатор

кластера

кластера

кластера

кластера

Коммутатор

Дисковый

Дисковый

Дисковый

Рис. 5.5.5. Топология ×

Только в этой топологии все узлы кластера имеют доступ ко всем дисковым массивам, которые, в свою очередь, строятся по схеме RAID1 (mirroring). Масштабируемость топологии проявляется в простоте добавления к кластеру дополнительных узлов и дисковых массивов без изменения соединений в системе.

кластера

кластера

кластера

кластера

Дисковый

Дисковый

Дисковый

Дисковый

Рис. 5.5.6. Топология с полностью раздельным доступом

Топология с полностью раздельным доступом допускает соединение каждого дискового массива только с одним узлом кластера (рис. 5.5.6 ). Рекомендуется лишь для тех приложений, для которых характерна архитектура полностью раздельного доступа.

Контрольные вопросы

1. Дайте определение кластерной вычислительной системы.

2. Назовите основные достоинства и недостатки кластерных вычислительных систем.

3. Какие классификации кластерных вычислительных систем вы

4. Какие топологии кластерных систем вам известны? Назовите их достоинства и недостатки.

Литература

1. Архитектуры и топологии многопроцессорных вычислительных систем / А.В. Богданов, В.В. Корхов, В.В. Мареев, Е.Н. Станкова . - М.: ИНТУИТ.РУ, 2004. - 176 с.

2. Микропроцессорные системы: учеб. пособие для вузов /

Е.К. Александров, Р.И. Грушвицкий, М.С. Куприянов и др.; под ред. Д.В. Пузанкова. - СПб.: Политехника, 2002. - 935 с.



Рекомендуем почитать

Наверх