Беспроводная передача электрической энергии. Беспроводная передача электричества

Инструмент 29.08.2019
Инструмент

Питающиеся неосязаемым способом бытовые приборы, освобождённые от электрических проводов, не первый раз будоражат умы изобретателей. Но именно теперь специалисты подошли к тому, чтобы научить серийные пылесосы, торшеры, телевизоры, автомобили, имплантаты, мобильные роботы и лэптопы эффективно и безопасно получать ток из беспроводного источника.

Недавно команда учёных из Массачусетского технологического института (MIT), возглавляемая Марином Солячичем (Marin Soljačic), совершила очередной шаг на пути превращения технологии беспроводного электричества из лабораторного «фокуса» в пригодную для тиражирования технологию. Совершенно неожиданно они обнаружили эффект, позволяющий поднять КПД передачи. Но прежде чем рассказать о новом эксперименте, стоит сделать отступление.

В качестве переносчика энергии в данном случае используется ближнее магнитное поле, осциллирующее с высокой частотой в несколько мегагерц. Для переброски необходимы две магнитные катушки, настроенные на одинаковую частоту резонанса. Перекачку энергии между ними учёные сравнивают с разрушением резонирующего стеклянного бокала, когда он «слышит» звук строго определённой частоты.

Идеализированные (на данном рисунке) магнитные катушки (жёлтый цвет), окружённые своими полями (красный и синий), передают друг другу энергию на расстоянии D, многократно большем, чем размер самих катушек. Это учёные и называют резонансной магнитной связью (или сцеплением) – Resonant Magnetic Coupling (иллюстрация WiTricity).

В результате взаимодействия катушек и получается то, что было названо «Беспроводным электричеством» (WiTricity). Кстати, слово это — торговая марка, которая принадлежит одноимённой корпорации , основанной Солячичем и рядом его коллег из MIT. Корпорация указывает, что данный термин применим только к её технологии и к продуктам, созданным на её основе. Большая просьба – не использовать «уайтрисити» как синоним беспроводной передачи энергии вообще.

Изобретатели также просят не путать WiTricity с передачей энергии посредством электромагнитных волн: мол, новый метод — «неизлучающий».

И ещё несколько важных «не», указанных создателями. WiTricity — не аналог трансформатора с разведёнными на несколько метров обмотками (последний в таком случае перестаёт работать). Это не улучшенная электрическая зубная щётка: она хоть и умеет заряжаться без электрического контакта, но всё равно требует помещения в «док-станцию» для сближения передающей и приёмной индуктивных катушек до расстояния в миллиметр. «Уайтрисити» – не микроволновка, способная поджарить живой объект, поскольку пульсирующее магнитное поле, работающее в системе WiTricity, на человека не влияет. Наконец, «Беспроводное электричество» – даже не «таинственная и ужасная» башня Теслы (Wardenclyffe Tower), при помощи которой великий изобретатель намеревался продемонстрировать передачу энергии на большое расстояние.

Первый опыт по беспроводной передаче энергии методом WiTricity на 60-ваттную лампочку, удалённую на два с лишним метра от источника, Марин и его коллеги провёли в 2007 году . КПД был невелик – порядка 40%, зато уже тогда изобретатели указывали на ощутимый плюс новинки — безопасность.

Применяемое в системе поле в 10 тысяч раз слабее, чем то, что царит в сердцевине магнитно-резонансного томографа. Так что ни живые организмы, ни медицинские имплантаты, ни кардиостимуляторы и прочая чувствительная техника такого рода, ни бытовая электроника почувствовать на себе действие этого поля не могут.


Главные авторы WiTricity: Марин Солячич (слева), Аристеидис Каралис (Aristeidis Karalis) и Джон Иоаннополус (John Joannopoulos). Справа: принципиальная схема WiTricity. Передающая катушка (левая) включена в розетку. Приёмная – соединена с потребителем. Линии магнитного поля первой катушки (голубой цвет) способны огибать относительно небольшие проводящие препятствия (а дерево, ткань, стекло, бетон или человека они и вовсе не замечают), успешно переправляя энергию (жёлтые линии) к приёмному кольцу (фото MIT/Donna Coveney, иллюстрация WiTricity).

Теперь же Солячич и его соратники открыли, что на КПД системы WiTricity влияют не только размер, геометрия и настройка катушек, а также дистанция между ними, но и число потребителей. Парадоксально, на первый взгляд, однако два приёмных прибора, размещённые на расстоянии от 1,6 до 2,7 метра по обе стороны от передающей «антенны», показали на 10% лучший КПД, чем в случае если связь осуществлялась только между одним источником и потребителем, как было в предыдущих опытах.

Причём улучшение прослеживалось независимо от того, каков был КПД для пар передатчик-приёмник по отдельности. Учёные предположили, что при дальнейшем добавлении новых потребителей КПД будет ещё повышаться, хотя пока не вполне ясно — насколько. (Детали эксперимента раскрывает в Applied Physics Letters.)

Передающая катушка в новом эксперименте насчитывала площадь в 1 квадратный метр, а приёмные — всего по 0,07 м 2 каждая. И это тоже интересно: громоздкость «приёмников» в прежних опытах ставила под сомнение желание производителей техники снабжать такими системами свою аппаратуру — едва ли вам понравился бы самозаряжающийся ноутбук, блок WiTricity которого по размеру сопоставим с самим компьютером.


Слева: 1 – специальная схема переводит обычный переменный ток в высокочастотный, он питает передающую катушку, создающую осциллирующее магнитное поле. 2 – приёмная катушка в устройстве-потребителе должна быть настроена на ту же частоту. 3 – резонансная связь между катушками превращает магнитное поле обратно в электрический ток, который питает лампочку.
Справа: по мнению авторов системы, одна катушка на потолке может снабжать энергией все приборы и устройства в комнате – от нескольких светильников и телевизора до ноутбука и DVD-проигрывателя (иллюстрация WiTricity).

Но главное – эффект улучшения общего КПД при одновременной работе с несколькими потребителями означает зелёную улицу для голубой мечты Солячича — дома, заполненного разнообразной техникой, получающей питание из невидимых «неизлучающих излучателей», спрятанных в потолках или стенах комнат.

А может быть, и не только в комнатах, но и в гараже? Конечно, зарядить электромобиль можно и обычным способом. Но прелесть WiTricity в том, что ничего никуда не нужно подключать и даже помнить об этом — теоретически машину можно научить самой по прибытию в гараж (или на автостоянку компании) посылать «запрос» системе и подпитывать аккумулятор от магнитной катушки, уложенной в полу.

Кстати, в некоторых экспериментах специалисты WiTricity довели мощность передачи до трёх киловатт (а начинали, напомним, с 60-ваттной лампочки). КПД же варьируется в зависимости от целого набора параметров, однако, как утверждает корпорация, при достаточно близких катушках он может превышать 95%.

Нетрудно догадаться, что перспективный метод передачи электроэнергии на несколько метров без проводов и необходимости в прицеливании каких-нибудь «силовых лучей» должен заинтересовать широкий спектр компаний. Некоторые уже работают в этом направлении самостоятельно.

Например, отталкиваясь от принципов, обоснованных и испытанных Солячичем и его коллегами, Intel ныне развивает свою модификацию резонансной передачи электроэнергии — Wireless Resonant Energy Link (WREL). Ещё в 2008 году компания достигла на данном поприще блестящего результата, продемонстрировав «магнитную» передачу тока с КПД 75% .


Одна из опытных установок Intel WREL, без проводов передающая электропитание (наряду с аудиосигналом) с MP3-плеера на небольшую колонку (фото с сайта gizmodo.com).

Собственные опыты, воспроизводящие эксперименты физиков из Массачусетского технологического, ставит сейчас и Sony .

Однако Солячич уверен, что его инновация не затеряется среди продукции коллег-конкурентов. Ведь именно первооткрыватели технологии больше всех набили с ней шишек и готовы к углублённому её изучению и совершенствованию. Скажем, настройка даже пары катушек не так проста, как кажется на поверхностный взгляд. Учёный несколько лет подряд ставил опыты в лаборатории, прежде чем построил систему, которая работает действительно надёжно.

Демонстрационный образец ЖК-экрана, получающего электрическое питание через первый прототип бытового набора WiTricity. Передающая катушка лежит на полу, приёмная – на столе (фото WiTricity).

«Беспроводное электричество», по словам его авторов, изначально задумывалось как OEM-продукт . Потому в будущем можно ожидать появления данной технологии в товарах других компаний.

И пробный шар в сторону потенциальных потребителей уже запущен. В январе в Лас-Вегасе на выставке CES 2010 китайская компания Haier показала первый в мире полностью беспроводной HDTV-телевизор. На его экран по воздуху передавался не только видеосигнал с проигрывателя (для чего применялся официально родившийся буквально месяцем раньше стандарт Wireless Home Digital Interface), но и электропитание. Последнее обеспечивала именно технология WiTricity.

А ещё компания Солячича ведёт переговоры с производителями мебели об установке катушек в столы и стены шкафов. Первое объявление о серийном продукте партнёра WiTricity ожидается к концу 2010 года.

Вообще же специалисты предсказывают появление на рынке настоящих бестселлеров — новых продуктов со встроенным приёмником WiTricity. Причём никто ещё не может уверенно сказать — что это будут за вещи.

Компания Haier является одним из крупнейших в мире производителей бытовой электроники. Неудивительно, что её инженеры заинтересовались возможностью соединить новейшие технологии беспроводной передачи HDTV-сигнала и беспроводного электропитания и даже ухитрились первыми показать такой прибор в действии (фотографии engadget.com, gizmodo.com).

Любопытно, что история WiTricity началась несколько лет назад с ряда досадных пробуждений Марина. Несколько раз в течение месяца его будил сигнал разряженного телефона, просящего «поесть». Забывавший вовремя подключить мобильник к розетке учёный удивлялся: разве не смешно, что телефон находится в нескольких метрах от электрической сети, но не в состоянии получить эту энергию. После очередного пробуждения в три часа ночи Солячич подумал: было бы здорово, если б телефон смог позаботиться о своей зарядке сам.

Заметим, речь сразу пошла не о новом варианте "ковриков" для зарядки карманных приборов. Такие системы работают, только если устройство положить непосредственно на «коврик», а это ведь для забывчивых людей ничуть не лучше, чем необходимость просто втыкать проводок в розетку. Нет, телефон должен был получать электроэнергию в любом месте комнаты, а то и квартиры, и не важно, бросили ли вы его на столе, диване или подоконнике.

Тут обычная электромагнитная индукция, направленные микроволновые лучи и "осторожные" инфракрасные лазеры — не годились. Марин взялся за поиск других вариантов. Едва ли он тогда мог подумать, что через некоторое время пищащий и «голодный» телефон приведёт его к созданию собственной компании и появлению технологии, способной «делать заголовки» и, что куда важнее, заинтересовать промышленных партнёров.

Добавим, что о принципах, истории и будущем WiTricity некогда довольно подробно рассказал исполнительный директор корпорации Эрик Гилер (Eric Giler).

Если верить истории, революционный технологический проект был заморожен из-за отсутствия у Теслы должных финансовых возможностей (эта проблема преследовала ученого практически все время его работы в Америке). Говоря в целом, основное давление на него оказывалось со стороны другого изобретателя — Томаса Эдисона и его компаний, которые продвигали технологию постоянного тока, в то время как Тесла занимался током переменным (так называемая «Война токов»). История расставила все на свои места: сейчас переменный ток используется в городских электросетях практически повсеместно, хотя отголоски прошлого доходят и до наших дней (например, одна из заявленных причин поломок пресловутых поездов Hyundai - использование на некоторых участках украинской ЖД электролиний постоянного тока).

Башня Ворденклиф, в которой Никола Тесла проводил свои эксперименты с электричеством (фото 1094 года)

Что же касается башни Ворденклиф, то, если верить легенде, Тесла продемонстрировал одному из главных инвесторов Дж.П. Моргану, акционеру первой в мире Ниагарской ГЭС и медных заводов (медь, как известно, используется в проводах), работающую установку по беспроводной передаче тока, стоимость которого для потребителей была бы (заработай такие установки в промышленных масштабах) на порядок дешевле для потребителей, после чего он свернул финансирование проекта. Как бы там ни было, всерьез о беспроводной передаче электроэнергии заговорили только спустя 90 лет, в 2007 году. И хотя до того момента, как линии электропередач полностью исчезнут из городского пейзажа, еще далеко, приятные мелочи вроде беспроводной зарядки мобильного устройства доступны уже сейчас.

Прогресс подкрался незаметно

Если мы просмотрим архивы ИТ-новостей хотя бы двухгодичной давности, то в таких подборках обнаружим разве что редкие сообщения о том, что те или иные компании занимаются разработкой беспроводных зарядных устройств, и ни слова о готовых продуктах и решениях (кроме базовых принципов и общих схем). На сегодняшний же день беспроводная зарядка уже не является чем-то сверхоригинальным или концептуальным. Подобные устройства вовсю продаются (например, свои зарядки на MWC 2013 демонстрировала LG), испытываются для электромобилей (этим занимается Qualcomm) и даже используются в общественных местах (например, на некоторых европейских ЖД-вокзалах). Более того, уже существуют несколько стандартов такой передачи электроэнергии и несколько альянсов, продвигающих и развивающих их.

За беспроводную зарядку мобильных устройств отвечают подобные катушки, одна из которых находится в телефоне, а другая - в самом зарядном устройстве

Самым известным таким стандартом является стандарт Qi, разрабатываемый Wireless Power Consortium, в который входят такие известные компании, как HTC, Huawei, LG Electronics, Motorola Mobility, Nokia, Samsung, Sony и еще около сотни других организаций. Этот консорциум был организован в 2008 году с целью создания универсального зарядного устройства для девайсов различных производителей и торговых марок. В своей работе стандарт использует принцип магнитной индукции, когда базовая станция состоит из индукционной катушки, которая создает электромагнитное поле при поступлении переменного тока из сети. В заряжаемом же устройстве присутствует похожая катушка, которая реагирует на это поле и умеет преобразовывать полученную через него энергию в постоянный ток, который используется для зарядки аккумулятора (подробно ознакомиться с принципом работы можно на сайте консорциума http://www.wirelesspowerconsortium.com/what-we-do/how-it-works/). Кроме того, Qi поддерживает протокол передачи данных между зарядными и заряжаемыми устройствами на скорости 2 кб/с, который используется для передачи данных о необходимом объеме зарядки и выполнении требуемой операции.

Беспроводную зарядку по стандарту Qi на сегодняшний день поддерживают многие смартфоны, а зарядные устройства универсальны для всех аппаратов, поддерживающих данный стандарт

Есть у Qi и серьезный конкурент - Power Matters Alliance, в который входят AT&T, Duracell, Starbucks, PowerKiss и Powermat Technologies. Эти имена находятся далеко не на первых ролях в мире информационных технологий (особенно сеть кофеен Starbucks, которая находится в альянсе из-за того, что собирается повсеместно внедрять в своих заведениях данную технологию), - они специализируются именно на энергетических вопросах. Данный альянс был сформирован не так давно, в марте 2012 года, в рамках одной из программ IEEE (Института инженеров электротехники и электроники). Продвигаемый ими стандарт PMA работает по принципу взаимной индукции - частного примера электромагнитной индукции (которую не следует путать с магнитной индукцией, используемой Qi), когда при изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через контур второго, созданного магнитным полем, порожденным током в первом проводнике, что вызывает возникновение электродвижущей силы во втором проводнике и (если второй проводник замкнут) индукционного тока. Так же, как и в случае с Qi, этот ток потом преобразуется в постоянный и подается в аккумулятор.

Ну, и не стоит забывать об Alliance for Wireless Power, в которую входят Samsung, Qualcomm, Ever Win Industries, Gill Industries, Peiker Acustic, SK Telecom, SanDisk и т. д. Эта организация пока не представила готовых решений, но среди ее целей, в том числе, - разработка зарядок, которые бы работали через неметаллические поверхности и в которых бы не использовались катушки.

Одна из целей организации Alliance for Wireless Power - возможность зарядки без привязки к конкретному месту и типу поверхности

Из всего вышенаписанного можно сделать простой вывод: через год-два большинство современных устройств смогут подзаряжаться без использования традиционных зарядных устройств. Пока же мощности беспроводной зарядки хватает, в основном, на смартфоны, однако для планшетов и ноутбуков такие устройства тоже скоро появятся (та же Apple не так давно запатентовала беспроводную зарядку для iPad). Это значит, что проблема разрядки устройств будет решена практически полностью - положил или поставил устройство в определенное место, и даже во время работы оно заряжается (или, в зависимости от мощности, разряжается намного медленнее). Со временем, можно не сомневаться, радиус их действия будет расширяться (сейчас необходимо использовать специальный коврик или подставку, на котором лежит устройство, либо оно должно находиться совсем рядом), и они будут повсеместно устанавливаться в автомобили, поезда и даже, возможно, самолеты.

Ну, и еще один вывод - скорее всего, не удастся избежать очередной войны форматов между разными стандартами и альянсами, продвигающими их.

Избавимся ли мы от проводов?

Беспроводная зарядка устройств - штука, конечно, хорошая. Но мощности, которые возникают при ней, достаточны только для заявленных целей. С помощью этих технологий пока невозможно даже осветить дом, не говоря уже о работе крупной бытовой техники. Тем не менее, эксперименты по высокомощной беспроводной передаче электроэнергии ведутся и базируются они, в том числе, и на материалах Теслы. Сам ученый предлагал установить по всему миру (тут, скорее всего, подразумевались развитые на тот момент страны, которых было намного меньше, чем сейчас) более 30 приемо-передающих станций, которые совмещали бы передачу энергии с радиовещанием и направленной беспроводной связью, что позволило бы избавиться от многочисленных высоковольтных линий электропередачи и содействовало объединению электрических генерирующих в глобальном масштабе.

Сегодня есть несколько методов решения задачи беспроводной передачи энергии, правда, все они пока позволяют добиться несущественных в глобальном плане результатов; речь идет даже не о километрах. Такие методы, как ультразвуковая, лазерная и электромагнитная передача, имеют существенные ограничения (короткие дистанции, необходимость прямой видимости передающих устройств, их размер, а в случае с электромагнитными волнами -очень низкий КПД и вред здоровью от мощного поля). Поэтому самые перспективные разработки связаны с использованием магнитного поля, а точнее - резонансного магнитного взаимодействия. Одна из них - WiTricity, разработкой занимается концерн WiTricity corporation, основанной профессором MIT Марином Солячичем и рядом его коллег.

Так, в 2007 году им удалось передать ток мощностью 60 Вт на расстояние 2 м. Его хватило на свечение лампочки, а КПД составлял 40 %. Но неоспоримым плюсом использовавшейся технологии являлось то, что она практически не взаимодействует ни с живыми существами (сила поля, по заявлению авторов, в 10 тыс. раз слабее, чем то, что царит в сердцевине магнитно-резонансного томографа), ни с медицинским оборудованием (кардиостимуляторы и т. п.), ни с другим излучением, а значит, не помешает, например, работе того же Wi-Fi.

Что самое интересное, на КПД системы WiTricity влияют не только размер, геометрия и настройка катушек, а также дистанция между ними, но и число потребителей, причем в положительном плане. Два приемных прибора, размещенные на расстоянии от 1,6 до 2,7 м по обе стороны от передающей «антенны», показали на 10 % лучший КПД, чем по отдельности - это решает проблему подключения множества устройств к одному источнику питания.

Сам принцип действия наглядно показан на простой поделке , в которой светодиод может загораться без проводов на расстоянии 2 см от источника энергии. Схема, которая действует как повышающий преобразователь напряжения, а также беспроводные передатчик и приемник электроэнергии, может быть улучшена и реализована во многих мозгопроектах .

Шаг 1: Нам понадобится

NPN транзистор — я взял 2N3904, но вы можете использовать любой NPN транзистор (337, BC547 и т.д.), PNP транзистор тоже будет работать только соблюдайте полярность соединений.
обмоточный или изолированный провод — около 3-4 метров (провода можно «добыть» из многих приборов, трансформаторов, динамиков, моторчиков, реле и т.д.)
резистор 1 кОм – будет использоваться для защиты транзистора от сгорания в случае перегрузки, также можно использовать резисторы до 5 кОм, можно даже без резистора, но тогда аккумулятор будет разряжаться быстрее.
светодиод – сгодится любой, главное следовать схеме.
батарейка 1.5В – не применяйте батарейки большего вольтажа, чтобы не повредить транзистор.
ножницы или нож.
паяльник (опционально).
зажигалка(опционально) для удаления изоляции с проводов.

Шаг 2: Смотрим видео процесса

Шаг 3: Резюмируя видео

Итак, на цилиндрический предмет наматываем катушку из 30 витков, это будет катушка А. Далее наматываем вторую катушку того же диаметра, но при этом сначала накручиваем 15 витков и делаем отвод, а затем еще 15 витков, это катушка В. Катушки закрепляем от разматывания любым подходящим способом, например просто делаем узлы из выводов катушек. Важный момент: для правильного функционирования этой поделки диаметры обеих катушек и количество витков должны быть одинаковыми.

Выводы обеих катушек зачищаем и приступаем к пайке цепи. Определяемся с эмиттером, базой и коллектором своего транзистора и к базе припаиваем резистор. Другой вывод резистора припаиваем к свободному выводу катушки В, не к выводу-отводу. Второй свободный вывод катушки В, снова не отвод, припаиваем к коллектору.

Для удобства можно к эмиттеру припаять небольшой кусочек провода, так буде проще подсоединять батарейку.

Цепь приемника собирается легко: к выводам катушки А припаиваем светодиод. И мозгоподелка готова!

Шаг 4: Принципиальная схема

Шаг 5: Наглядный рисунок

Шаг 6: Тестирование


Для приведения самоделки в работоспособное состояние подключаем отвод катушки В к «плюсу» батарейки, а «минус» к эмиттеру транзистора. Затем подносим катушки параллельно друг к другу и диод светится!

Шаг 7: Пояснение

Немного поясню, как все это функционирует.

Передатчик в нашей поделке это цепь осциллятора. Вы может слышали о «цепи ворующей Джоули», которая поразительна схожа с нашей цепью передатчика. В «цепи ворующей Джоули» электроэнергия от батарейки 1.5В преобразуется в более высокое напряжение, но импульсное. Светодиоду требуется 3В, но благодаря «цепи ворующей Джоули» он прекрасно светится и от 1.5В.

«Цепь, ворующая Джоули» известна как конвертер и генератор, цепь, которую мы создали, также является генератором и конвертером. А энергия на светодиод подается посредством индукции, возникающей в катушках, которую можно пояснить на мозгопримере обычного трансформатора.

Предположим, что трансформатор имеет две одинаковые катушки. Тогда во время прохождения электричества по одной катушке она становится магнитом, вторая катушка попадает в магнитное поле первой и, вследствие этого, по ней тоже начинает течь ток. Если напряжение в первой катушке переменное, следовательно, она импульсно теряет свои магнитные свойства, значит и вторая катушка импульсно попадает в магнитное поле первой, то есть и во второй катушке образуется переменное напряжение.

В нашей самоделке катушка передатчика создает магнитное поле, в которое попадает катушка приемника, соединенная со светодиодом, который преобразует полученную энергию в свет!

Представленная мозгоподелка преобразует полученную энергию в свет, но можно использовать ее более разнообразно. Также можно применять принципы этой самоделки для создания фокусов, забавных подарков или научных проектов. Если варьировать диаметры и число витков на катушках, то можно добиться максимальных значений, или можно изменить форму катушек и т.д., возможности не ограничены!

Шаг 9: Устранение неисправностей

При создании этой самоделки возможны следующие проблемы:
Транзистор слишком греется – проверьте номинал резистора, возможно его нужно повысить. Я сначала не использовал резистор, и транзистор при этом сгорел. Или как вариант используйте радиатор для транзистора, а может и другой транзистор, с более высоким значением усиления.
Светодиод не светится – причин может быть много. Проверьте качество соединения, правильно ли распаяли базу и коллектор, убедитесь, что катушки равного диаметра, нет ли короткого замыкания в цепи.

Сегодняшний эксперимент с индукцией закончен, благодарю за внимание и успехов в творчестве!

Это простая схема, которая может обеспечить энергией электролампочку без каких-либо проводов, на расстоянии почти 2,5 см! Эта схема действует и как повышающий преобразователь напряжения, и как беспроводной передатчик электроэнергии и приемник. Её очень просто сделать и, если усовершенствовать, то можно использовать различными способами. Итак, приступим!

Шаг 1. Необходимые материалы и инструменты.

  1. NPN транзистор. Я использовал 2N3904, но можно использовать любой NPN транзистор, например, ВС337, BC547 и т.д. (Любой PNP транзистор будет работать, только соблюдайте полярность соединений.)
  2. Обмоточный или изолированный провод. Около 3-4 метров провода должно быть достаточно (провода обмоточные, просто медные провода с очень тонкой эмалевой изоляцией). Подойдут провода от большинства электронных устройств, таких как трансформаторы, колонки, электродвигатели, реле и т.д.
  3. Резистор с сопротивлением 1 кОм. Этот резистор будет использоваться для защиты транзистора от перегорания в случае перегрузки или перегрева. Вы можете использовать более высокие значения сопротивления до 4-5 кОм. Можно не использовать резистор, но при этом существует риск более быстрого разряда батареи.
  4. Светодиод. Я использовал светодиод диаметром 2 мм ультра яркий белый. Вы можете использовать любой светодиод. Фактически назначение светодиода здесь - только показывать работоспособность схемы.
  5. Батарея размера АА напряжением 1,5 Вольт. (Не используйте батареи высокого напряжения, если не хотите повредить транзистор.)

Необходимые инструменты:

1) Ножницы или нож.

2) Паяльник (Необязательно). Если у вас нет паяльника, можно просто сделать скрутку проводов. Я делал это, когда у меня не было паяльника. Если вы хотите попробовать схему без пайки, это только приветствуется.

3) Зажигалка (Необязательно). Мы будем использовать зажигалку, чтобы сжечь изоляцию на проводе, а затем используем ножницы, или нож, чтобы соскоблить остатки изоляции.

Шаг 2: Посмотрите видео, чтобы узнать, как это сделать

Шаг 3: Краткий повтор всех шагов.

Итак, прежде всего вы должны взять провода, и сделать катушку, намотав 30 витков вокруг круглого цилиндрического объекта. Назовем эту катушку А. С тем же круглым предметом, начинаем делать вторую катушку. После наматывания 15-го витка создать ответвление в виде петли из провода и затем намотайте на катушку еще 15 оборотов. Так что теперь у вас есть катушка с двумя концами и одним ответвлением. Назовем эту катушку В. Свяжите узлы на концах проводов, так чтобы они не раскручивались сами по себе. Обожгите изоляцию на концах проводов и на ответвлении на обоих катушках. Также вы можете использовать ножницы или нож для снятия изоляции. Убедитесь, что диаметры и количество витков обоих катушек равны!

Создайте передатчик: Возьмите транзистор и поместите его так, чтобы плоская его сторона была обращена вверх и обращена к Вам. Контакт слева будет присоединен к излучателю, средний будет базовым, а контакт справа будет присоединен к коллектору. Возьмите резистор и подключите один из его концов к базовому контакту транзистора. Возьмите другой конец резистора и соедините его с одним из концов (не с ответвлением) катушки B. Возьмите другой конец катушки B и подключите его к коллектору транзистора. Если хотите, можете подключить небольшой кусок проволоки к эмиттеру транзистора (Она будет работать в качестве расширения Эмитента.)

Настройте приемник. Чтобы создать приемник, возьмите катушку А и присоедините ее концы к разным контактам вашего светодиода.

Вы собрали схему!

Шаг 4: Принципиальная схема.

Здесь мы видим принципиальную схему нашего соединения. Если вы не знаете каких-то обозначений на схеме, не волнуйтесь. В следующих изображениях все показано.

Шаг 5. Чертеж соединений схемы.

Здесь мы видим объяснительный чертеж соединений нашей цепи.

Шаг 6. Использование схемы.

Просто возьмите ответвление катушки B и присоедините его к положительному концу батареи. Подключите отрицательный полюс батареи к эмиттеру транзистора. Теперь, если вы приближаете катушку с светодиодом к катушке B, светодиод загорается!

Шаг 7. Как это объясняется с научной точки зрения?

(Я просто попытаюсь объяснить науку этого явления простыми словами и аналогиями, и я знаю, что могу ошибиться. Для того, чтобы правильно объяснить сие явление, мне придется углубляться во все подробности, что я не в состоянии сделать, поэтому я просто хочу провести общие аналогии для объяснения схемы).

Схема передатчика, который мы только что создали это схема Осциллятора. Вы, возможно, слышали о так называемой схеме Вор джоулей, так вот она имеет поразительное сходство с цепью, которую мы создали. Схема Вор джоулей принимает электроэнергию от батареи напряжением 1,5 Вольт, выводит электроэнергию с более высоким напряжением, но с тысячами интервалов между ними. Светодиоду достаточно напряжения 3 вольт, чтобы загореться, но в данной схеме он вполне может загореться и с батареей напряжением 1,5 вольт. Так схема Вор джоулей известна как повышающий напряжение конвертер, а также как излучатель. Схема, которую мы создали также является излучателем и конвертером, повышающим напряжение. Но может возникнуть вопрос: "Как зажечь светодиод на расстоянии?" Это происходит из-за индукции. Для этого можно, к примеру, использовать трансформатор. Стандартный трансформатор имеет сердечник с обеих своих сторон. Предположим, что провод на каждой стороне трансформатора равен по величине. Когда электроток проходит через одну катушку, катушки трансформатора становятся электромагнитами. Если через катушку протекает переменный ток, то колебания напряжения происходят по синусоиде. Поэтому, когда переменный ток протекает через катушку, проволока приобретает свойства электромагнита, а затем снова теряет электромагнетизм, когда падает напряжение. Моток проволоки становится электромагнитом, а затем теряет свои электромагнитные характеристики с такой же скоростью, с какой магнит движется из второй катушки. Когда же магнит быстро движется через катушку провода, вырабатывается электроэнергия, таким образом колебательное напряжение одной катушки на трансформаторе, индуцирует электричество в другой катушке провода, и электричество передается от одной катушки к другой без проводов. В нашей цепи, ядром катушки является воздух, и напряжение переменного тока проходит через первую катушку, таким образом вызывает напряжение во второй катушке и зажигает лампочки!!

Шаг 8. Польза и советы по улучшению.

Таким образом, в нашей схеме мы просто использовали светодиод, чтобы показать эффект схемы. Но мы могли бы сделать больше! Схема приемника получает электричество от переменного тока, так что мы могли бы использовать ее, чтобы осветить люминесцентные лампы! Также с помощью нашей схемы можно делать интересные фокусы, забавные подарки и др. Чтобы максимизировать результаты, вы можете поэкспериментировать с диаметром катушек и числом оборотов на катушках. Также Вы можете попробовать сделать катушки плоскими, и посмотреть, что получится! Возможности безграничны!!

Шаг 9. Причины, по которым схема может не работать.

С какими проблемами вы можете столкнуться и как их возможно исправить:

  1. Транзистор слишком сильно нагревается!

Решение: Вы использовали резистор с нужными параметрами? Я не использовал резистор в первый раз, и транзистор у меня задымился. Если это не помогает, попробуйте использовать термоусадку или используйте транзистор более высокого класса.

  1. Светодиод не горит!

Решение: Может быть очень много причин. Для начала проверьте все соединения. Я случайно поменял базу и коллектор в своем соединении, и это стало большой проблемой для меня. Итак, проверьте все связи в первую очередь. Если у вас есть такой прибор, как мультиметр, можете использовать его, чтобы проверить все соединения. Также убедитесь, что обе катушки у вас одного и того же диаметра. Проверьте, вдруг в вашей сети имеется короткое замыкание.

Я не знаю о каких-либо еще проблемах. Но если вы таки с ними столкнулись, дайте мне знать! Я постараюсь помочь, чем смогу. Кроме того, я ученик 9 класса школы и мои научные познания крайне ограничены, и поэтому, если вы обнаружите у меня ошибки, сообщите мне о них. Предложения по улучшению более чем приветствуется. Удачи вам в вашем проекте!




Рекомендуем почитать

Наверх