Что позволяет сократить уровень информационной энтропии. Информационная энтропия

Инструмент 25.04.2019
Инструмент

Понятие Энтропи́и впервые введено в 1865 Р. Клаузиусом в термодинамике для определения меры необратимого рассеяния энергии. Энтропия применяется в разных отраслях науки, в том числе и в теории информации как мера неопределенности какого-либо опыта, испытания, который может иметь разные исходы. Эти определения энтропии имеют глубокую внутреннюю связь. Так на основе представлений об информации можно вывести все важнейшие положения статистической физики. [БЭС. Физика. М: Большая российская энциклопедия, 1998].

Информационная двоичная энтропия для независимых (неравновероятных) случайных событий x с n возможными состояниями (от 1 до n , p - функция вероятности) рассчитывается по формуле Шеннона :

Эта величина также называется средней энтропией сообщения. Энтропия в формуле Шеннона является средней характеристикойматематическим ожиданием распределения случайной величины .
Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других.
В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки теории информации, которая использует понятие вероятности. Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

В случае равновероятных событий (частный случай), когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов и формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, как один из научных подходов к оценке сообщений:

, где I – количество передаваемой информации, p – вероятность события, N – возможное количество различных (равновероятных) сообщений.

Задание 1. На равновероятные события.
В колоде 36 карт. Какое количество информации содержится в сообщении, что из колоды взята карта с портретом “туз”; “туз пик”?

Вероятность p1 = 4/36 = 1/9, а p2 = 1/36. Используя формулу Хартли имеем:

Ответ: 3.17; 5.17 бит
Заметим (из второго результата), что для кодирования всех карт, необходимо 6 бит.
Из результатов также ясно, что чем меньше вероятность события, тем больше информации оно содержит. (Данное свойство называется монотонностью )

Задание 2. На неравновероятные события
В колоде 36 карт. Из них 12 карт с “портретами”. Поочередно из колоды достается и показывается одна из карт для определения изображен ли на ней портрет. Карта возвращается в колоду. Определить количество информации, передаваемой каждый раз, при показе одной карты.

Энтропия (теория информации)

Энтропи́я (информационная) - мера хаотичности информации , неопределённость появления какого-либо символа первичного алфавита . При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии n -ого порядка, см. ) встречаются очень редко, то неопределённость ещё более уменьшается.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии , получившему название демона Максвелла . Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Формальные определения

Определение с помощью собственной информации

Также можно определить энтропию случайной величины, введя предварительно понятия распределения случайной величины X , имеющей конечное число значений:

I (X ) = − logP X (X ).

Тогда энтропия будет определяться как:

От основания логарифма зависит единица измерения информации и энтропии: бит , нат или хартли .

Информационная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n ) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения . Величина называется частной энтропией , характеризующей только i -e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i , умноженных на их же двоичные логарифмы (основание 2 выбрано только для удобства работы с информацией, представленной в двоичной форме). Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей .

В общем случае b -арная энтропия (где b равно 2, 3, …) источника с исходным алфавитом и дискретным распределением вероятности где p i является вероятностью a i (p i = p (a i ) ) определяется формулой:

Определение энтропии Шеннона связано с понятием термодинамической энтропии . Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

Альтернативное определение

Другим способом определения функции энтропии H является доказательство, что H однозначно определена (как указано ранее), если и только если H удовлетворяет условиям:

Свойства

Важно помнить, что энтропия является количеством, определённым в контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию − 2(0,5log 2 0,5) = 1 бит на одно кидание (при условии его независимости). У источника, который генерирует строку, состоящую только из букв «А», энтропия равна нулю: . Так, например, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

  1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.
  2. Количество энтропии не всегда выражается целым числом бит.

Математические свойства

Эффективность

Исходный алфавит, встречающийся на практике, имеет вероятностное распределение, которое далеко от оптимального. Если исходный алфавит имел n символов, тогда он может быть сравнён с «оптимизированным алфавитом», вероятностное распределение которого однородно. Соотношение энтропии исходного и оптимизированного алфавита - это эффективность исходного алфавита, которая может быть выражена в процентах.

Из этого следует, что эффективность исходного алфавита с n символами может быть определена просто как равная его n -арной энтропии.

Энтропия ограничивает максимально возможное сжатие без потерь (или почти без потерь), которое может быть реализовано при использовании теоретически - типичного набора или, на практике, - кодирования Хаффмана , кодирования Лемпеля - Зива - Велча или арифметического кодирования .

Вариации и обобщения

Условная энтропия

Если следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а следовательно и энтропия) очевидно меньше. Для учёта таких фактов используется условная энтропия.

Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть вероятности двухбуквенных сочетаний):

где i - это состояние, зависящее от предшествующего символа, и p i (j ) - это вероятность j , при условии, что i был предыдущим символом.

Так, для русского языка без буквы « » .

Через частную и общую условные энтропии полностью описываются информационные потери при передаче данных в канале с помехами. Для этого применяются так называемые канальные матрицы . Так, для описания потерь со стороны источника (то есть известен посланный сигнал), рассматривают условную вероятность получения приёмником символа b j при условии, что был отправлен символ a i . При этом канальная матрица имеет следующий вид:

b 1 b 2 b j b m
a 1
a 2
a i
a m

Очевидно, вероятности, расположенные по диагонали описывают вероятность правильного приёма, а сумма всех элементов столбца даст вероятность появления соответствующего символа на стороне приёмника - p (b j ) . Потери, приходящиеся на передаваемый сигнал a i , описываются через частную условную энтропию:

Для вычисления потерь при передаче всех сигналов используется общая условная энтропия:

Означает энтропию со стороны источника, аналогично рассматривается - энтропия со стороны приёмника: вместо всюду указывается (суммируя элементы строки можно получить p (a i ) , а элементы диагонали означают вероятность того, что был отправлен именно тот символ, который получен, то есть вероятность правильной передачи).

Взаимная энтропия

Взаимная энтропия, или энтропия объединения , предназначена для расчёта энтропии взаимосвязанных систем (энтропии совместного появления статистически зависимых сообщений) и обозначается H (A B ) , где A , как всегда, характеризует передатчик, а B - приёмник.

Взаимосвязь переданных и полученных сигналов описывается вероятностями совместных событий p (a i b j ) , и для полного описания характеристик канала требуется только одна матрица:

p (a 1 b 1) p (a 1 b 2) p (a 1 b j ) p (a 1 b m )
p (a 2 b 1) p (a 2 b 2) p (a 2 b j ) p (a 2 b m )
p (a i b 1) p (a i b 2) p (a i b j ) p (a i b m )
p (a m b 1) p (a m b 2) p (a m b j ) p (a m b m )

Для более общего случая, когда описывается не канал, а просто взаимодействующие системы, матрица необязательно должна быть квадратной. Очевидно, сумма всех элементов столбца с номером j даст p (b j ) , сумма строки с номером i есть p (a i ) , а сумма всех элементов матрицы равна 1. Совместная вероятность p (a i b j ) событий a i и b j вычисляется как произведение исходной и условной вероятности,

Условные вероятности производятся по формуле Байеса . Таким образом имеются все данные для вычисления энтропий источника и приёмника:

Взаимная энтропия вычисляется последовательным суммированием по строкам (или по столбцам) всех вероятностей матрицы, умноженных на их логарифм:

H (A B ) = − p (a i b j )logp (a i b j ).
i j

Единица измерения - бит/два символа, это объясняется тем, что взаимная энтропия описывает неопределённость на пару символов - отправленного и полученного. Путём несложных преобразований также получаем

Взаимная энтропия обладает свойством информационной полноты - из неё можно получить все рассматриваемые величины.

История

Примечания

См. также

Ссылки

  • Claude E. Shannon. A Mathematical Theory of Communication (англ.)
  • С. М. Коротаев.

Количество информации

Введение

2. Неопределенность, количество информации и энтропия

3. Формула Шеннона

4. Формула Хартли

5. Количество информации, получаемой в процессе сообщения

Список использованной литературы

Введение

По определению А.Д. Урсула - «информация есть отраженное разнообразие». Количество информации есть количественная мера разнообразия. Это может быть разнообразие совокупного содержимого памяти; разнообразие сигнала, воспринятого в процессе конкретного сообщения; разнообразие исходов конкретной ситуации; разнообразие элементов некоторой системы… - это оценка разнообразия в самом широком смысле слова.

Любое сообщение между источником и приемником информации имеет некоторую продолжительность во времени, но количество информации воспринятой приемником в результате сообщения, характеризуется в итоге вовсе не длиной сообщения, а разнообразием сигнала порожденного в приемнике этим сообщением.

Память носителя информации имеет некоторую физическую ёмкость, в которой она способна накапливать образы, и количество накопленной в памяти информации, характеризуется в итоге именно разнообразием заполнения этой ёмкости. Для объектов неживой природы это разнообразие их истории, для живых организмов это разнообразие их опыта.

Разнообразие необходимо при передаче информации. Нельзя нарисовать белым по белому, одного состояния недостаточно. Если ячейка памяти способна находиться только в одном (исходном) состоянии и не способна изменять свое состояние под внешним воздействием, это значит, что она не способна воспринимать и запоминать информацию. Информационная емкость такой ячейки равна 0.

Минимальное разнообразие обеспечивается наличием двух состояний. Если ячейка памяти способна, в зависимости от внешнего воздействия, принимать одно из двух состояний, которые условно обозначаются обычно как «0» и «1», она обладает минимальной информационной ёмкостью.

Информационная ёмкость одной ячейки памяти, способной находиться в двух различных состояниях, принята за единицу измерения количества информации - 1 бит.

1 бит (bit - сокращение от англ. binary digit - двоичное число) - единица измерения информационной емкости и количества информации, а также и еще одной величины - информационной энтропии, с которой мы познакомимся позже. Бит, одна из самых безусловных единиц измерения. Если единицу измерения длины можно было положить произвольной: локоть, фут, метр, то единица измерения информации не могла быть по сути никакой другой.

На физическом уровне бит является ячейкой памяти, которая в каждый момент времени находится в одном из двух состояний: «0» или «1».

Если каждая точка некоторого изображения может быть только либо черной, либо белой, такое изображение называют битовым, потому что каждая точка представляет собой ячейку памяти емкостью 1 бит. Лампочка, которая может либо «гореть», либо «не гореть» также символизирует бит. Классический пример, иллюстрирующий 1 бит информации - количество информации, получаемое в результате подбрасывания монеты - “орел” или “решка”.

Количество информации равное 1 биту можно получить в ответе на вопрос типа «да»/ «нет». Если изначально вариантов ответов было больше двух, количество получаемой в конкретном ответе информации будет больше, чем 1 бит, если вариантов ответов меньше двух, т.е. один, то это не вопрос, а утверждение, следовательно, получения информации не требуется, раз неопределенности нет.

Информационная ёмкость ячейки памяти, способной воспринимать информацию, не может быть меньше 1 бита, но количество получаемой информации может быть и меньше, чем 1 бит. Это происходит тогда, когда варианты ответов «да» и «нет» не равновероятны. Неравновероятность в свою очередь является следствием того, что некоторая предварительная (априорная) информация по этому вопросу уже имеется, полученная, допустим, на основании предыдущего жизненного опыта. Таким образом, во всех рассуждениях предыдущего абзаца следует учитывать одну очень важную оговорку: они справедливы только для равновероятного случая.

Количество информации мы будем обозначать символом I, вероятность обозначается символом P. Напомним, что суммарная вероятность полной группы событий равна 1.

2.Неопределенность, количество информации и энтропия

Основоположник теории информации Клод Шеннон определил информацию, как снятую неопределенность. Точнее сказать, получение информации - необходимое условие для снятия неопределенности. Неопределенность возникает в ситуации выбора. Задача, которая решается в ходе снятия неопределенности - уменьшение количества рассматриваемых вариантов (уменьшение разнообразия), и в итоге выбор одного соответствующего ситуации варианта из числа возможных. Снятие неопределенности дает возможность принимать обоснованные решения и действовать. В этом управляющая роль информации.

Ситуация максимальной неопределенности предполагает наличие нескольких равновероятных альтернатив (вариантов), т.е. ни один из вариантов не является более предпочтительным. Причем, чем больше равновероятных вариантов наблюдается, тем больше неопределенность, тем сложнее сделать однозначный выбор и тем больше информации требуется для этого получить. Для N вариантов эта ситуация описывается следующим распределением вероятностей: {1/N, 1/N, … 1/N}.

Минимальная неопределенность равна 0, т.е. эта ситуация полной определенности, означающая что выбор сделан, и вся необходимая информация получена. Распределение вероятностей для ситуации полной определенности выглядит так: {1, 0, …0}.

Величина, характеризующая количество неопределенности в теории информации обозначается символом H и имеет название энтропия, точнее информационная энтропия.

Энтропия (H) - мера неопределенности, выраженная в битах. Так же энтропию можно рассматривать как меру равномерности распределения случайной величины.

Рис. 1. Поведение энтропии

для случая двух альтернатив.

На рисунке 1. показано поведение энтропии для случая двух альтернатив, при изменении соотношения их вероятностей (p, (1-p)).

Максимального значения энтропия достигает в данном случае тогда, когда обе вероятности равны между собой и равны?, нулевое значение энтропии соответствует случаям (p0=0, p1=1) и (p0=1, p1=0).

Рис. 2. Связь между энтропией и количеством информации.

Количество информации I и энтропия H характеризуют одну и ту же ситуацию, но с качественно противоположенных сторон. I - это количество информации, которое требуется для снятия неопределенности H. По определению Леона Бриллюэна информация есть отрицательная энтропия (негэнтропия).

Когда неопределенность снята полностью, количество полученной информации I равно изначально существовавшей неопределенности H.

При частичном снятии неопределенности, полученное количество информации и оставшаяся неснятой неопределенность составляют в сумме исходную неопределенность. Ht + It = H.

По этой причине, формулы, которые будут представлены ниже для расчета энтропии H являются и формулами для расчета количества информации I, т.е. когда речь идет о полном снятии неопределенности, H в них может заменяться на I.

3.Формула Шеннона

В общем случае, энтропия H и количество получаемой в результате снятия неопределенности информации I зависят от исходного количества рассматриваемых вариантов N и априорных вероятностей реализации каждого из них P: {p0, p1, …pN-1}, т.е. H=F(N, P). Расчет энтропии в этом случае производится по формуле Шеннона, предложенной им в 1948 году в статье "Математическая теория связи".

В частном случае, когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов, т.е. H=F(N). В этом случае формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, т.е. на 20 лет раньше.

Формула Шеннона имеет следующий вид:

Рис. 3. Нахождение логарифма b по основанию a - это нахождение степени, в которую нужно возвести a, чтобы получить b.

Напомним, что такое логарифм.

Логарифм по основанию 2 называется двоичным:

log2(8)=3 => 23=8

log2(10)=3,32 => 23,32=10

Логарифм по основанию 10 -называется десятичным:

log10(100)=2 => 102=100

Основные свойства логарифма:

1. log(1)=0, т.к. любое число в нулевой степени дает 1;

2. log(ab)=b*log(a);

3. log(a*b)=log(a)+log(b);

4. log(a/b)=log(a)-log(b);

5. log(1/b)=0-log(b)=-log(b).

Знак минус в формуле (1) не означает, что энтропия - отрицательная величина. Объясняется это тем, что pi1 по определению, а логарифм числа меньшего единицы - величина отрицательная. По свойству логарифма, поэтому эту формулу можно записать и во втором варианте, без минуса перед знаком суммы.

интерпретируется как частное количество информации, получаемое в случае реализации i-ого варианта. Энтропия в формуле Шеннона является средней характеристикой - математическим ожиданием распределения случайной величины {I0, I1, … IN-1}.

Пример расчета энтропии по формуле Шеннона. Пусть в некотором учреждении состав работников распределяется так: ? - женщины, ? - мужчины. Тогда неопределенность, например, относительно того, кого вы встретите первым, зайдя в учреждение, будет рассчитана рядом действий, показанных в таблице 1.

Таблица 1.

Ii=log2(1/pi), бит

pi*log2(1/pi), бит

Если же априори известно, что мужчин и женщин в учреждении поровну (два равновероятных варианта), то при расчете по той же формуле мы должны получить неопределенность в 1 бит. Проверка этого предположения проведена в таблице 2.

Таблица 2.

Ii=log2(1/pi), бит

pi*log2(1/pi), бит

4.Формула Хартли

Формула Хартли - частный случай формулы Шеннона для равновероятных альтернатив.

Подставив в формулу (1) вместо pi его (в равновероятном случае не зависящее от i) значение, получим:

таким образом, формула Хартли выглядит очень просто:

Из нее явно следует, что чем больше количество альтернатив (N), тем больше неопределенность (H). Эти величины связаны в формуле (2) не линейно, а через двоичный логарифм. Логарифмирование по основанию 2 и приводит количество вариантов к единицам измерения информации - битам.

Энтропия будет являться целым числом лишь в том случае, если N является степенью числа 2, т.е. если N принадлежит ряду: {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048…}

Рис. 3. Зависимось энтропии от количества равновероятных вариантов выбора (равнозначных альтернатив).

Для решения обратных задач, когда известна неопределенность (H) или полученное в результате ее снятия количество информации (I) и нужно определить какое количество равновероятных альтернатив соответствует возникновению этой неопределенности, используют обратную формулу Хартли, которая выводится в соответствии с определением логарифма и выглядит еще проще:

Например, если известно, что в результате определения того, что интересующий нас Коля Иванов живет на втором этаже, было получено 3 бита информации, то количество этажей в доме можно определить по формуле (3), как N=23=8 этажей.

Если же вопрос стоит так: “в доме 8 этажей, какое количество информации мы получили, узнав, что интересующий нас Коля Иванов живет на втором этаже?”, нужно воспользоваться формулой (2): I=log2(8)=3 бита.

5.Количество информации, получаемой в процессе сообщения

До сих пор были приведены формулы для расчета энтропии (неопределенности) H, указывая, что H в них можно заменять на I, потому что количество информации, получаемое при полном снятии неопределенности некоторой ситуации, количественно равно начальной энтропии этой ситуации.

Но неопределенность может быть снята только частично, поэтому количество информации I, получаемой из некоторого сообщения, вычисляется как уменьшение энтропии, произошедшее в результате получения данного сообщения.

Для равновероятного случая, используя для расчета энтропии формулу Хартли, получим:

Второе равенство выводится на основании свойств логарифма. Таким образом, в равновероятном случае I зависит от того, во сколько раз изменилось количество рассматриваемых вариантов выбора (рассматриваемое разнообразие).

Исходя из (5) можно вывести следующее:

Если, то - полное снятие неопределенности, количество полученной в сообщении информации равно неопределенности, которая существовала до получения сообщения.

Если, то - неопределенности не изменилась, следовательно, информации получено не было.

Если, то => , если, => . Т.е. количество полученной информации будет положительной величиной, если в результате получения сообщения количество рассматриваемых альтернатив уменьшилось, и отрицательной, если увеличилось.

Если количество рассматриваемых альтернатив в результате получения сообщения уменьшилось вдвое, т.е. , то I=log2(2)=1 бит. Другими словами, получение 1 бита информации исключает из рассмотрения половину равнозначных вариантов.

Рассмотрим в качестве примера опыт с колодой из 36 карт.

Рис. 4. Иллюстрация к опыту с колодой из 36-ти карт.

Пусть некто вынимает одну карту из колоды. Нас интересует, какую именно из 36 карт он вынул. Изначальная неопределенность, рассчитываемая по формуле (2), составляет H=log2(36)5,17 бит. Вытянувший карту сообщает нам часть информации. Используя формулу (5), определим, какое количество информации мы получаем из этих сообщений:

Вариант A. “Это карта красной масти”.

I=log2(36/18)=log2(2)=1 бит (красных карт в колоде половина, неопределенность уменьшилась в 2 раза).

Вариант B. “Это карта пиковой масти”.

I=log2(36/9)=log2(4)=2 бита (пиковые карты составляют четверть колоды, неопределенность уменьшилась в 4 раза).

Вариант С. “Это одна из старших карт: валет, дама, король или туз”.

I=log2(36)-log2(16)=5,17-4=1,17 бита (неопределенность уменьшилась больше чем в два раза, поэтому полученное количество информации больше одного бита).

Вариант D. “Это одна карта из колоды".

I=log2(36/36)=log2(1)=0 бит (неопределенность не уменьшилась - сообщение не информативно).

Вариант D. “Это дама пик".

I=log2(36/1)=log2(36)=5,17 бит (неопределенность полностью снята).

При любом процессе управления и передачи происходит преобразование входной информации в выходную. Обычно под информацией понимают некоторые сведения, символы, знаки. Статистическая теория: понятие информации характеризуется как устранение неопределён.

Информация определяется как сведение является объектом хранения, передачи и приёма. Информация передаётся с помощью сигнала. В основе количественной оценки получение информации лежит представление о передачи сообщения, как о случайном стохастическом процессе во времени.

Устраняют неопределённость с помощью испытаний, чем выше неопределённость, тем выше ценность информации.

Степень неопределённости зависит от числа значений, которые может принимать величина и исхода событий.

За меру количества информации определяется случайная величина H(А):

где-вероятностьiисхода.

Знак минус стоит как компенсация H(А)-это энтропия опыта А (формулу придумал Клод Шинон).

Чем большеH(A), тем больше мера незнания.

Накопление сведений о некоторой системе уменьшает энтропию. Информация это определённый вклад в энтропию.

Пусть дана x-система.

если
, то

где

Получение информации являются объективным отображением состояния системы и может быть использована для передачи, управления, решения и т. д.

Информация не является материальной или энергетической категорией, она не когда не создаётся, а только передаётся и принимается, но может утрачиваться, исчезать.

Согласно второму закону термодинамики энтропия увеличивается параллельно с разрушением организованных структур стремясь к хаотическому вероятностному состоянию.

За единицу измерения принимается количество информации содержащейся в некоторой случайной величине, принимающей с равной вероятностью. За единицу степени неопределённости принимается энтропия элементарного события, которые имеют два исхода с одинаковой вероятностью два различных значения.

-двоичная единица или бит.

x-система связаны

y-система

I(x,y)=H(x)+H(y)-H(x,y), где

H(x,y)-энтропия объединённой системы.

, где,

Для непрерывного сигнала.

где(x)-плотность вероятности величиныx. Шинонский подход не учитывает семантического содержания.

33.Понятие эргодического источника. Избыточность.

На практике встречаются эргодические источники, в которых корреляционные связи распространяется на конечное число предшествующих источников. В эргодическом источнике
корреляционные связи отсутствуют, т.е.

Математическим представлением сообщений создаваемых эргодическими источниками являются цепь Маркова.

Цепью Маркова n-порядка называют последовательность, зависимость испытаний при которой, вероятность некоторого исхода
вiиспытании зависит от исходов имевших место в каких-либоnпредыдущих испытаниях, но не зависит от более ранних исходов.

В эргодическом источнике nпорядка распределения
приk=1,2,…,mне остаётся постоянной, а зависит от того, какие были последниеnбукв сообщений.

вероятность выбораqбуквы из алфавита.

Число возможных состояний определяется:
, гдеmэто алфавита,n-порядок,M-число возможных состояний источника.

Для определения полной энтропии необходимо:

если M=1, то получаем классическую формулу Шинона.

Корреляционная связь в эргодическом источнике обязательно сопровождается изменением распределения вероятности, выбора элемента сообщений от состояния к состоянию, что также приводит к уменьшению энтропии, это значит что часть информации передаваемой источником может быть предсказана, значит её можно не передавать, т.к. она может быть восстановлена на приёмной стороне. Чем меньше энтропия источника, тем больше информации он вырабатывает.

R-избыточность, показывает эффективность работы источника.

Причиной Rявляется однозначность и опеорная вероятность выбора между сообщениями.



Рекомендуем почитать

Наверх