Что такое разрешающая способность оптического прибора. Kvant

Электроника 22.04.2019
Электроника

Оптические приборы - устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Отдавая дань исторической традиции,оптическими обычно называют приборы, работающие в видимом свете .

При первичной оценке качества прибора рассматриваются лишь основные его характеристики:

· светосила - способность концентрировать излучение;

· разрешающая сила - способность различать соседние детали изображения;

· увеличение - соотношение размеров предмета и его изображения.

· Для многих приборов определяющей характеристикой оказывается поле зрения - угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила (способность) - характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта .

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения .

Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:

m = h/H .

Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.

Важной характеристикой приборов для визуального наблюдения является видимое увеличение М . Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga , где a - угол, под которым наблюдатель видит предмет невооруженным глазом, а b - угол, под которым глаз наблюдателя видит предмет через прибор.



Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.

Линза оптически прозрачное тело, ограниченное двумя сферическими поверхностями.

Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы бывают собирающими ирассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.

Виды линз:

· выпуклые:

o двояковыпуклые (1)

o плосковыпуклые (2)

o вогнуто-выпуклые (3)

· вогнутые:

o двояковогнутые (4)

o плосковогнутые (5)

o выпукло-вогнутые (6)

Основные обозначения в линзе:

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы .

В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O. Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления.

Оптический центр линзы – точка, сквозь которую световые лучи проходят не преломляясь в линзе.

Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.

Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые.

Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F", которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.

Фокальная плоскость – прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.

Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием . Оно обозначаетcя той же буквой F.

Преломление параллельного пучка лучей в собирающей линзе.

Преломление параллельного пучка лучей в рассеивающей линзе.

Точки O 1 и O 2 – центры сферических поверхностей, O 1 O 2 – главная оптическая ось, O – оптический центр, F – главный фокус, F" – побочный фокус, OF" – побочная оптическая ось, Ф – фокальная плоскость.

На чертежах тонкие линзы изображают в виде отрезка со стрелками:

собирающая: рассеивающая:

Основное свойство линз способность давать изображения предметов . Изображения бывают прямыми иперевернутыми , действительными и мнимыми , увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:

· Луч, падающий на линзу параллельно оптической оси, после преломления идет через фокус линзы.

· Луч, проходящий через оптический центр линзы не преломляется.

· Луч, проходя через фокус линзы после преломления идет параллельно оптической оси.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величину D, обратную фокусному расстоянию называют оптической силой линзы .

Единицей измерения оптической силы является диоптрия (дптр) . Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = м –1

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них – сферическая и хроматическая аберрации.

Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик - светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

Cтраница 1


Разрешающая способность оптических приборов и, в частности, микроскопов ограничивается явлением дифракции. Изображение частиц меньших размеров будет иметь вид дифракционного кружка, форма которого практически не зависит от формы частиц. При специальном способе наблюдения эти дифракционные картины, однако, могут быть замечены и, следовательно, факт существования частиц, их положение и движение могут быть установлены. Вопросы наблюдения и исследования таких малых частиц в коллоидных растворах и аэрозолях и составляют предмет ультрамикроскопии.  


Ограничения разрешающей способности оптических приборов связаны с дифракционными явлениями и аберрациями элементов оптических систем.  


На разрешающую способность оптического прибора влияет кроме разрешающей способности глаза степень коррекции системы.  

Чем определяется разрешающая способность оптических приборов.  

Об увеличении разрешающей способности оптических приборов: Докл.  

Обычно под разрешающей способностью оптического прибора понимают способность различать (шит разрешать) в изображении объекта два близких элемента - две близкие светящиеся точки Б обычном оптическом приборе или две близкие монохроматические линии в спектре, полученном с помощью спектрального прибора.  

Что понимают под разрешающей способностью оптического прибора и от чего она зависит.  

Почему явление дифракции ограничивает разрешающую способность оптических приборов, например телескопа.  

Согласно критерию Рэлея, максимальная разрешающая способность оптического прибора соответствует условию, когда главный максимум дифракционной картины от одного точечного объекта точно совпадает с первым минимумом дифракционной картины от другого близко расположенного с первым точечного объекта. Этому условию отвечает минимальное угловое разрешение оптического прибора.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину яолны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Еще один интересный вопрос, очень важный с технической точки зрения: какова разрешающая способность оптических приборов. Когда мы создаем микроскоп, мы хотим целиком видеть тот объект, который находится в поле нашего зрения. Это означает, например, что, глядя на бактерию, на боках которой имеются два пятнышка, мы хотим различить оба пятнышка на увеличенном изображении. Могут подумать, что для этого нужно только получить достаточное увеличение, ведь всегда можно добавить еще линзы и достичь большего увеличения, а если конструктор ловкий, то он устранит сферические и хроматические аберрации; вот вроде бы и нет причин, почему бы не увеличить желаемое изображение до любых размеров. Но предел возможностей микроскопа связан не с тем, что невозможно добиться увеличения более чем в 2000 раз.  

Явление дифракции ставит предел для разрешающей способности многих оптических инструментов и человеческого глаза.

При дневном освещении диаметр зрачка, т. е. диаметр D отверстия, на котором происходит дифракция света, равен примерно 2 мм; длину волны света примем равной Тогда угловой радиус а центрального светлого дифракционного пятна при попадании на зрачок глаза параллельного пучка света может быть определен по формуле (15.3):

Таким образом, в результате дифракции бесконечно удаленный точечный источник воспринимается глазом как светлое пятно

с угловым радиусом, равным примерно одной угловой минуте. Две светящиеся точки могут восприниматься глазом как отдельные источники света при условии, если угловое расстояние между ними превышает угловой радиус центрального дифракционного светлого пятна от одного точечного источника (рис. 66). Следовательно, разрешающая способность человеческого глаза равна примерно одной угловой минуте.

При фотографирований звезд с помощью телескопа изображение звезд на фотопластинке получается не точечным. Это является следствием дифракции света на отверстии объектива телескопа (рис. 67). Радиус центрального светлого дифракционного пятна на фотопластинке можно определить из условия (15.3):

где - фокусное расстояние. Но, с другой стороны,

Выражение (15.4) показывает, что изображения звезд, на фотопластинке тем ближе к точечным, чем больше диаметр D объектива телескопа и чем меньше его фокусное расстояние F.

Оценим разрешающую способность крупнейшего в мире советского телескопа с диаметром объектива 6 м:

Следовательно, с помощью самого большого в мире оптического телескопа можно различить на небе светящиеся объекты: звезды, детали на поверхности планет, отстоящие друг от друга не менее чем на две сотые угловой секунды.

Явление дифракции ограничивает и разрешающую способность микроскопа. Очевидно, что если в изображении, построенном объективом микроскопа, две светящиеся точки становятся неразличимыми в результате наложения их дифракционных изображений, то дальнейшее увеличение изображения с помощью окуляра не может сделать их различимыми. Следовательно, как и в случае определения разрешающей способности глаза и телескопа, минимальное угловое расстояние между точками, которые могут быть разрешены как отдельные источники света, приблизительно равно угловому радиусу а центрального светлого дифракционного пятна. Согласно выражению (15.3), угол выражается через диаметр объектива D и длину световой волны :

Обозначив расстояние от предмета до объектива микроскопа через (рис. 68), получим для минимального линейного расстояния у между двумя светящимися точками и В, на котором они могут быть разрешены при наблюдении в микроскоп, следующее выражение:

Отсюда видно, что разрешающая способность микроскопа возрастает с увеличением диаметра объектива микроскопа, с уменьшением длины световой волны и расстояния от объектива до объекта.

Так как объектив микроскопа должен построить действительное изображение, то

Следовательно, для уменьшения расстояния необходимо использовать возможно более короткофокусные линзы. Увеличение разрешающей способности объектива микроскопа при заданном фокусном расстоянии путем увеличения диаметра D объектива ограничено естественным пределом:

где - радиус кривизны линзы. Это означает, что плоско-выпуклая линза, обычно применяемая в качестве первой линзы объектива микроскопа, должна быть полушаровой.

Так как фокусное расстояние плосковыпуклой линзы определяется формулой

то для объектива микроскопа можно записать соотношение:

Учитывая это, можно минимальное расстояние, на котором могут находиться две светящиеся точки, различимые с помощью микроскопа, выразить так:

Принимая показатель преломления стекла, из которого сделана линза объектива, получаем:

Таким образом, минимальное расстояние, на котором с помощью микроскопа могут быть разрешены две светящиеся точки при оптимальной конструкции объектива, равно приблизительно длине световой волны.

Один из возможных путей увеличения разрешающей способности оптического микроскопа заключается в использовании коротковолнового ультрафиолетового излучения. Так как ультрафиолетовое излучение не воспринимается человеческим глазом, но сильно действует на фотопластинку, изображение фотографируется, проявляется и потом рассматривается.

линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Обратная ему величина обычно служит количественной мерой Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе (т. е. безаберрационной; см. Аберрации оптических систем ) изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете , радужно окрашенными - в белом свете ). Теория дифракции позволяет вычислить наименьшее расстояние, разрешаемое системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображения раздельно. Согласно Рэлею (1879), изображения двух точек одинаковой яркости ещё можно видеть раздельно, если центр дифракционного пятна каждого из них пересекается краем 1-го тёмного кольца другого (рис. ). В случае самосветящихся точек, испускающих некогерентные лучи, при выполнении этого критерия Рэлея наименьшая освещённость между изображениями разрешаемых точек составит 74% своего максимального значения, а угловое расстояние между центрами дифракционных пятен (максимумами освещённости) Dj = 1,21 lID, где l - длина волны света, D - диаметр входного зрачка оптической системы (см. Диафрагма в оптике). Если f - фокусное расстояние оптической системы, то линейная величина рэлеевского предела разрешения s = 1,21 lflD. Предел разрешения телескопов и зрительных труб выражают в угловых секундах (см. Разрешающая сила телескопа ), для длины волны l @ 560 нм , соответствующей максимальной чувствительности человеческого глаза, он равен a"= 140/D (D в мм ). Для фотообъективов Разрешающая способность (в оптике) обычно определяют как максимальное количество раздельно видимых линий на 1 мм изображения стандартного тест-объекта (см. Мира ) и вычисляют по формуле = 1470e, где e - относительное отверстие объектива (см. также Разрешающая способность фотографирующей системы; о Разрешающая способность (в оптике) микроскопов см. в ст. Микроскоп ). Приведённые соотношения справедливы лишь для точек, находящихся на оси идеальной оптической системы. Наличие аберраций и погрешностей изготовления увеличивает размеры дифракционных пятен и снижает Разрешающая способность (в оптике) реальных систем, которая, кроме того, уменьшается по мере удаления от центра поля зрения . Разрешающая способность (в оптике) оптического прибора R oп, в состав которого входят оптическая система с Разрешающая способность (в оптике) R oc и приёмник света (фотослой, катод электроннооптического преобразователя и пр.) с Разрешающая способность (в оптике) R п, определяется приближённой формулой 1/R oп = 1/R oc + 1/R п, из неё следует, что целесообразно использовать лишь сочетания, в которых R oc и R п - величины одного порядка. Разрешающая способность (в оптике) прибора может быть оценена по его аппаратной функции , отражающей все факторы, влияющие на качество изображения (дифракцию, аберрации и т.д.). Наряду с оценкой качества изображения по Разрешающая способность (в оптике) широко распространён метод его оценки с помощью частотно-контрастной характеристики . О Разрешающая способность (в оптике) спектральных приборов см. в ст. Спектральные приборы .

Лит.: Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1, М. - Л., 1948; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Волосов Д. С., Фотографическая оптика, М., 1971.

Статья про слово "Разрешающая способность (в оптике) " в Большой Советской Энциклопедии была прочитана 16229 раз

Если между экраном А и освещающим его источником света поместить другой экран В с отверстием, то на экране А появится светлое пятно, ограниченное тенью (рис. 319, а и б). Границу тени можно найти геометрическим путем, полагая, что свет распространяется прямолинейно, т. е. световые лучи являются прямыми линиями (см. рис. 319, а). Однако более тщательное наблюдение показывает, что граница тени не является резкой; это особенно заметно в случаях, когда размер отверстия очень мал по сравнению с расстоянием

Экрана до отверстия

Тогда пятно на экране А представляется состоящим из чередующихся светлых и темных колец, постепенно переходящих друг в друга и захватывающих также область геометрической тени (рис. 320, б). Это говорит о непрямолинейности распространения света от источника о загибании световых лучей (волн) у краев отверстия В (рис. 320, а). Описанное явление непрямолинейного распространения света вблизи преграды (огибание световым лучом преграды) носит название дифракции света, а получающаяся на экране картина называется дифракционной. При использовании белого света дифракционная картина приобретает радужную окраску.

Напомним, что дифракция свойственна не только световым, но и вообще всяким волнам (см. § 34).

Кроме отверстий в экранах дифракцию вызывают также и непрозрачные предметы (преграды), помещенные на пути распространения света, необходимо только, чтобы размер предмета был малым по сравнению с расстоянием до места наблюдения дифракционной картины. На рис. 321 приведены фотографии типичных дифракционных картин, даваемых круглым отверстием а, прямоугольной щелью проволокой в и винтом

Отчетливые дифракционные картины получаются в случаях, когда на пути распространения света находятся очень мелкие преграды размером порядка длины световой волны. Следует, однако, подчеркнуть, что вопреки довольно распространенному представлению сравнимость размера преграды с длиной волны света не является необходимым условием для наблюдения дифракции.

Дифракционные картины нередко возникают в естественных условиях. Так, например, цветные кольца, окружающие источник света, наблюдаемые сквозь туман или через запотевшее оконное стекло, обусловлены дифракцией света на мельчайших водяных каплях.

Дифракция обнаруживает волновые свойства света и потому может быть объяснена на основе принципа Гюйгенса - Френеля следующим образом. Пусть свет от источника падает на экран А через круглое отверстие в экране В (рис. 322). Согласно принципу Гюйгенса - Френеля, каждая точка участка фронта световой волны (заполняющего отверстие) является вторичным источником света.

Эти источники когерентны, поэтому исходящие от них лучи (волны) 1 и 2, 3 и 4 и т. д. будут интерферировать между собой. В зависимости от величины разности хода лучей на экране в точках возникнут максимумы и минимумы освещенности. Таким образом, на экране А в области геометрической тени появятся светлые места, а вне этой области - темные места, создавая описанную ранее (кольцеобразную) дифракционную картину.

Дифракцией света обусловлена разрешающая способность оптических приборов, т. е. способность этих приборов давать раздельные изображения мелких, близко расположенных друг к другу деталей (точек) предмета. Объектив всякого оптического прибора обязательно имеет входное отверстие. Дифракция света на входном отверстии объектива неизбежно ведет к тому, что изображения отдельных точек наблюдаемого предмета (самосветящегося или освещаемого) оказываются уже не точками, а светлыми дисками, окаймленными темными и светлыми кольцами. Если рассматриваемые точки (детали) предмета находятся близко друг от друга, то их дифракционные изображения (в фокальной плоскости объектива) могут более или менее взаимно перекрываться (рис. 323, а).

Две близкие точки 1 и 2 предмета можно еще видеть раздельно, если светлые диски их дифракционных изображений взаимно перекрываются не более чем на величину радиуса диска (рис. 323, б). Если же диски перекрываются более чем на радиус (рис. 323, в), то раздельное видение точек становится невозможным; прибор уже не разделяет, или, как говорят, не разрешает, таких точек.

Наименьшее расстояние при котором две точки предмета еще можно видеть раздельно, называют разрешаемым расстоянием. Разрешающую способность оптического прибора принято измерять величиной обратной разрешаемому расстоянию.

Расчеты показывают, что для микроскопа разрешаемое расстояние выражается формулой

где X - длина волны света, показатель преломления среды, находящейся между предметом и объективом, и - апертурный угол, т. е. угол, образованный крайними лучами светового пучка, попадающего в объектив (рис. 324). Произведение называется числовой апертурой.



Рекомендуем почитать

Наверх