Цифровой измеритель напряжения и тока. Измеритель напряжения и тока

Электроника 14.06.2019
Электроника

Хочу представить вашему вниманию модернизированную версию для лабораторного блока питания. Добавилась возможность отключать нагрузку при превышении определенного установленного заранее тока. Прошивку улучшенного вольтамперметра можно .

Схема цифрового измерителя тока и напряжения

В схему так же добавилось несколько деталей. С органов управления - одна кнопка и переменный резистор номиналом от 10 килоом до 47 килоом. Его сопротивление не критично для схемы, и как видно может варьироваться в довольно широких пределах. Немножко изменился и внешний вид на экране. Добавил отображение мощности и ампер*часов.

Переменная тока отключения сохраняется в EEPROM. По этому после выключения не нужно будет все настраивать заново. Для того, чтоб зайти в меню установки тока нужно нажать на кнопку. Поворачивая ручкой переменного резистора надо установить ток, при котором произойдет отключение реле. Оно подключено через ключ на транзисторе к выводу PB5 микроконтроллера Atmega8 .

В момент отключения на дисплее высветиться надпись о том, что максимальный установленный ток был превышен. После нажатия на кнопку мы перейдем снова в меню установки максимального тока. Нужно еще раз нажать на кнопку, чтоб перейти в режим измерения. На выход PB5 микроконтроллера подастся лог 1 и при этом включится реле. Такое слежение за током имеет и свои минусы. Защита не сможет сработать мгновенно. Срабатывание может занять несколько десятков миллисекунд. Для большинства подопытных устройств данный недостаток не критичен. Для человека эта задержка не видна. Все происходит сразу. Новая печатная плата не разрабатывалась. Кто захочет повторить устройство может немного подредактировать печатную плату от предыдущего варианта. Изменения будут не значительны.

Что можно сделать на основе небольшого микроконтроллера Attiny13? Много чего. Например измеритель напряжения, тока, температуры, с выводом результатов на дисплей типа HD44780. Так давайте и соберём это универсальное устройство, которое можно успешно использовать в качестве модуля в блоках питания, зарядках, УМЗЧ и в тех местах, где не требуется очень высокая точность. Размер платы всего 35 х 16 мм.

Схема измерителя U, I, T на Attiny13

  • Диапазон измерения напряжения 0-99V с разрешением 0.1 V.
  • Диапазон измерения тока 0-9.99А с разрешением 10 мА.
  • Диапазон измерения температуры 0-99C с разрешением 0.1C.
  • Потребление тока самого измерителя 35 мА.

Прежде всего надо знать, в каком диапазоне напряжения прибор будет работать. Чтобы это установить, необходимо рассчитать делитель напряжения. Например, для получения измерения 10 В, делитель должен составлять 1/10 (мы умножаем x 10 потому что напряжение будет в 10 раз больше от базового 1 В), для 30 В будет 1/30 и так далее. Затем необходимо настроить программу, для данного диапазона. Эти 30 В умножаем по 640, а результат разделим на 1023. Полученное число приблизительно записывается в начале программы, постоянной напряжения и надо скомпилировать программу (для диапазона 100 В, 8,2к).

Измерение тока также мы можем настроить подобным образом, дать другой делитель, другой диапазон, и перечислить, но не буду этого описывать. Здесь нет аналоговой калибровки температуры, потому что она показалась совершенно лишней.

Корректируем экспериментально в программе, за это отвечает константа const temp. Резистор 1К между массой и выходом датчика устанавливает напряжение, снизить его можно даже до 100 Ом.

Как работает схема

К точкам V и V+ на плате приложено напряжение, которое мы хотим измерить, к точке GND присоединяемся входом массы блока питания, а к точке В - выход массы (измерение происходит на массе). Между точками GND и V - присоединяется шунт. Питание измерителя осуществляется от точки V и V+ через стабилизатор 7805. На плате есть место на стабилизатор в корпусе TO252, но с успехом можно использовать и более крупный стабилизатор 78L05 в корпусе TO92. Максимальное напряжение, которое можно указать для точки V и V+, для обычной 7805 будет до 35В, для 78L05 будет, конечно, меньше, но не больше 30. Для того, чтобы измерять большие напряжения, чип необходимо пополнить отдельно - на стороне печати, следует прервать путь под потенциометром регулировки напряжения, а питание подать до точки А. Система работает с дисплеем 16х1 с контроллером HD44780 или 16х2.

Видео работы измерителя

При прошивке микроконтроллера необходимо задать pin reset как обычный pin (включить fusebit RSTDISBL). Перед выполнением этой операции убедитесь, что все хорошо установили, что после выключения сбрасывается, и нет доступа к процессору обычным программатором! Исходники, а также вся остальная документация и файлы, размещены

Основной единицей измерения электрического напряжения является вольт. В зависимости от величины напряжение может измеряться в вольтах (В), киловольтах (1 кВ = 1000 В), милливольтах (1 мВ = 0,001 В), микровольтах (1 мкВ = 0,001мВ = 0,000001 В). На практике, чаще всего, приходится сталкиваться с вольтами и милливольтами.

Существует два основных вида напряжений – постоянное и переменное . Источником постоянного напряжения служат батареи, аккумуляторы. Источником переменного напряжения может служить, например, напряжение в электрической сети квартиры или дома.

Для измерения напряжения используют вольтметр . Вольтметры бывают стрелочные (аналоговые) и цифровые .

На сегодняшний день стрелочные вольтметры уступают пальму первенства цифровым, так как вторые более удобны в эксплуатации. Если при измерении стрелочным вольтметром показания напряжения приходится вычислять по шкале, то у цифрового результат измерения сразу высвечивается на индикаторе. Да и по габаритам стрелочный прибор проигрывает цифровому.

Но это не значит, что стрелочные приборы совсем не применяются. Есть некоторые процессы, которые цифровым прибором увидеть нельзя, поэтому стрелочные больше применяются на промышленных предприятиях, лабораториях, ремонтных мастерских и т.п.

На электрических принципиальных схемах вольтметр обозначается кружком с заглавной латинской буквой «V » внутри. Рядом с условным обозначением вольтметра указывается его буквенное обозначение «PU » и порядковый номер в схеме. Например. Если вольтметров в схеме будет два, то около первого пишут «PU 1 », а около второго «PU 2 ».

При измерении постоянного напряжения на схеме указывается полярность подключения вольтметра, если же измеряется переменное напряжение, то полярность подключения не указывается.

Напряжение измеряют между двумя точками схемы: в электронных схемах между плюсовым и минусовым полюсами, в электрических схемах между фазой и нулем . Вольтметр подключают параллельно источнику напряжения или параллельно участку цепи — резистору, лампе или другой нагрузке, на которой необходимо измерить напряжение:

Рассмотрим подключение вольтметра: на верхней схеме напряжение измеряется на лампе HL1 и одновременно на источнике питания GB1 . На нижней схеме напряжение измеряется на лампе HL1 и резисторе R1 .

Перед тем, как измерить напряжение, определяют его вид и приблизительную величину . Дело в том, что у вольтметров измерительная часть рассчитана только для одного вида напряжения, и от этого результаты измерений получаются разными. Вольтметр для измерения постоянного напряжения не видит переменное, а вольтметр для переменного напряжения наоборот, постоянное напряжение измерить сможет, но его показания будут не точными.

Знать приблизительную величину измеряемого напряжения также необходимо, так как вольтметры работают в строго определенном диапазоне напряжений, и если ошибиться с выбором диапазона или величиной, прибор можно повредить. Например. Диапазон измерения вольтметра составляет 0…100 Вольт, значит, напряжение можно измерять только в этих пределах, так как при измерении напряжения выше 100 Вольт прибор выйдет из строя.

Помимо приборов, измеряющих только один параметр (напряжение, ток, сопротивление, емкость, частота), существуют многофункциональные, в которых заложено измерение всех этих параметров в одном приборе. Такой прибор называется тестер (в основном это стрелочные измерительные приборы) или цифровой мультиметр .

На тестере останавливаться не будем, это тема другой статьи, а сразу перейдем к цифровому мультиметру. В основной своей массе мультиметры могут измерять два вида напряжения в пределах 0…1000 Вольт. Для удобства измерения оба напряжения разделены на два сектора, а в секторах на поддиапазоны: у постоянного напряжения поддиапазонов пять, у переменного — два.

У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 200m , 2V , 20V , 200V , 600V . Например. На пределе «200V» измеряется напряжение, находящееся в диапазоне 0…200 Вольт.

Теперь сам процесс измерения .

1. Измерение постоянного напряжения.

Вначале определяемся с видом измеряемого напряжения (постоянное или переменное) и переводим переключатель в нужный сектор. Для примера возьмем пальчиковую батарейку, постоянное напряжение которой составляет 1,5 Вольта. Выбираем сектор постоянного напряжения, а в нем предел измерения «2V», диапазон измерения которого составляет 0…2 Вольта.

Измерительные щупы должны быть вставлены в гнезда, как показано на нижнем рисунке:

красный щуп принято называть плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп называют минусовым или общим и вставляется он в гнездо, напротив которого стоит значок «СОМ». Относительно этого щупа производятся все измерения.

Плюсовым щупом касаемся положительного полюса батарейки, а минусовым — отрицательного. Результат измерения 1,59 Вольта сразу виден на индикаторе мультиметра. Как видите, все очень просто.

Теперь еще нюанс. Если на батарейке щупы поменять местами, то перед единицей появится знак минуса, сигнализирующий, что перепутана полярность подключения мультиметра. Знак минуса бывает очень удобен в процессе наладке электронных схем, когда на плате нужно определить плюсовую или минусовую шины.

Ну а теперь рассмотрим вариант, когда величина напряжения неизвестна. В качестве источника напряжения оставим пальчиковую батарейку.

Допустим, мы не знаем напряжение батарейки, и чтобы не сжечь прибор измерение начинаем с самого максимального предела «600V», что соответствует диапазону измерения 0…600 Вольт. Щупами мультиметра касаемся полюсов батарейки и на индикаторе видим результат измерения, равный «001 ». Эти цифры говорят о том, что напряжения нет или его величина слишком мала, или выбран слишком большой диапазон измерения.

Опускаемся ниже. Переключатель переводим в положение «200V», что соответствует диапазону 0…200 Вольт, и щупами касаемся полюсов батарейки. На индикаторе появились показания равные «01,5 ». В принципе этих показаний уже достаточно, чтобы сказать, что напряжение пальчиковой батарейки составляет 1,5 Вольта.

Однако нолик, стоящий впереди, предлагает снизиться еще на предел ниже и точнее измерить напряжение. Снижаемся на предел «20V», что соответствует диапазону 0…20 Вольт, и снова производим измерение. На индикаторе высветились показания «1,58 ». Теперь можно с точностью сказать, что напряжение пальчиковой батарейки составляет 1,58 Вольта.

Вот таким образом, не зная величину напряжения, находят ее, постепенно снижаясь от высокого предела измерения к низкому.

Также бывают ситуации, когда при измерении в левом углу индикатора высвечивается единица «1 ». Единица сигнализирует о том, что измеряемое напряжение или ток выше выбранного предела измерения. Например. Если на пределе «2V» измерить напряжение равное 3 Вольта, то на индикаторе появится единица, так как диапазон измерения этого предела всего 0…2 Вольта.

Остался еще один предел «200m» с диапазоном измерения 0…200 mV. Этот предел предназначен для измерения совсем маленьких напряжений (милливольт), с которыми иногда приходится сталкиваться при наладке какой-нибудь радиолюбительской конструкции.

2. Измерение переменного напряжения.

Процесс измерения переменного напряжения ни чем не отличается от измерения постоянного. Отличие состоит лишь в том, что для переменного напряжения соблюдать полярность щупов не требуется.

Сектор переменного напряжения разбит на два поддиапазона 200V и 600V .
На пределе «200V» можно измерять, например, выходное напряжение вторичных обмоток понижающих трансформаторов, либо любое другое находящееся в диапазоне 0…200 Вольт. На пределе «600V» можно измерять напряжения 220 В, 380 В, 440 В или любое другое находящееся в диапазоне 0…600 Вольт.

В качестве примера измерим напряжение домашней сети 220 Вольт.
Переводим переключатель в положение «600V» и щупы мультиметра вставляем в розетку. На индикаторе сразу появился результат измерения 229 Вольт. Как видите, все очень просто.

И еще один момент.
Перед измерением высоких напряжений ВСЕГДА лишний раз убеждайтесь в исправности изоляции щупов и проводов вольтметра или мультиметра , а также дополнительно проверяйте выбранный предел измерения . И только после всех этих операций производите измерения . Этим Вы убережете себя и прибор от неожиданных сюрпризов.

А если что осталось не понятно, то посмотрите видеоролик, где показано измерение напряжения и силы тока с помощью мультиметра.

Прибор измеряет постоянное напряжение от 0 до 51,1 В с дискретностью 0,1 В и постоянный ток от 0 до 5,11 А с дискретностью 0,01 А Его прототипом послужил измеритель, описанный в , довольно простой по схеме и имеющий неплохие параметры. Основная реализованная в нем идея использовать недорогой микроконтроллер заслуживает внимания. Однако необходимость использовать ОУ, способный работать при однополярном питании при близком к нулю выходном напряжении, а также наличие дополнительного источника питания накладывают некоторые ограничения на его применение.

Цифровой измеритель напряжения и тока

К тому же индикаторы на плате прототипа расположены неудобно, лучше установить их в ряд по горизонтали и сократить размеры передней панели измерителя, приблизив их к габаритам использованных индикаторов. Принципиальная схема измерителя представлена на сайте www.сайт. Поскольку найти применённые в микросхемы 74HC595N (сдвиговые регистры с регистром хранения) не удалось, использованы микросхемы 74HC164N, в которых регистр хранения отсутствует. Также применены индикаторы, обладающие гораздо более высокой яркостью при малом токе, что позволило уменьшить потребляемый измерителем ток до 20 мА и отказаться от дополнительного стабилизатора напряжения +5 В.

Сигнал с датчика тока (резистора R1) поступает на вход GP1 микроконтроллера через инвертирующий усилитель на ОУ DA1. В отличие от (1J, здесь используется двухполярное питание ОУ напряжением ±8 В, поскольку далеко не все ОУ обладают свойством rail to rail и корректно работают при однополярном питании и почти нулевом напряжении на выходе. Двухполярное же питание позволяет легко решить эту проблему, допускает применение ОУ очень многих типов. Поскольку напряжение на выходе ОУ может находиться в интервале от 8 до 8 В. для защиты входа микроконтроллера от перегрузки применена ограничительная цепь R10VD9.

Подстроечным резистором R8 регулируют коэффициент усиления, а подстроечным резистором R11 устанавливают нулевое напряжение на выходе ОУ. Диоды VD1 и VD2 защищают вход ОУ от перегрузки в случае обрыва датчика тока. Благодаря сравнительно малому сопротивлению датчика тока уход результата измерения напряжения при изменении тока нагрузки от нуля до максимального (5.11 А) не превышает 0.06 В. Если измеритель встраивают в источник напряжения отрицательной полярности. датчик тока можно включить перед выходным делителем напряжения его стабилизатор».

При этом падение напряжения на датчике тока будет компенсировано цепью обратной связи стабилизатора. Поскольку ток делителя обычно невелик, на показания амперметра он влияния почти не окажет, к тому же это влияние можно скомпенсировать, подстрочным резистором R11.Питают измеритель выходным напряжением выпрямителя блока питания через преобразователь на транзисторах VT1 и VT2. Это несколько сложнее, чем в , так как требует изготовления импульсного трансформатора, зато нет проблем с получением всех требуемых номиналов напряжения. Преобразователь напряжения представляет собой простейший двухтактный автогенератор. схема которого позаимствована из . Частота преобразования - около 80 кГц.

Благодаря гальванической развязке между входом и выходом преобразователя измеритель можно встроить в стабилизатор напряжения любой полярности. С указанными на схеме транзисторами он работоспособен при входном напряжении от 30 до 44 В. при этом выходные напряжения изменяются приблизительно от 8 до 12 В. Благодаря тому что сопротивления резисторов R5 и R6 выбраны довольно большими, преобразователь не боится замыканий выходов. В таких случаях генерация просто срывается.

Напряжение 5 В для питания цифровой части измерителя получено с помощью интегрального стабилизатора DA2. Стабилизировать напряжения питания ОУ не требуется, поскольку сам он достаточно устойчив к его изменениям. Напряжение пульсаций с частотой преобразования подавляют RC-фильтры на входах микроконтроллера DD1. Если же слишком велики пульсации с частотой 100 Гц, рекомендуется воспользоваться способом их снижения, описанным в .Здесь стоит сказать несколько слов о присущей всем цифровым измерителям нестабильности младшего разряда результата измерения.

Он всегда хаотически изменяется на единицу вокруг истинного значения. Эти флюктуации не являются следствием неисправности прибора, но их нельзя устранить полностью, можно лишь уменьшить, усредняя результаты большого числа измерений. Детали измерителя смонтированы на трёх печатных платах из фольгированного с одной стороны изоляционного материала. Рассчитаны они на установку микросхем в корпусах DIP На одной плате (рис. 2) смонтированы индикаторы, на второй (рис. 3) - цифровые микросхемы и микроконтроллер. Преобразователь, стабилизатор напряжения питания микроконтроллера и усилитель сигнала датчика тока установлены на третьей плате (рис. 4).

Размещение деталей на платах и межплатные соединения показаны на рис. 5. Красными цифрами на нем обозначены номера выводов импульсного трансформатора Т1 у мест их подключения к плате. Сам трансформатор закреплён на ней хомутами из изолированного монтажного провода. Блокировочные конденсаторы С13 и С14 припаяны непосредственно к выводам питания микросхем DD2 и DD3. Как показала практика, измеритель нормально работает и без этих конденсаторов.

Платы микроконтроллера и индикаторов соединены кронштейнами из оцинкованной стали толщиной 0.5 мм. Плата преобразователя и усилителя закреплена двумя винтами М2. Расстояние между платами - около 11 мм. Такой вариант конструкции прибора (рис. 6) занимает меньше места на лицевой панели блока питания, в которую этот прибор должен быть встроен. Вместо ОУ КР140УД708 можно применить, например. КР140УД1408 и множество ОУ других типов Следует отметить, что они могут требовать иных цепей коррекции, чем КР140УД708 Это следует учесть при проектировании печатной платы.

Вместо сдвиговых регистров 74НС164 можно использовать 74НС4015, но придется изменить топологию печатных проводников платы. Диоды КД522Б можно заменить на КД510А. Подстроечные резисторы R8 и R11 - СПЗ19. R9 - импортный. Постоянные конденсаторы также импортные. Резистор R1 (датчик тока) можно изготовить из нихромового провода или применить готовый, как это сделано в (1). Я сделал его из отрезка нихромовой ленты сечением 2,5×0,8 мм и длиной (с учётом залуженных концов) около 25 мм, извлеченной из теплового реле ТРН.

Трансформатор Т1 намотан на ферритовом кольце типоразмера 10x6x3 мм, извлеченном из неисправной КЛЛ. Все обмотки намотаны проводом ПЭВ-2 диаметром 0,18 мм. Обмотка 2-3 содержит 83 витка, обмотки 1-2 и 4-5 - по 13 витков, а обмотка 6-7-8 80 витков с отводом от середины. Если выходное напряжение выпрямителя меньше 30 В, число витков обмотки 2-3 придётся уменьшить из расчета приблизительно 4 витка на вольт. Между собой обмотки 1-2-3 и 4-5 изолированы одним слоем конденсаторной бумаги толщиной 0,1 мм, а от обмотки 6-7-8 - двумя слоями такой бумаги После проверки работоспособности трансформатор пропитан лаком ХВ-784.

Программа микроконтроллера написана в среде MPLAB IDE v8.92 на языке ассемблера MPASM. Предлагаются два её варианта. Файлы первого варианта находятся в папке «Общ. катод» и предназначены для прибора со светодиодными индикаторами с общими катодами разрядов, в том числе теми, что указаны на схеме рис. 1. Файлы второго варианта из папки «Общ. анод» следует использовать при установке в прибор светодиодных индикаторов с общими анодами разрядов. Однако на практике этот вариант программы не испытан. Программирование микроконтроллера было выполнено с помощью программы IC-prog и простого устройства, описанного в (4).

Налаживание измерителя заключается в установке подстроечным резистором R11 нуля на выходе ОУ DA 1 при отсутствии тока в измеряемой цепи. Затем в эту цепь подают ток. близкий к пределу измерения, но меньше его. Контролируя ток образцовым амперметром, подстроечным резистором R8 добиваются равенства показаний образцового и налаживаемого приборов.Подав и контролируя образцовым вольтметром измеряемое напряжение, устанавливают соответствующие показания на индикаторе прибора подстроечным резистором R9. Подробнее о налаживании написано в (1).

: сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.

Для электропроводки в квартире сила тока играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения .

Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.

Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение мощности не более 3 с половиной киловатт. Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв. мм, который рассчитан на максимальный ток 25 А.

Единицы измерения мощности электрического тока.

Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.

Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р. Высчитывается по формуле P = А х B, т. е. для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.

На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт. Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А.
Но учтите, что это максимальная величина, в реальности она может быть меньше т. к. телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.

Приборы для измерения электрического тока.

Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:

  1. Амперметр — хорошо всем знакомый с практических уроков физики в школе (рисунок 1). Но в быту и профессионалами они не используются из-за непрактичности.
  2. Мультиметр — это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал .
  3. Тестер — то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
  4. Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.

Как правильно измерять силу тока.

Для того что бы измерить силу для потребителей , необходимо один зажим от амперметра, тестера или мультиметра присоединить к плюсовой клемме аккумулятора или проводу от блока питания или трансформатора, а второй зажим- к проводу идущему к потребителю и после включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- делать замеры.

Будьте аккуратны при размыкании работающей цепи возникает дуга, величина которой возрастает вместе с силой тока.

Для того что бы измерить ток для потребителей подключаемых напрямую в розетку или к электрическому кабелю от домашней электросети, измерительное устройство переводится в режим измерения переменного тока с запасом по верхнему пределу. Далее тестер или мультиметр включаются в разрыв фазного провода. Что такое фаза читаем в .

Все работы необходимо проводить только после снятия напряжения.

После того как все готово, включаем и проверяем силу тока. Только следите, что бы Вы не касались оголенных контактов или проводов.

Согласитесь, что выше описанные методы очень не удобны и да же опасны!

Я уже давно в своей профессиональной деятельности электрика пользуюсь для измерения силы тока токоизмерительными клещами (на картинке справа). Они не редко идут в одном корпусе с мультиметром.

Мерить ими просто- включаем и переводим в режим измерения переменного тока, затем разводим находящиеся сверху усы и пропускаем во внутрь фазный провод, после этого следим что бы они плотно прилегли к друг другу и производим измерения.

Как видите- быстро, просто и можно измерять силу тока под напряжением данным способом, только будьте аккуратны не закоротите в электрощите случайно соседние провода.

Только помните, что для правильного замера- нужно делать обхват только одного фазного провода, а если обхватить цельный кабель, в котором вместе идут фаза и ноль- измерения провести будет не возможно!

Похожие материалы:



Рекомендуем почитать

Наверх