Эталонная сетевая модель OSI. Эталонная моДель OSI

Инструмент 07.07.2019
Инструмент

Модель состоит из 7-ми уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции. Подробнее можно посмотреть на рисунке.

Прикладной (Приложений) уровень (англ. Application layer )

Верхний (7-й) уровень модели, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления . Пример: POP3, FTP.

Представительский (Уровень представления) (англ. Presentation layer )

Этот уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень 6 (представлений) эталонной модели OSI обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой. Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена иформацией ASCII (его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так что они могут передаваться по сети.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT - формат изображений, применяемый для передачи графики QuickDraw между программами для компьютеров Macintosh и PowerPC. Другим форматом представлений является тэгированный формат файлов изображений JPEG.

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и Session layer )

5-й уровень модели отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

Транспортный уровень (англ. Transport layer )

4-й уровень модели предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом не важно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: UDP.

Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Некоторые протоколы сетевого уровня, называемые протоколами без установки соединения, не гарантируют, что данные доставляются по назначению в том порядке, в котором они были посланы устройством-источником. Некоторые транспортные уровни справляются с этим, собирая данные в нужной последовательности до передачи их на сеансовый уровень. Мультиплексирование (multiplexing) данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами. Механизм управления потоком данных - это механизм, позволяющий регулировать количество данных, передаваемых от одной системы к другой. Протоколы транспортного уровня часто имеют функцию контроля доставки данных, заставляя принимающую данные систему отправлять подтверждения передающей стороне о приеме данных.

Сетевой уровень (англ. Network layer )

3-й уровень сетевой модели OSI предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор .

Протоколы сетевого уровня маршрутизируют данные от источника к получателю и могут быть разделены на два класса: протоколы с установкой соединения и без него.

Описать работу протоколов с установкой соединения можно на примере работы обычного телефона. Протоколы этого класса начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.

Протоколы без установки соединения, которые посылают данные, содержащие полную адресную информацию в каждом пакете, работают аналогично почтовой системе. Каждое письмо или пакет содержит адрес отправителя и получателя. Далее каждый промежуточный почтамт или сетевое устройство считывает адресную информацию и принимает решение о маршрутизации данных. Письмо или пакет данных передается от одного промежуточного устройства к другому до тех пор, пока не будет доставлено получателю. Протоколы без установки соединения не гарантируют поступление информации получателю в том порядке, в котором она была отправлена. За установку данных в соответствующем порядке при использовании сетевых протоколов без установки соединения отвечают транспортные протоколы.

Канальный уровень (англ. Data Link layer )

Этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы , проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня - MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI,

Физический уровень (англ. Physical layer )

Самый нижний уровень модели предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов . Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

Источники

  • Александр Филимонов Построение мультисервисных сетей Ethernet, bhv, 2007 ISBN 978-5-9775-0007-4
  • Руководство по технологиям объединенных сетей //cisco systems , 4-е издание, Вильямс 2005 ISBN 584590787X

Wikimedia Foundation . 2010 .

Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).

Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.

Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.

Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.

Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.

Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.

Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.

Перечислим их:

  • 7. Прикладной уровень (application layer)
  • 6. Представительский уровень или уровень представления (presentation layer)
  • 5. Сеансовый уровень (session layer)
  • 4. Транспортный уровень (transport layer)
  • 3. Сетевой уровень (network layer)
  • 2. Канальный уровень (data link layer)
  • 1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень

Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень

Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).

Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.

Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень

Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.

Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень

Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).

А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.

Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.

На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.

Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень

Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.

Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.

На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.

Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.

Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).

Канальный уровень

Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.

IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.

LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.

MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.

Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо ) – нижний подуровень канального уровня.

Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.

Физический уровень

Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.

Заключение

Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

Обобщенная структура любой программной или информационной системы может быть представлена, как было отмечено выше, двумя взаимодействующими частями:

  • функциональной части , включающей в себя прикладные программы, которые реализуют функции прикладной области;
  • среды или системной части , обеспечивающей исполнение прикладных программ.

С таким разделением и обеспечением взаимосвязи тесно связаны две группы вопросов стандартизации:

  1. стандарты интерфейсов взаимодействия прикладных программ со средой ИС, прикладной программный интерфейс (Application Program Interface - API);
  2. стандарты интерфейсов взаимодействия самой ИС с внешней для нее средой (External Environment Interface - EEI).

Эти две группы интерфейсов определяют спецификации внешнего описания среды ИС - архитектуру, с точки зрения конечного пользователя, проектировщика ИС, прикладного программиста, разрабатывающего функциональные части ИС.

Спецификации внешних интерфейсов среды ИС и интерфейсов взаимодействия между компонентами самой среды - это точные описания всех необходимых функций, служб и форматов определенного интерфейса.

Совокупность таких описаний составляет эталонную модель взаимосвязи открытых систем (Open Systems Interconnection - OSI) . Эта модель используется более 30 лет, она "выросла" из сетевой архитектуры SNA (System Network Architecture), предложенной компанией IBM. Модель взаимосвязи открытых систем используется в качестве основы для разработки многих стандартов ISO в области ИТ. Публикация этого стандарта подвела итог многолетней работы многих известных стандартизующих организаций и производителей телекоммуникационных средств.

В 1984 году модель получила статус международного стандарта ISO 7498, а в 1993 году вышло расширенное и дополненное издание ISO 7498-1-93. Стандарт имеет составной заголовок "Информационно-вычислительные системы - Взаимосвязь (взаимодействие) открытых систем - Эталонная модель". Краткое название - "Эталонная модель взаимосвязи (взаимодействия) открытых систем" (Open Systems Interconnection / Basic Reference Model - OSI/BRM).

Модель основана на разбиении вычислительной среды на семь уровней, взаимодействие между которыми описывается соответствующими стандартами и обеспечивает связь уровней вне зависимости от внутреннего построения уровня в каждой конкретной реализации ( рис. 2.6).


Рис. 2.6.

Основным достоинством этой модели является детальное описание связей в среде с точки зрения технических устройств и коммуникационных взаимодействий. Вместе с тем она не принимает в расчет взаимосвязь с учетом мобильности прикладного программного обеспечения.

Преимущества "слоистой" организации модели взаимодействия заключаются в том, что она обеспечивает независимую разработку уровневых стандартов, модульность разработок аппаратуры и программного обеспечения информационно-вычислительных систем и способствует тем самым техническому прогрессу в этой области.

В стандарте ISO 7498 выделено семь уровней (слоев) информационного взаимодействия, которые отделены друг от друга стандартными интерфейсами:

  1. уровень приложения (прикладной уровень)
  2. уровень представления
  3. сеансовый (уровень сессии)
  4. транспортный
  5. сетевой
  6. канальный
  7. физический.

В соответствии с этим, информационное взаимодействие двух или более систем представляет собой совокупность информационных взаимодействий уровневых подсистем, причем каждый слой локальной информационной системы взаимодействует, как правило, с соответствующим слоем удаленной системы. Взаимодействие осуществляется при помощи соответствующих протоколов связи и интерфейсов. Кроме того, применяя методы инкапсуляции, можно использовать одни и те же программные модули на различных уровнях.

Протоколом является набор алгоритмов (правил) взаимодействия объектов одноименных уровней различных систем.

Интерфейс - это совокупность правил, в соответствии с которыми осуществляется взаимодействие с объектом данного или другого уровня. Стандартный интерфейс в некоторых спецификациях может называться услугой.

Инкапсуляция - это процесс помещения фрагментированных блоков данных одного уровня в блоки данных другого уровня.

При разбиении среды на уровни соблюдались следующие общие принципы:

  • не создавать слишком много мелких разбиений, так как это усложняет описание системы взаимодействий;
  • формировать уровень из легко локализуемых функций это в случае необходимости позволяет быстро перестраивать уровень и существенно изменить его протоколы для использования новых решений в области архитектуры, программно-аппаратных средств, языков программирования, сетевых структур, не изменяя при этом стандартные интерфейсы взаимодействия и доступа;
  • располагать на одном уровне аналогичные функции;
  • создавать отдельные уровни для выполнения таких функций, которые явно различаются по реализующим их действиям или техническим решениям;
  • проводить границу между уровнями в таком месте, где описание услуг является наименьшим, а число операций взаимодействий через границу (пересечение границы) сведено к минимуму;
  • проводить границу между уровнями в таком месте, где в определенный момент должен существовать соответствующий стандартный интерфейс.

Каждый уровень имеет протокольную спецификацию, т.е. набор правил, управляющих взаимодействием равноправных процессов одного и того же уровня, и перечень услуг, которые описывают стандартный интерфейс с расположенным выше уровнем. Каждый уровень использует услуги расположенного ниже уровня, каждый расположенный ниже предоставляет услуги расположенному выше. Приведем краткую характеристику каждого уровня, отметив при этом, что в некоторых описаниях модели OSI нумерация уровней может идти в обратном порядке.

Уровень 1 - уровень приложения или прикладной уровень (Application Layer). Этот уровень связан с прикладными процессами. Протоколы уровня предназначены для обеспечения доступа к ресурсам сети и программам-приложениям пользователя. На данном уровне определяется интерфейс с коммуникационной частью приложений. В качестве примера протоколов прикладного уровня можно привести протокол Telnet, который обеспечивает доступ пользователя к "хосту" (главному вычислительному устройству, одному из основных элементов в многомашинной системе или любому устройству, подключенному к сети и использующему протоколы TCP/IP) в режиме удаленного терминала.

Прикладной уровень выполняет задачу обеспечения различных форм взаимодействия прикладных процессов, расположенных в разнообразных системах информационной сети. Для этого он осуществляет следующие функции:

  • описание форм и методов взаимодействия прикладных процессов;
  • выполнение различных видов работ (управление заданиями, передача файлов, управление системой и т. д.);
  • идентификацию пользователей (партнеров взаимодействия) по их паролям, адресам, электронным подписям;
  • определение функционирующих абонентов;
  • объявление о возможности доступа к новым прикладным процессам;
  • определение достаточности имеющихся ресурсов;
  • посылку запросов на соединение с другими прикладными процессами;
  • подачу заявок представительному уровню на необходимые методы описания информации;
  • выбор процедур планируемого диалога процессов;
  • управление данными, которыми обмениваются прикладные процессы;
  • синхронизацию взаимодействия прикладных процессов;
  • определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок и т. д.);
  • соглашение об исправлении ошибок и определении достоверности данных;
  • согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Прикладной уровень часто делится на два подуровня. Верхний подуровень включает сетевые службы. Нижний - содержит стандартные сервисные элементы, поддерживающие работу сетевых служб.

Уровень 2 - уровень представления (Presentation Layer). На этом уровне информация преобразуется к такому виду, в каком это требуется для выполнения прикладных процессов. Уровень представления обеспечивает кодирование данных, выдаваемых прикладными процессами, и интерпретацию передаваемых данных. Например, выполняются алгоритмы преобразования формата представления данных для печати - ASCII или КОИ-8. Или, если для визуализации данных используется дисплей, то эти данные по заданному алгоритму формируются в виде страницы, которая выводится на экран.

Представительный уровень выполняет следующие основные функции:

  • выбор образа представлений из возможных вариантов;
  • изменение образа представления в заданный виртуальный образ;
  • преобразование синтаксиса данных (кодов, символов) в стандартный;
  • определение формата данных.

Уровень 3 - сеансовый уровень или уровень сессии (Session Layer). На данном уровне устанавливаются, обслуживаются и прекращаются сессии между представительными объектами приложений (прикладными процессами). В качестве примера протокола сеансового уровня можно рассмотреть протокол RPC (Remote Procedure Call). Как следует из названия, данный протокол предназначен для отображения результатов выполнения процедуры на удаленном хосте. В процессе выполнения этой процедуры между приложениями устанавливается сеансовое соединение. Назначением данного соединения является обслуживание запросов, которые возникают, например, при взаимодействии приложения-сервера с приложением-клиентом.

Сеансовый уровень обеспечивает взаимодействие с транспортным уровнем, координирует прием и передачу данных одного сеанса связи, содержит функции управлениями паролями, подсчета платы за использование ресурсов сети и т.д. Этот уровень обеспечивает выполнение следующих функций:

  • установление и завершение на сеансовом уровне соединения между партнерами;
  • выполнение нормального и срочного обмена данными между прикладными процессами;
  • синхронизация работы сеансовых соединений;
  • извещение прикладных процессов об исключительных ситуациях;
  • установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки;
  • прерывание в нужных случаях прикладного процесса и его корректное возобновление;
  • прекращение сеанса без потери данных;
  • передачу особых сообщений о ходе проведения сеанса.

Уровень 4 - транспортный уровень (Transport Layer). Транспортный уровень предназначен для управления потоками сообщений и сигналов. Управление потоком является важной функцией транспортных протоколов, поскольку этот механизм позволяет надёжно обеспечивать передачу данных по сетям с разнородной структурой, при этом в описание маршрута включаются все компоненты коммуникационной системы, обеспечивающие передачу данных на всем пути от устройств отправителя до приемных устройств получателя. Управление потоком заключается в обязательном ожидании передатчиком подтверждения приема обусловленного числа сегментов приемником. Количество сегментов, которое передатчик может отправить без подтверждения их получения от приемника, называется окном.

Существует два типа протоколов транспортного уровня - сегментирующие протоколы и дейтаграммные протоколы. Сегментирующие протоколы транспортного уровня разбивают исходное сообщение на блоки данных транспортного уровня - сегменты. Основной функцией таких протоколов является обеспечение доставки этих сегментов до объекта назначения и восстановление сообщения. Дейтаграммные протоколы не сегментируют сообщение, они отправляют его одним пакетом вместе с адресной информацией. Пакет данных, который называется "дейтаграмма" (Datagram), маршрутизируется в сетях с переключением адресов или передается по локальной сети прикладной программе или пользователю.

На транспортном уровне может выполняться также согласование сетевых уровней различных несовместимых сетей через специальные шлюзы. Рассматриваемый уровень определяет адресацию абонентских систем и административных систем. Главной задачей транспортного уровня является использование виртуальных каналов, проложенных между взаимодействующими абонентскими системами и административными системами, для передачи в пакетах блоков данных. Основные функции, выполняемые транспортным уровнем:

  • управление передачей блоков данных и обеспечение их целостности;
  • обнаружение ошибок, их частичная ликвидация, сообщение о неисправленных ошибках;
  • восстановление передачи после отказов и неисправностей;
  • укрупнение либо разукрупнение блоков данных;
  • предоставление приоритетов при передаче блоков;
  • передача подтверждений о переданных блоках данных;
  • ликвидация блоков при тупиковых ситуациях в сети.

Кроме этого, транспортный уровень может восстанавливать блоки данных, потерянные на нижних уровнях.

Уровень 5 - сетевой уровень (Network Layer). Основной задачей протоколов сетевого уровня является определение пути, который будет использован для доставки пакетов данных при работе протоколов верхних уровней (маршрутизация). Для того чтобы пакет был доставлен до какого-либо заданного хоста, этому хосту должен быть поставлен в соответствие известный передатчику сетевой адрес. Группы хостов, объединенные по территориальному принципу, образуют сети. Для упрощения задачи маршрутизации сетевой адрес хоста составляется из двух частей: адреса сети и адреса хоста. Таким образом, задача маршрутизации распадается на две - поиск сети и поиск хоста в этой сети. На сетевом уровне могут выполняться следующие функции:

  • создание сетевых соединений и идентификация их портов;
  • обнаружение и исправлений ошибок, возникающих при передачи через коммуникационную сеть;
  • управление потоками пакетов;
  • организация (упорядочение) последовательностей пакетов;
  • маршрутизация и коммутация;
  • сегментация и объединение пакетов;
  • возврат в исходное состояние;
  • выбор видов сервиса.

Уровень 6 - канальный уровень или уровень звена данных (Data Link Layer). Назначением протоколов канального уровня является обеспечение передачи данных в среде передачи по физическому носителю. В канале формируется стартовый сигнал передачи данных, организуется начало передачи, производится сама передача, проводится проверка правильности процесса, производится отключение канала при сбоях и восстановление после ликвидации неисправности, формирование сигнала на окончание передачи и перевода канала в ждущий режим.

Таким образом, канальный уровень может выполнять следующие функции:

  • организацию (установление, управление, расторжение) канальных соединений и идентификацию их портов;
  • передачу блоков данных;
  • обнаружение и исправление ошибок;
  • управление потоками данных;
  • обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

На канальном уровне данные передаются в виде блоков, которые называются кадрами. Тип используемой среды передачи и её топология во многом определяют вид кадра протокола транспортного уровня, который должен быть использован. При использовании топологии "общая шина" (Common Bus) и "один-ко-многим" (Point-to-Multipoint) средства протокола канального уровня задают физические адреса, с помощью которых будет производиться обмен данными в среде передачи и процедура доступа к этой среде. Примерами таких протоколов являются протоколы Ethernet (в соответствующей части) и HDLC. Протоколы транспортного уровня, которые предназначены для работы в среде типа "один-к-одному" (Point-to-Point), не определяют физических адресов и имеют упрощенную процедуру доступа. Примером протокола такого типа является протокол PPP.

Уровень 7 - физический уровень (Physical Layer). Протоколы физического уровня обеспечивают непосредственный доступ к среде передачи данных для протоколов канального и последующих уровней. Данные передаются с помощью протоколов данного уровня в виде последовательностей битов (для последовательных протоколов) или групп битов (для параллельных протоколов). На этом уровне определяются набор сигналов, которыми обмениваются системы, параметры этих сигналов (временные и электрические) и последовательность формирования сигналов при выполнении процедуры передачи данных.

Физический уровень выполняет следующие функции:

  • устанавливает и разъединяет физические соединения;
  • передает последовательность сигналов;
  • "прослушивает" в нужных случаях каналы;
  • выполняет идентификацию каналов;
  • оповещает о появлении неисправностей и отказов.

Кроме того, на данном уровне формулируются требования к электрическим, физическим и механическим характеристикам среды передачи, передающих и соединительных устройств.

Сетезависимые и сетенезависимые уровни. Указанные выше функции всех уровней можно отнести к одной из двух групп: либо к функциям, ориентированным на работу с приложениями вне зависимости от устройства сети, либо к функциям, зависящим от конкретной технической реализации сети.

Три верхних уровня - прикладной, представительный и сеансовый ориентированы на приложения и практически не зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие-либо изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.


Рис. 2.9.

Стандартизация интерфейсов обеспечивает полную прозрачность взаимодействия вне зависимости от того, каким образом устроены уровни в конкретных реализациях (службах) модели.

Предлагаемая эталонная модель BPM (Business Process Management) основывается на цепочке следующих предпосылок:

    Повышение производительности предприятия как сложной системы требует ее рационального построения, а процессное управление является наиболее современной концепцией для такого построения;

    BPM (как дисциплина) предлагает системный подход к реализации процессного управления;

    На каждом процессно-управляемом предприятии есть своя BPM-система - портфолио всех бизнес-процессов, а также методов и инструментов для руководства разработкой, исполнения и развития этого портфолио;

    Гибкость BPM-системы предприятия является основным фактором ее успеха;

    Специализированная программная платформа (BPM suite) для реализации BPM-системы предприятия необходима, но недостаточна, так как BPM занимает особое место в архитектуре предприятия.

Цель: повышение производительности предприятия

Для управления своей производительностью большинство предприятий используют принцип обратной связи (рис. 1), позволяющий адаптироваться к внешней бизнес-экосистеме путем выполнения определенной последовательности действий:

    Измерение хода исполнения производственно-хозяйственной деятельности (обычно такие измерения представлены в форме различных метрик или индикаторов, например, процент возвращающихся клиентов);

    Вычленение из внешней бизнес-экосистемы важных для предприятия событий (например, законов или новых потребностей рынка);

    Определение стратегии развития бизнеса предприятия;

    Реализация принятых решений (путем внесения изменений в бизнес-систему предприятия).

В соответствии с классической рекомендацией Эдварда Деминга, автора многочисленных работ в области управления качеством, в том числе известной книги «Выход из кризиса», все усовершенствования должны проводиться циклично, непрерывно и с проверкой на каждом цикле. Степень и частота этих усовершенствований зависят от конкретной ситуации, но рекомендуется делать такие циклы достаточно компактными. Различные усовершенствования могут затрагивать различные аспекты работы предприятия. Вопрос в том, как предприятие может достигнуть наилучших результатов в каждом конкретном случае? Существуют две объективные предпосылки для оптимизации деятельности предприятия как единого целого:

    Обеспечение руководства надлежащей информацией и инструментами для принятия решения;

    Гарантия того, что бизнес-система предприятия способна к осуществлению необходимых изменений в необходимом темпе.

Наиболее современная концепция организации работы предприятия - процессное управление, при котором процессы и службы становятся явными.

Процессное управление

Мир бизнеса давно понял (см. такие методики, как TQM, BPR, Six Sigma, Lean, ISO 9000, и др.), что службы и процессы - это основа функционирования большинства предприятий. Множество предприятий используют процессное управление для организации своей производственно-хозяйственной деятельности, как портфолио бизнес-процессов и методов управления ими.

Процессное управление, как управленческая концепция, постулирует целесообразность координации деятельности отдельных служб предприятия с целью получения определенного результата при помощи явно и формально определенных бизнес-процессов. При этом службы - это операционно независимые функциональные единицы; у предприятия может быть много элементарных нанослужб, которые организованы в мегаслужбу (собственно предприятие).

Использование явного определения координации позволяет формализовать взаимозависимости между службами. Наличие такой формализации дает возможность использовать различные методы (моделирование, автоматизированная проверка, контроль за версиями, автоматизированное выполнение и т.д.) для улучшения понимания бизнеса (для принятия более правильных решений) и повышения скорости развития бизнес-систем (для более быстрой реализации изменений).

Кроме процессов и служб, бизнес-системы предприятий работают с событиями, правилами, данными, индикаторами работы, ролями, документами и т.д.

Для реализации процессного управления предприятия используют три популярные дисциплины постоянного усовершенствования бизнес-процессов: ISO 9000, Six Sigma и «бережливое», или «экономное», производство (Lean production). Они воздействуют на различные области бизнес-системы предприятия, однако всегда предусматривается сбор данных о фактически проделанной работе и использование некой модели бизнес-процессов для принятия решений (хотя иногда эта модель находится только в чьей-то голове). В то же самое время они предлагают различные и взаимодополняющие методы для того, чтобы определить, какие именно изменения необходимы для улучшения функционирования бизнес-системы предприятия.

Что моделируете, то и выполняете

На рис. 2 приведена обобщенная модель процессно-управляемого предприятия.

В чем основная трудность оптимизации деятельности такого предприятия? Различные части бизнес-системы используют разные описания одного и того же бизнес-процесса. Обычно эти описания существуют отдельно и разработаны разными людьми, обновляются различными темпами, не обмениваются информацией, а некоторых из них просто нет в явном виде. Наличие единого описания бизнес-процессов предприятия позволяет устранить этот недостаток. Это описание должно быть явно и формально определено, чтобы одновременно служить моделью для моделирования, исполняемой программой и документацией, легко понимаемой всеми вовлеченными в бизнес-процесс сотрудниками.

Такое описание - основа дисциплины BPM, позволяющей моделировать, автоматизировать, выполнять, контролировать, измерять и оптимизировать потоки работ, охватывающие программные системы, сотрудников, клиентов и партнеров в пределах и вне границ предприятия. Дисциплина BPM рассматривает все операции с бизнес-процессами (моделирование, исполнение и т.п.) как единое целое (рис. 3).

На данный момент в индустрии BPM еще не сложилась надлежащая система стандартов на форматы формального описания бизнес-процессов. Три наиболее популярных формата: BPMN (Business Process Modelling Notation , графическое представление моделей бизнес-процессов), BPEL (Business Process Execution Language , формализация исполнения взаимодействия между Web-сервисами) и XPDL (XML Process Description Language, www.wfmc.org, спецификация по обмену моделями бизнес-процессов между различными приложениями) были разработаны различными группами и для различных целей и, к сожалению, адекватно не взаимодополняют друг друга.

Ситуация усугубляется тем, что за различными форматами стоят различные производители и каждый старается «протолкнуть» на рынок свое решение. Как это неоднократно повторялось, в подобной борьбе интересы конечного потребителя мало принимаются во внимание - сегодня нет достаточно мощной организации, представляющей интересы конечного потребителя BPM (по аналогии с группой стандартов для HTML , успех которой объясняется принятием всеми разработчиками Web-браузеров единого теста ACID3 для сравнения своих продуктов). Идеальной ситуацией в BPM было бы стандартное определение семантики исполнения для BPMN-подобного описания бизнес-процессов. Именно стандартная семантика исполнения гарантировала бы одинаковую интерпретацию бизнес-процессов любым ПО. Дополнительно такое описание должно позволять адаптацию степени описания бизнес-процессов для нужд конкретного потребителя (например, пользователь видит грубую диаграмму, аналитик - более подробную и т.п.).

Все это не означает, что BPEL или XPDL станут ненужными - их использование будет скрыто, как это происходит в сфере подготовки электронных документов. Один и тот же электронный документ может одновременно существовать в XML, PDF, PostScript и т.п., но только один основной формат (XML) используется для модификации документа.

Дисциплина BPM в культуре предприятия

Кроме процессов и служб, бизнес-системы предприятия работают с такими дополнительными артефактами, как:

    события (events) - явления, происшедшие в пределах и вне границ предприятия, на которые возможна некая реакция бизнес-системы, например, при получении заказа от клиента необходимо начать бизнес-процесс обслуживания;

    объекты (data and documents objects) - формальные информационные описания реальных вещей и людей, образующих бизнес; это информация на входе и выходе бизнес-процесса, например, бизнес-процесс обслуживания заказа получает на входе собственно формуляр заказа и информацию о клиенте, а на выходе формирует отчет о выполнении заказа;

    деятельности (activities) - мелкие работы, преобразующие объекты, например автоматические деятельности типа проверки кредитной карты клиента или деятельности, осуществляемые человеком, такие как визирование документа руководством;

    правила (rules) - ограничения и условия, при которых функционирует предприятие, например, выдача кредита на определенную сумму должна утверждаться генеральным директором банка;

    роли (roles) - понятия, представляющие соответствующие навыки или обязанности, требуемые для выполнения определенных действий, например, только менеджер высшего звена может подписать конкретный документ;

    аудиторские следы (audit trails) - информация о выполнении конкретного бизнес-процесса, например, кто сделал, что и с каким результатом;

    основные индикаторы производительности (Key Performance Indicator, KPI) - ограниченное число показателей, измеряющих степень достижения поставленных целей.

Рис. 4 иллюстрирует распределение артефактов между различными частями бизнес-системы предприятия. Выражение «процессы (как шаблоны)» означает абстрактные описания (модели или планы) процессов;

выражение «процессы (как экземпляры)» означает фактические результаты выполнения этих шаблонов. Обычно шаблон используется для создания многих экземпляров (подобно незаполненному бланку, который многократно копируется для заполнения разными людьми). Выражение «службы (как интерфейсы)» означает формальные описания служб, которые доступны для их потребителей; выражение «службы (как программы)» означает средства выполнения служб - такие средства обеспечиваются поставщиками служб.

Для успешной работы со всей сложной совокупностью взаимозависимых артефактов у любого процессно-управляемого предприятия есть своя собственная BPM-система - это портфолио всех бизнес-процессов предприятия, а также методов и инструментов для руководства разработкой, исполнения и развития этого портфолио. Другими словами, BPM-система предприятия ответственна за синергетическое функционирование различных частей бизнес-системы предприятия.

BPM-система, как правило, не идеальна (например, некоторые процессы могут существовать лишь на бумаге, а некоторые детали «живут» только в умах определенных людей), но она существует. Например, любую реализацию ISO 9000 можно рассматривать как пример BPM-системы.

Улучшение BPM-системы предприятия, помимо чисто технических аспектов, должно учитывать социо-технические вопросы. У BPM-системы предприятия есть много заинтересованных лиц, каждое из которых решает свои задачи, воспринимает BPM-дисциплину своим образом и работает со своими артефактами. Для успешного развития BPM-системы предприятия необходимо обратить особое внимание на проблемы всех заинтересованных лиц и заранее объяснить им, как улучшение BPM-системы предприятия изменит их работу к лучшему. Крайне важно достигнуть единого понимания всех артефактов среди всех заинтересованных лиц.

Специализированное ПО для реализации BPM-систем

Растущая популярность и большой потенциал BPM вызвали появление нового класса корпоративного ПО - BPM suite, или BPMS, содержащего следующие типичные компоненты (рис. 5):

    Инструмент моделирования (Process modelling tool) - графическая программа для манипулирования такими артефактами, как события, правила, процессы, активности, службы и т.д.;

    Инструмент тестирования (Process testing tool) - среда функционального тестирования, которое позволяет «исполнять» процесс по различным сценариям;

    Хранилище шаблонов (Process template repository) - база данных шаблонов бизнес-процессов с поддержкой различных версий одного и того же шаблона;

    Исполнитель процессов (Process execution engine);

    Хранилище экземпляров (Process instance repository) - база данных для выполняемых и уже выполненных экземпляров бизнес-процессов;

    Список работ (Work list) - интерфейс между BPM suite и пользователем, выполняющим некоторые активности в рамках одного или нескольких бизнес-процессов;

    Приборная панель (Dashboard) - интерфейс оперативного контроля за исполнением бизнес-процессов;

    Инструмент анализа (Process analysis tool) - среда для изучения тенденции исполнения бизнес-процессов;

    Инструмент имитационного моделирования (Process simulation tool) - среда для тестирования производительности бизнес-процессов.

Необходимость взаимодействия между BPM suite и корпоративным ПО, которое поддерживает другие артефакты, вызвала появление нового класса корпоративного ПО - Business Process Platform (BPP). Типичные технологии BPP (рис. 6):

    Business Event Management (BEM) - анализ бизнес-событий в режиме реального времени и запуск соответствующих бизнес-процессов (BEM связан с Complex Event Processing (CEP) и Event Driven Architecture (EDA));

    Business Rules Management (BRM) - явное и формальное кодирование бизнес-правил, которые могут модифицироваться пользователями;

    Master Data Management (MDM) - упрощение работы со структурированными данными за счет устранения хаоса при использовании одних и тех же данных;

    Enterprise Content Management (ECM) - управление корпоративной информацией, предназначенной для человека (обобщение понятия документ);

    Configuration Management Data Base (CMDB) - централизованное описание всей информационно-вычислительной среды предприятия, используемое для привязки BPM к информационно-вычислительным ресурсам предприятия;

    Role-Based Access Control (RBAC) - управления доступом к информации с целью эффективного разделения контрольных и исполнительских полномочий (separation of duty);

    Business Activity Monitoring (BAM) - оперативный контроль функционирования предприятия;

    Business Intelligence (BI) - анализ характеристик и тенденций работы предприятия;

    Service-Oriented Architecture (SOA) - архитектурный стиль для построения сложных программных систем в виде набора универсально доступных и взаимозависимых служб, который используется для реализации, выполнения и управления службами;

    Enterprise Service Bus (ESB) - среда коммуникаций между службами в рамках SOA.

Таким образом, дисциплина BPM способна обеспечить единое, формальное и выполнимое описание бизнес-процессов, которое может использоваться в различных инструментах BPM suite, причем реальные данные собираются во время выполнения бизнес-процессов. Вместе с тем высокая гибкость BPM-системы предприятия не гарантируется автоматически после покупки BPM suite или BPP - способность конкретной BPM-системы развиться в необходимом темпе должна проектироваться, реализовываться и постоянно контролироваться. Как и здоровье человека, все это нельзя купить.

BPM в архитектуре предприятия

Необходимость вовлечения практически всего корпоративного ПО в единую логику улучшения BPM-системы предприятия поднимает вопрос о роли и месте BPM в архитектуре предприятия (Enterprise Architecture, EA). EA является на сегодня устоявшейся практикой ИТ-департаментов по упорядочению информационно-вычислительной среды предприятия. В основе EA лежат следующие правила:

    Текущая ситуация с информационно-вычислительной средой предприятия тщательно документируется как исходная точка as-is;

    Желаемая ситуация документируется как конечная точка to-be;

    Строится и исполняется долгосрочный план по переводу информационно-вычислительной среды предприятия из одной точки в другую.

Все это, казалась бы, вполне разумно, но сразу видна разница с подходом, предусматривающим небольшие улучшения, который лежит в основе процессного управления. Как совместить эти два противоположных подхода?

Дисциплина BPM может решить основную проблему EA - дать объективную оценку производственно-хозяйственных возможностей (а не только информационно-вычислительных) того, что будет в точке to-be. Несмотря на то что EA описывает полную номенклатуру артефактов предприятия (его генотип), она не может достоверно сказать, какие изменения в этом генотипе влияют на конкретные производственно-хозяйственные характеристики предприятия, то есть на фенотип предприятия (cовокупность характеристик, присущих индивиду на определенной стадии развития).

Со своей стороны, дисциплина BPM структурирует взаимозависимости между артефактами в виде явных и исполняемых моделей (бизнес-процесс - это пример взаимозависимости между такими артефактами, как события, роли, правила и т.п.). Наличие таких исполняемых моделей позволяет с некоторой степенью достоверности оценить производственно-хозяйственные характеристики предприятия при изменении генотипа предприятия.

Естественно, чем больше взаимозависимостей между артефактами смоделировано и чем достовернее эти модели, тем точнее такие оценки. Потенциально симбиоз номенклатуры артефактов предприятия и формально определенных взаимозависимостей между ними дает исполняемую модель предприятия на конкретный момент времени. Если строить такие исполняемые модели на единых принципах (например, krislawrence.com), то появляется возможность для сравнения эффекта от применения различных стратегий развития предприятия и появления более систематических и предсказуемых технологий по преобразованию одних исполняемых моделей в другие.

В некотором смысле комбинация EA+BPM может стать своего рода навигатором, который обеспечивает руководство и практическую помощь в развитии бизнеса и ИТ при реализации генеральной линии предприятия.

Не секрет, что сегодня производители ПО определяют и развивают BPM по-разному. Однако, более перспективный путь развития BPM - это BPM, ориентированный на нужды конечных потребителей, и эталонная модель BPM - первый шаг по созданию единого понимания BPM среди всех заинтересованных лиц.

Предлагаемая в статье эталонная модель основана на практическом опыте автора по проектированию, разработке и сопровождению различных корпоративных решений. В частности, эта модель использовалась для автоматизации ежегодного производства более 3 тыс. сложных электронных продуктов со средним временем подготовки продукта в несколько лет. В результате обслуживание и развитие этой производственной системы потребовали в несколько раз меньше ресурсов, чем при традиционном подходе. n

Александр Самарин ([email protected]) - корпоративный архитектор ИТ-департамента правительства кантона Женева (Швейцария).

Process Frameworks для BPM

Подход к реализации технологий управления бизнес-процессами, упрощающий внедрение BPM-систем, подразумевает четкое определение бизнес-задачи и соответствующих ей бизнес-процессов; реализацию этих процессов за срок не более трех месяцев с целью демонстрации ценности данного подхода; дальнейшее расширение реализации на основные бизнес-задачи. Однако главная трудность на этом пути - недопонимание и отсутствие согласованности между бизнес- и ИТ-подразделениями. Значительно упростить проект внедрения и сократить затраты позволяют специализированные референсные модели (Process Frameworks).

Референсная модель - пакет аналитических и программных ресурсов, состоящий из описания и рекомендаций по организации высокоуровневой структуры бизнес-процесса, набора атрибутов и метрик оценки эффективности выполнения, а также программных модулей, созданных для быстрого построения прототипа бизнес-процесса для последующей его адаптации под специфику конкретной компании.

Референсные модели помогают в определении и установке требований и позволяют наладить бизнес-процессы, они основаны на отраслевых стандартах и включают в себя отраслевой опыт. Для типовых процессов референсные модели способны помочь при выборе и моделировании основных последовательностей работы, определении ключевых показателей эффективности (КPI) и параметров, позволяющих оценить результативность в ключевых областях, а также при управлении деятельностью и решением задач, анализе исходных причин и обработке исключительных случаев.

В структуру типичной референсной модели входят: рекомендации и описание предметной области; элементы композитных пользовательский интерфейсов (экранные формы и логически связные в цепочки портлеты); оболочки сервисов для быстрой реализации доступа к бизнес данным; примеры типовых бизнес-правил; ключевые показатели эффективности и элементы для их анализа; исполняемые модели процессов; модели данных и атрибуты процесса; адаптации к законодательной базе и специфике бизнеса в конкретной стране; рекомендации по этапам развертывания и реализации процессов. Такой набор ресурсов позволят быстрее адаптироваться к реализации процессного подхода в рамках конкретной системы управления бизнес-процессами, сократить время итераций цикла разработки, тестового исполнения и анализа процессов. При этом достигается максимальное соответствие технической реализации и существующей бизнес-задачи.

Однако, как отмечают аналитики AMR Research, «технологии и методы сами по себе не способны обеспечить каких-либо преимуществ - «больше» не всегда значит «лучше». Некоторые компании применяют множество различных решений, однако эффективность от этого только падает. Важна грамотность применения таких технологий». В референсных моделях в качестве основы используются принятые в отрасли стандарты и опыт компании Software AG по созданию эталонной модели для определения требований клиентов. На практике эта модель становится отправной точкой, с помощью которой клиенты могут создать нужную модель.

Process Framework, например, для бизнес-процесса обработки заказов, включает в себя базовую модель процесса со схемами действий для различных пользователей и ролей, избранные KPI из модели SCOR (The Supply-Chain Operations Reference-model) для процесса в целом и отдельных этапов, правила поддержки разных последовательностей обработки, например с учетом сегмента клиентов, целевые показатели для различных сегментов клиентов, типов продукции и регионов, а также панели индикации, помогающие контролировать особые ситуации.

Process Framework позволяет акцентировать внимание на необходимости и возможности коррекции KPI для конкретных групп клиентов и их конфигурирования с учетом появления новых товаров, выхода на новые регионы или сегменты рынка. Подобная информация позволит руководителям, отвечающим за цепочки поставок, торговые операции, логистику и производство, улучшить контроль над конкретной деятельностью, а руководителям ИТ-отделов быстро оценить реальную работоспособность ИТ-систем, поддерживающих обработку заказов.

Владимир Аленцев ([email protected]) - консультант по BPM и SOA , представительство Software AG в России и СНГ (Москва).

Эталонная модель под названием "Взаимодействие Открытых Систем" (OSI - Open Systems Interconnection) была выпущена в 1984 году.

Включает в себя:

  • · Поиск приложения, с которым будем обмениваться информацией.
  • · Установление и поддержание связи.
  • · Обработка потерь и помех при обмене.

Модель OSI разделяет задачу сетевого обмена на семь более мелких задач, что упрощает решение. Каждая из подзадач сформулирована таким образом, чтобы для её решения требовался минимум внешней информации.

Каждый уровень модели OSI соответствует своей подзадаче. Из этого следует, что каждый уровень модели в достаточной степени автономен. Поэтому реальные реализации сетей могут использовать не все уровни, а только часть из них.

Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

  • · горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах
  • · вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.

Рисунок 1. Модель OSI

Уровень 1, физический.

Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

  • · Тип кабелей и разъемов.
  • · Разводку контактов в разъемах.
  • · Схему кодирования сигналов для значений 0 и 1.

Уровень 2, канальный.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.x делят канальный уровень на два подуровня: управление логическим каналом (LLC) и управление доступом к среде (MAC). LLC обеспечивает обслуживание сетевого уровня, а подуровень MAC регулирует доступ к разделяемой физической среде.

Уровень 3, сетевой.

Сетевой уровень отвечает за деление пользователей на группы. На этом уровне происходит маршрутизация пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Уровень 4, транспортный.

Транспортный уровень делит потоки информации на достаточно малые фрагменты (пакеты) для передачи их на сетевой уровень.

Уровень 5, сеансовый.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью функций трех верхних уровней модели.

Уровень 6, уровень представления.

Уровень представления отвечает за возможность диалога между приложениями на разных машинах. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня. Протоколы уровня представления обычно являются составной частью функций трех верхних уровней модели.

Уровень 7, прикладной.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.



Рекомендуем почитать

Наверх