Эволюция транспортных сетей в мобильной связи.

Электроника 07.07.2019
Электроника

Транспортная сеть связи – это сеть, обеспечивающая перенос разных видов информации с использованием различных протоколов передачи.

Транспортные сети можно разделить на три уровня . Сети первого уровня – локальные или местные. Они организуются в городских или сельских местностях. Сети второго уровня – региональные или внутризоновые . Третий уровень – глобальная (магистральная) сеть. При построении транспортных сетей разных уровней сохраняется единообразие в способах транспортировки информации, методах управления сетями и организации синхронизации. Различия в сетях разного уровня состоят лишь в иерархии используемых скоростей, архитектуре сетей (кольцевая, звездообразная, линейная и др.), мощности узлов кросс-коммутации. В качестве линии передачи в транспортных сетях используются волоконно-оптические линии передачи, радиорелейные и спутниковые стволы, коаксиальные кабели.

На рисунке 2.8 показана структура местной (города) транспортной сети на базе технологии SDH.

Рис. 2.8 Структура транспортной сети города на базе технологии SDH

Для построения современных транспортных и корпоративных сетей любого уровня наибольшее применение находят сетевые технологии ПЦИ/ PDH, СЦИ/SDH и ATM. Технология ATM , в отличие от технологий PDH и SDH, охватывает не только уровень первичной или транспортной сети, но и объединяет уровни вторичных сетей и сетей доступа с первичной сетью. В последние годы получили развитие такие технологии как DWDM, IP поверх ATM и IP поверх SDH. В настоящее время наибольший прогресс достигнут в создании магистральных сетей на основе вышеназванных технологий. Появились новые технологии передачи IP-трафика с унифицированными соединениями IP-маршрутизаторов, использующими в качестве канальной среды такие технологии, как WDM, DWDM, SDH и ОВ в виде «темных волокон». В транспортных сетях используется иерархия скоростей передачи в соответствии с международными рекомендациями ITU-T и получившим наибольшее распространение, европейским стандартом, который применяют на сетях связи России. Технология PDH поддерживает следующие уровни иерархии цифровых каналов: абонентский или основной канал Е0 (64 кбит/с) и пользовательские каналы уровней Е1 (2,048 Мбит/с), Е2 (8,448 Мбит/с), Е3 (34,368 Мбит/с), Е4 (139,264 Мбит/с). Уровень цифрового канала Е5 (564,992 Мбит/с) определен в рекомендациях ITU-T, но на практике его обычно не используют. Цифровые каналы PDH являются входными (полезной нагрузкой) для пользовательских интерфейсов сетей SDH.

Современная цифровая первичная или транспортная сеть, как правило, строится на основе совокупности аппаратуры PDH и SDH. Цифровые каналы транспортной сети с пропускной способностью (скоростью передачи) от 64 кбит/с до 39813,12 Мбит/с создаются на основе технологий PDH и SDH (табл.8.4.1, табл.8.4.2). Технологии PDH и SDH взаимодействуют друг с другом через процедуры мультиплексирования и демультиплексирования цифровых потоков Е1, Е3 и Е4 PDH в аппаратуре SDH. В табл.8.4.1 приведены общие характеристики основного цифрового канала Е0 и сетевых трактов Е1, Е2, Е3 и Е4 PDH.

Технология SDH по сравнению с PDH имеет следующие особенности и преимущества:

 предусматривает синхронную передачу и мультиплексирование, что приводит к необходимости построения систем синхронизации сети;

 предусматривает прямое мультиплексирование и прямое демультиплексирование (ввод-вывод) цифровых потоков PDH;

 основана на стандартных оптических и электрических интерфейсах, что обеспечивает совместимость аппаратуры различных производителей;

 позволяет объединить системы PDH европейской и американской иерархии;

 обеспечивает полную совместимость с аппаратурой PDH, ATM и IP;

 обеспечивает многоуровневое управление и самодиагностику транспортной сети.

Технология ATM , основанная на статистическом мультиплексировании различных входных сигналов, разрабатывалась сначала как часть широкополосной технологии B-ISDN. Она предназначена для высоко-скоростной передачи разнородного трафика: голоса, данных, видео и мультмедиа, и ориентирована на использование физического уровня высокоскоростных сетевых технологий, таких как SDH, FDDI и др. В технологии ATM базовые значения скоростей передачи для интерфейсов доступа (пользовательских интерфейсов) соответствуют цифровым каналам Е1 (2 Мбит/с), Е3 (34 Мбит/с), Е4 (140 Мбит/с) PDH, ATM (25 Мбит/с), Fast Ethernet, FDDI (100 Мбит/с) и некоторым другим. Базовые скорости линейных интерфейсов передачи соответствуют скоростям передачи цифровых каналов STM-N (N=1, 4, 16, 64 (табл.2)) системы SDH.

Технология ATM была первой технологией, на основе которой вместо стандартных и многочисленных сетей (телефонной, телеграфной, факсимильной связи и сетей передачи данных) предполагалось построить единую цифровую сеть на базе широкого использования ВОЛС. Однако из-за высокой стоимости аппаратуры ATM и широкого проникновения протокола IP в сети глобальных масштабов, не способствовали осуществлению этих планов в полной мере. Технология IP является основой сети Интернет и представляет собой набор протоколов, называемый стеком протоколов TCP/IP, а протокол управления передачей IP – протоколом сети Интернет. Именно он реализует межсетевой обмен. Главным достоинством является то, что стек протоколов TCP/IP обеспечивает надежную связь между сетевым оборудованием различных производителей. Протоколы стека TCP/IP описывают формат сообщений и указывают, каким образом следует обрабатывать ошибки, предоставляют механизм передачи сообщений в сети независимо от типа применяемого оборудования. Однако за время существования стека протоколов TCP/IP выявились слабости и недостатки архитектуры протоколов TCP/IP. Во многих случаях IP-технология не может удовлетворить требованиям новых приложений. Прежде всего, она должна обеспечивать более высокую пропускную способность. Однако этого не достаточно. Требуется дополнить IP-технологию средствами управления пропускной способностью, которые бы гарантировали приложениям нужное им качество обслуживания QoS.

Развитие инфотелекоммуникационных технологий постоянно стимулируется поиском возможностей и технологий, способных наиболее эффективно объединять сети, превращая их в мультисервисные широкополосные и сверхширокополосные. В настоящее время наибольший прогресс достигнут в создании глобальных магистральных сетей на основе технологий IP поверх ATM и IP поверх SDH. Появились новые технологии передачи IP-трафика, предусматривающие унифицированные соединения маршрутизаторов через системы и среды, такие как WDM, DWDM, «темное волокно». Примером такой технологии может быть предложенный в 1999г. компанией Cisco Systems протокол SRP (Spatial Reuse Protocol)который впоследствии стал называться DPT (Dynamic Packet Transport). В технологии DPT воплотились лучшие качества таких технологий как SDH, FDDI и др. Технология DPT позволяет избежать промежуточных протоколов других сетевых технологий, например, SDH и ATM при передаче трафика IP по волокну. К основным преимуществам технологии DPT можно отнести следующие. Применение формата SDH (уровня STM-1) позволяет передавать трафик DPT по сетям SDH, благодаря чему обеспечивается их совместимость. При этом магистральные тракты занимают полосу пропускания лишь между точками передачи и приема сигналов, что позволяет более эффективно использовать пропускную способность кольцевой топологии сети DPT. Технологии DPT присущи развитые возможности резервирования трафика за счет реализации механизмов восстановления в кольцевой топологии сети. Применение протокола IP позволяет реализовать сквозной мониторинг всей сети DPT, начиная от магистральной (транспортной) и заканчивая сетями доступа.

Технической основой построения транспортных сетей являются телекоммуникационные системы передачи синхронной цифровой ие­рархии (Synchronous Digital Hierarchy – SDH). Их внедрение на сетях связи началось в 80-е годы XX в. Принципиальным отличием систем SDH от ранее существовавших цифровых систем передачи считается то, что они не являются «производителями» информации, а предназначены только для высокоэффективной передачи и распределения цифровых потоков, формируемых как в традиционных структурах стандартной плезиохронной цифровой иерархии (Plesiochronous Digital Hierarchy – PDH), так и в новых телекоммуникацион­ных технологиях – ATM, B-ISDN и т.д. Все указанные выше цифровые потоки «транспортируются» в системах SDH в виде информационных структур, названных виртуальными контейнерами (Virtual Container – VC). В структурах VC по транспортной сети переносится исход­ная цифровая информация, дополненная определенным количеством служебных информационных каналов, названных трактовыми заго­ловками (Path Overheard – РОН). В общем случае дополни­тельные каналы предназначены для эффективного управления транспортной сетью и выполняют функции передачи оперативной, административ­ной и обслуживающей информации (Operation, Administration, Mainte­nance, ОАМ). Это обеспечивает высокие функциональные возможно­сти и высокую надежность сети связи.

Группы однотипных или разнотипных виртуальных контейнеров VC передаются между элементами транспортной сети (от отправителя информации к получателю) по линиям передачи в виде информаци­онных структур, называемых синхронными транспортными модулями Synchronous Transport Module – STM). «Транспортирование» STM осуществляется с разными скоростями передачи соответствующим различным порядком STM-1, 4, 16, 64. STM-N оснащаются соответст­вующими заголовками, обеспечивающими передачу STM с полной функцией ОАМ в пределах регенерационной секции (Regeneration Section OH – RSOH) и мультиплексорной секции (Multiplex Section ОН-MSOH). Упрощенная функциональная схема системы передачи SDH, которая является основным структурным звеном транспортной сети, приведена на рис. 2.1.

Рис. 2.1. Функциональная схема системы передачи SDH

На рисунке приведены два вида секций, которые называются «Регенерационная секция» и «Мультиплексорная секция».

«Регенерационная секция» представляет собой сегмент системы передачи между оконечным оборудованием сетевого элемента, в котором сигнал STM-N передается или принимается и регенератором, или между двумя смежными регенераторами.

«Мультиплексорная секция» – это средство передачи инфор­мации между двумя сетевыми элементами, в одном из которых формируется (собирается) сигнал STM-N, а в другом «разбирает­ся» до компонентных потоков. В общем случае транспортная сеть SDH состоит из мультиплексорных секций, для которых уровень SDH-сигнала может быть разным в зависимости от требуемой ем­кости канала передачи для каждой секции.

«Тракт» означает логическое соединение между точкой системы передач SDH, в которой производится «сборка» виртуального контей­нера VC (например, из компонентных потоков PDH) и точкой, в кото­рой VC «разбирается». Тракт можно представить себе как трубку, проложенную через мультиплексорные секции, непосредственно со­единяющую две точки, между которыми осуществляется передача информации. Для «транспортировки» различных объемов цифровой информации разработаны виртуальные контейнеры различного типа. Для европейских потоков PDH таковыми являются:

VC низшего порядка (Low order VC, LOVC);

VC-12 для «транспортировки» Е1 = 2048 Кбит/с (2 М);

VC-22 для «транспортировки» Е2 = 8448 Кбит/с (8 М);

VC высшего порядка (High order VC, HOVC);

VC-3 для «транспортировки» ЕЗ = 34368 Кбит/с (34 М);

VC-4 для «транспортировки» Е4 = 139264 Кбит/с (140 М).

В зависимости от «емкости» виртуального контейнера различают тракты VC-12, VC-22 (низшего порядка) и тракты виртуальных кон­тейнеров VC-3, VC-4 (высшего порядка).

Виртуальный контейнер является элементарной единицей обраба­тываемой информации в транспортной системе SDH при мультиплек­сировании, перекрестных соединениях (кроссконнекция) и т.д. При этом нет необходимости доступа к «транспортируемой» информации, так как различная информация представлена в одном и том же виде, который именуется виртуальными контейнерами (в то же время к VC добавляется информация, необходимая для его обработки в пути следования).

Как указывалось выше, виртуальные контейнеры передаются меж­ду элементами транспортной сети в виде STM различного порядка. Основной (первичной) структурой для получения потоков STM явля­ется STM-1 с нормализованной скоростью передачи 155,52 Мбит/с. При этом, в зависимости от потребности сети, в цифровом потоке STM-1 возможна передача виртуальных контейнеров различного типа и в различных сочетаниях:

STM более высокого порядка могут быть получены из цифрового потока STM-1 простым синхронным мультиплексированием согласно рекомендации G.707 сектора телекоммуникаций Международного Союза электросвязи (МСЭ-Т):

Причем мультиплексирование, начиная с STM-4, осуществляется в оптическом диапазоне.

Информационные структуры STM-N передаются между элемента­ми транспортной сети по линиям передачи, организованным по воло­конно-оптическим кабелям связи, спутниковым линиям или по цифро­вым радиорелейным линиям (учитывая особенности мультиплексиро­вания, по ЦРРЛ можно передавать в электрическом виде только циф­ровой поток STM-1).

Характерной особенностью транспортных систем передачи SDH, показанных на рис. 2.1, является высокая степень резервирования как линейных трактов, так и основных узлов мультиплексорного оборудо­вания. Так, линии передачи между элементами сети обычно полно­стью резервируются (рис. 2.1), что позволяет избежать потерь огром­ных потоков информации при авариях (например, даже в первичном потоке STM-1 может передаваться трафик 1920 каналов ТЧ в режиме «транспортирования» потока 140 М).

Пример построения фрагмента транспортной сети с использо­ванием систем передачи SDH приведен на рис. 2.2. Как видно из рисунка, транспортная сеть предназначена для передачи любых информационных сообщений в цифровом виде. По своей сути транспортная сеть – это совокупность узлов коммутации, пунктов ввода отдельных цифровых потоков, линий передачи с регенерато­рами и мультиплексорами. Во всех узлах транспортной сети возможно переключение трактов для вывода и ввода информа­ционных потоков. Кроме того, в узлах сети тракты могут пере­ключаться в случае повреждений на линии передачи или в обо­рудовании.

Рис. 2.2. Фрагмент транспортной сети с использованием систем передачи SDH

Сможет ли оператор запустить новые услуги в действующей транспортной сети, справится ли она с передачей высокоскоростного трафика мультимедийных данных?

Проблемы, волнующие операторов

С переходом к технологии UMTS полоса пропускания прямого и обратного каналов передачи трафика значительно увеличивается.

Очевидны и изменения структуры передаваемого трафика. До сих пор в мобильных сетях превалирует голосовой трафик, но при переходе к 3G роль услуг передачи данных возрастет, и существенно увеличится их вклад в общий объем трафика. В определенный момент IP-трафик станет преобладающим, особенно с учетом всеобщей миграции голоса от канальной к пакетной коммутации.

Мгновенные отказ от традиционных технологий и переход к IP невозможны, а потому транспортная среда оператора мобильной связи должна обеспечивать постепенную миграцию. Возможность передачи трафика по традиционным протоколам (TDM, ATM и FR) через IP-сеть с помощью технологии PWE3 (Pseudo Wire Emulation End-to-End) делает IP-среду универсальной с точки зрения поддержки услуг второго и третьего поколений.

В общем случае в транспортной сети мобильного оператора можно выделить два основных сегмента: магистральная транспортная сеть и сеть радиодоступа (RAN). Принципы построения магистральной сети мобильного оператора имеют свои особенности, но в целом совпадают с принципами построения других магистральных сетей.

Ситуация с развитием транспортных сетей RAN - иная. В сетях второго поколения для подключения базовых станций и контроллеров операторы используют мобильные низкоскоростные TDM-каналы. Изначально они были вынуждены арендовать большинство каналов у операторов фиксированной и дальней связи, но сейчас ситуация улучшается. Многие сотовые компании имеют собственную оптическую инфраструктуру SDH/PDH, радиорелейное оборудование и сокращают количество арендуемых каналов. Как следствие, уменьшаются операционные расходы на содержание сети. При этом мало кто из операторов думает о технологии IP как о возможном пути решения проблем, связанных с расширением транспортной сети RAN, но именно построение IP-RAN позволяет решить многие проблемы модернизации уровня доступа.

Как уже отмечалось, новые услуги требуют расширения полосы пропускания. Если ранее емкости выделенного канала 2 Мбит/c (E1) было достаточно для передачи трафика от базовой станции к контроллеру, то БС 3G требуют уже четырех каналов E1. В ближайшем будущем базовым станциям понадобится полоса пропускания 14,4 Мбит/c, и это - не предел. Для подключения одной БС потребуется целый «пучок» каналов E1, что неудобно и имеет ряд ограничений.

Использование IP в качестве транспортной среды позволяет без труда получить полосу пропускания 100 или 1 тыс. Мбит/с, что многократно превышает емкость каналов E1.

Типовые сценарии построения IP-RAN

В зависимости от типов используемого оборудования и характеристик транспортных сетей варианты построения IP-RAN различаются. Мы последовательно рассмотрим разные сценарии.

Первый сценарий типичен для всех операторов второго поколения, планирующих переход к 3G: это передача трафика БС 2G по каналам Ethernet. Традиционно базовые станции мобильного оператора второго поколения подключаются к контроллерам через каналы TDM, по которым передаются как голосовые пакеты, так и сигнальный трафик, а также не менее важный синхросигнал для согласования работы всех БС и контроллеров. Преимущество TDM перед Ethernet в сетях мобильной связи состояло в том, что последние не могли синхронизировать работу оборудования. Однако с развитием IP-технологий проблема была решена. Сейчас доступны несколько технологий, позволяющих решить проблему передачи синхросигнала через IP-сеть, например технологии адаптивного восстановления синхросигнала, синхронный Ethernet и др. Следовательно, рассматриваемый сценарий создания сети IP-RAN можно полностью реализовать на базе Ethernet.

Второй сценарий тоже характерен для сетей второго поколения, где большую часть трафика составляет голосовая информация. При разговоре двух человек один из них, как правило, говорит, а второй слушает, поэтому при использовании TDM-технологий каналы минимум наполовину загружаются неинформативным трафиком, то есть тишиной. Все неинформативные пакеты могут быть выявлены на устройствах доступа в IP-сеть и отброшены за ненадобностью. Перед отправкой в сеть информативные пакеты можно оптимизировать на устройстве доступа по принципу, схожему с архивацией файлов. Все это позволяет существенно сократить объемы трафика, передаваемого от базовой станции, и потребность в полосе пропускания, уменьшить объемы передаваемой информации и операционные расходы на содержание транспортной сети.

Третий сценарий характерен при наличии базовых станций с поддержкой технологии ATM. В этом случае устройства доступа должны поддерживать стандарт ATM IMA для подключения базовых станций и технологию PWE3 для организации виртуальных ATM-каналов через IP-сеть. По способам организации виртуальных каналов и передаче синхросигнала третий сценарий аналогичен первому.

Четвертый сценарий типичен для европейских мобильных операторов, которые раньше опирались на хорошо развитые транспортные сети ATM и не могли одномоментно отказаться от их дальнейшего использования. В европейских сетях 3G наблюдается разделение трафика по разным средам передачи. Так, голосовой трафик и синхросигнал по традиции передаются через ATM-сеть, гарантирующую высокое качество обслуживания. А дополнительный трафик услуг, не критичных к качеству обслуживания, пересылается по новой транспортной IP-инфраструктуре. Это вовсе не означает, что европейские компании не доверяют IP-технологиям передачу ключевого трафика, а лишь свидетельствует о том, что они пытаются максимально разгрузить сеть при минимуме дополнительных вложений. В качестве IP-каналов доступа могут использоваться каналы Ethernet, а также медные DSL-линии, что позволяет существенно сократить расходы на построение IP-RAN.

Пятый сценарий применяется при развертывании БС нового поколения на базе IP. Такие базовые станции могут использовать объединенный групповой канал, состоящий из нескольких потоков E1. В этом случае при подключении нескольких БС через радиорелейные или проводные каналы к одному устройству доступа рациональным решением является терминация сессий Multilink PPP на устройстве доступа и агрегация IP-трафика в единый поток. Определение трафика от каждой базовой станции выполняется в соответствии с ее IP-адресом.

Последний, шестой, сценарий продиктован переходом операторов на сети третьего поколения. Этот процесс не будет мгновенным, а динамика спроса на новые услуги с трудом поддается прогнозированию. Операторы продолжают получать высокие доходы от сетей 2G и не собираются их сворачивать, поэтому на одной площадке не исключена работа БС второго и третьего поколений. В данном случае устройство доступа должно принимать от базовых станций трафик разных типов (IP, TDM, ATM) и обеспечивать его передачу по виртуальным IP-каналам. Синхросигнал также передается через IP-сеть.

Большинство сложностей построения RAN на базе IP вызвано необходимостью в «подгонке» возможностей пакетной технологии под требования мобильного оборудования, изначально работавшего с протоколами TDM и ATM. Однако новые технологии IP, такие как PWE3 или передача синхросигнала по IP-каналам, позволяют операторам строить универсальные мультисервисные транспортные сети для предоставления услуг 2G и 3G, развития дополнительных сервисов.

Отметим, что компания Huawei первая предложила рынку базовые станции, подключаемые к сети IP, с поддержкой технологий Ethernet и TDM-over-IP. При этом заказчикам предоставляются не отдельные сетевые элементы, а комплексные решения IP-RAN. Не ограничиваясь новыми базовыми станциями, Huawei выпустила целую линейку оборудования серии CX с поддержкой технологий передачи трафика TDM, ATM, IP поверх MPLS и реализовала передачу синхросигнала через IP. Высокая плотность портов E1, IMA E1, FE позволяет подключать к одному устройству CX базовые станции второго и третьего поколения. Для повышения надежности решения IP-RAN на уровне доступа реализованы технологии надежных кольцевых структур RPR и RRPP. В том случае, когда построение колец доступа невозможно, устройства CX обеспечивают построение сети древовидной топологии на основе протоколов STP и RSTP.

Алексей Гордиенко ([email protected]) - менеджер по оборудованию передачи данных компании Huawei

Транспортные сети, формирующие проводные каналы связи между удален­ными беспроводными сетями, представляют собой совокупность (рис. 1.5):

– проводных линий связи (links), по которым передаются цифровые электриче­ские или оптические сигналы;

– сетевых узлов (network nodes), осуществляющих ретрансляцию сигналов (включая их мультиплексирование/ демультиплексирование) из одних прово­дных линий в другие посредством коммутаторов (на рис. 1.5 показана струк­тура транспортной сети, содержащая 9 коммутаторов, соединенных между собой 15-ю линиями связи).

Современные транспортные сети представляют собой смежные техниче­ские системы, детальные сведения о которых составляют отдельную область знаний . Краткие сведения о характеристиках этих сетей, связанные с после­дующим изложением сведений о BWN, сводятся к следующему (рис. 1.6).

1. Иерархический уровень реализации сетей служит основанием для их раз­деления на две разновидности – первичные и наложенные сети.

Первичные сети (transmission system) обеспечивают физический перенос электрических сигналов от исходного до конечного узла транспортной сети. Одна из важных функций первичных сетей заключается в мультиплексирова­нии/ демультиплексировании сигналов различных источников. Цифровой форме сигнала, которая используется в современных транспортных сетях, соответству­ет мультиплексирование с временным разделением (Time Division Multiplexing –

TDM). По способу синхронизации мультиплексируемых сигналов различают следующие разновидности первичных сетей:

– сети с плезиохронной цифровой иерархией (Plesiochronous Digital Hierarchy – PDH), в которых мультиплексируемые сигналы близки к синхронным, но не строго синхронны; такие сети обеспечивают скорость передачи цифровых сигналов до 150 Мбит/с;

– сети с синхронной цифровой иерархией (Synchronous Digital Hierarchy – SDH) в которых обеспечивается синхронность мультиплексируемых сигналов- та­кие сети обеспечивают скорость передачи цифровых сигналов до 10 Гбит/с.

Рис. 1.5. Структура транспортной сети

Очевидно, что скорости передачи информационных потоков в сетях обеих разновидностей позволяют создавать на их основе транспортную инфраструк­туру, удовлетворяющую потребностям развертывания современных BWN.

Наложенные сети (Overlay Network) на основе первичных сетей обеспе­чивают формирование каналов проводной связи и перенос сообщений между входными и выходными узлами. Наложенные сети дополняют первичные сети всеми ресурсами, необходимыми для обеспечения проводного транспорта сиг­налов. Наиболее распространенные разновидности наложенных сетей: – коммутируемая телефонная сеть общего пользования (Public Switche Telephone Network – PSTN), рассчитанная на предоставление каналов со ско­ростью передачи цифровых потоков до 64 кбит/с; такие каналы называют ба­зовыми цифровыми каналами (Digital Signal 0 – DS0 или Bearer channel – channel);

– цифровая сеть с интеграцией услуг (Integrated Services Digital Network), рас­считанная на предоставление 23 базовых цифровых каналов в США, и 30 – в Европе (суммарные значения скоростей передачи данных соответственно равны 1.544 Мбит/с и 2.048 Мбит/с);

коммутируемая сеть передачи данных (Public Switched Data Network – PSDN) предназначенная для реализации пакетной передачи данных; примером такой сети является Internet.

Рис. 1.6. Критерии классификации транспортных сетей

2. Способ передачи сообщений. По способу передачи сообщений, все транс­портные сети классифицируются по двум признакам: форма представления со­общений во временной области и способ взаимосвязи абонентов в процессе ин­формационного обмена.

По форме представления во времени сообщение может быть непрерыв­ным (circuit mode) или пакетным (packet mode). Непрерывная форма харак­теризуется неделимостью сообщения на протяжении сеанса связи, пакетная, напротив, его разделением на части, каждая из которых передается отдельно (с последующим восстановлением целостности сообщения посредством объ­единения всех частей в надлежащем порядке узлом получателя). Непрерыв­ность сообщения эквивалентна установлению между исходным и конечным узлами транспортной сети замкнутой линии электрической связи (circuit),

что поясняет происхождение англоязычного термина для обозначения непп рывной передачи. Пакетирование сообщения сочетается с двумя способами передачи пакетов – либо по единой электрической линии, неизменной для всех пакетов сообщения, либо посредством независимой передачи транс­портной сетью каждого пакета, которые в этом случае именуются дейта граммами (datagram).

Форма взаимосвязи абонентов при транспорте сообщений определяется по наличию/отсутствию предварительной договоренности контактирующих сто­рон об обмене сообщениями. Различают две разновидности взаимосвязи або­нентов:

– связь с установлением соединения (connection oriented), соответствующая транспорту сообщений по пути, неизменному на протяжении сеанса связи- установление пути предшествует передаче сообщения (например, по линиям’, связывающим узлы 1 – 4 – 5 – 9 на рис. 1.5);

– связь без установления соединения (connectionless oriented), при которой транспорт сообщений сетью осуществляется без предварительного уста­новления маршрута его передачи; подразумевается возможность прохож­дения различных пакетов/частей сообщения различными путями (напри­мер, в сети, показанной на рис. 1.5, при передаче сообщения между узлами 1-9 возможна передача одного пакета через узлы 4-5, другого – через узлы 7-8, третьего – через узлы 2-3).

Передача без установления соединения может осуществляться только в пакетной (дейтаграммной) форме; непрерывная передача сообщений – только при установлении в транспортной сети соединения; пакетная фор­ма сообщений может подразумевать возможность установления соедине­ния, однако осуществляться без такового. Примером пакетной передачи с установлением соединения является передача IP-пакетов по сетям PSTN и ISDN.

3. Каналы связи транспортной сети принято классифицировать, исходя из формы реализации соединения между конечными узлами линии и пропускной способности каналов.

Реализация соединения между узлами может быть как «физической», так и виртуальной.

Физическое соединение осуществляется путем формирования составной линии, включающей ряд межузловых линий типа «точка-точка» и соединяю­щие их коммутаторы с фиксированным направлением коммутации от входящей к исходящей межузловой линии. Например, физическое соединение узлов 3 и 7 на рис. 1.5 образуется путем создания составной линии, включающей узлы 3, 5, 6, 7 и три межузловых отрезка. Типовым примером транспортных сетей с физической реализацией соединения (circuit mode) могут служить сети PSTN и ISDN.

Виртуальная реализация соединения заключается в пакетной передаче со­общений при неизменном маршруте их следования в транспортной сети (т.е. при неизменном перечне узлов и соединительных линий). Постоянство марш­рута обеспечивается запоминанием направления передачи пакетов (packet switching) в коммутаторах сети. Запоминание осуществляется либо только на время передачи сообщения, чему соответствуют понятие коммутируемого виртуального канала (switched virtual circuit), либо на длительное время, чему соответствуют понятие постоянного виртуального канала (permanent virtual channel).

Создание коммутируемых каналов осуществляется по запросу источника сообщения автоматически, создание постоянных каналов – администратором сети. Примерами виртуальных сетей являются сети PSDN.

Пропускная способность канала, под которой подразумевают возмож­ности последнего по переносу информации за определенный промежуток времени, определяется разновидностью используемых кабельных линий и особенностями мультиплексирования сигналов в коммутаторах. В совре­менных транспортных сетях используют кабели с двумя типами направ­ляющих сред (проводные медные и оптоволоконные) и два упоминавшихся выше способа мультиплексирования – плезиохронный (PDH) и синхрон­ный (SDH). Типовым (но не обязательным) является сочетание использо­вания проводных медных линий с применением PDH и оптоволоконных линий с применением SDH. Первому сочетанию соответствует пропускная способность до 150 Мбит/с, второму – до 10 Гбит/с. Технология синхрон­ного мультиплексирования допускает «надстройку» последнего над пле- зиохронным: таким образом, менее скоростные линии с плезиохронными цифровыми потоками могут подключаться к более скоростным линиям с синхронными потоками.

Цифровые потоки технологии плезиохронных сетей стандартизированы в трех вариантах стандартов: Европейском (Ех), Американском (Тх) и Японском (Jx). Несмотря на общие принципы, в каждом из них использованы различные коэффициенты мультиплексирования на разных уровнях иерархий. Каждый из стандартов охватывает несколько уровней цифровой иерархии и имеет несколь­ко символьных обозначений, описывающих технические характеристики интер­фейса и соответствующую скорость передачи данных:

– стандарты Ех, в соответствии со значениями обеспечиваемых скоростей передачи данных, обозначаемые символами Е0, El, Е2, ЕЗ, Е4, Е5;

– стандарты Тх, обозначаемые Tl, Т2, ТЗ, Т4 и Т5 (приняты в США, Японии и Корее);

– стандарты Jx, обозначаемые Jl, J2, J3, J4, J5, хотя чаще встречается другое обозначение: DS1, DS2, DS3, DS4, DS5, появившееся в результате согласова­ния японской и американской версий стандартов ввиду близости их характе­ристик (фактическая схожесть имеет место для первых двух иерархических уровней).

Базовым цифровым потокам обоих стандартов – Е0 и DS0 – соответствуют одинаковые значения скоростей передачи данных – 64 кбит/с. Иерархия скоро­стей цифровых потоков Е- и Т-версий приведена в табл. 1.1. На практике наи­большее распространение получили цифровые линии El, Т1 и ЕЗ, ТЗ,

Системы SDH, соответствующие международным стандартам синхрс ных первичных транспортных сетей, и системы SONET (Synchronous Opti< Network), отвечающие стандартам США, обеспечивают мультиплексирован цифровых потоков со скоростями порядка сотен и тысяч Мбит/с, что на один-j порядка превышает значения скоростей в плезиохронных системах. Частичн перекрытие стандартизированных значений скорости цифровых потоков дв разновидностей соответствует верхним иерархическим уровням PDH и нижн иерархическим уровням SDH. Базовому значению STM-0 скорости синхроны транспортных систем (Synchronous Transport Mode – STM) соответствует ci рость битового потока 48,96 Мбит/с. Сведения о скоростях передачи данн более высоких уровней (STM-x) представлены в табл. 1.2.

Оптоволоконные кабели обеспечивают передачу информационных noroi со скоростями до 10 Гбит/с, что соответствует стандарту STM-64 (5-го уроЕ иерархии скоростей). Различия скоростей передачи полезной нагрузки (paylo; и общей скорости потока в линиях (line rate) связана с «накладными расходам] обусловленными необходимостью сопровождения полезной информации разнс рода служебными сообщениями, обеспечивающими синхронную передачу }

Рекомендуем почитать

Наверх