Информационный процесс каналы передача данных. Передача информации по каналам связи основные характеристики каналов связи

Электроника 07.07.2019
Электроника

Канал связи представляет собой совокупность технических средств для передачи сообщений из одной точки пространства в другую. С точ­ки зрения теории информации физическое устройство канала несуще­ственно. Источник сообщений(ИС) имеет выходной алфавит символовA ={а i },i= 1.. n - количество информации, приходящееся в среднем на один символ источника:

где p i , - вероятность появления символаa i , на выходе источника, символы источника считаются независимыми. Канал связи имеет алфавит символовB={b j },j= 1.. m, среднее количество информации в одном символе канала

где q j - вероятность появления символаb i , в канале.

Техническими характеристиками канала связи являются:

    техническая производительность источника  A - среднее число символов, выдаваемых источником в единицу времени;

    техническая пропускная способность канала связи  B - среднее число символов, передаваемое по каналу в единицу времени.

Информационной характеристикой источника является инфор­мационная производительность. По определению, информационная производительность - это среднее количество информации, выдава­емое источником в единицу времени.

В канале без помех информационными характеристиками являются:

1) скорость передачи информации по каналу

2) пропускная способность канала

где {P } - множество всех возможных распределений вероятностей символов алфавитаВ канала. С учетом свойств энтропии

C K = B . log 2 m.

В канале с помехами в общем случае входной и выходной алфа­виты не совпадают. Пусть

B ВХ =X={x 1 ,x 2 ,…,x n };

B ВЫХ =Y={y 1 ,y 2 ,…,y m }.

Если отправленный на входе канал символ х к опознан в приемнике какy i иi K , то при передаче произошла ошибка. Свойства канала описываются матрицей переходных вероятностей (вероятность приема символау i , при условии, что посланх k ):

|| P(yi|xk) ||, k=1..n, i=1..m.

Справедливо соотношение:

Среднее количество информации на один входной символ канала:

p i =p(x i ) .

Среднее количество информации на выходной символ канала:

Информация, которую несет выход канала о входе:

I(Y,X)=H(X)-H Y (X)=H(Y)-H X (Y).

Здесь Ну (Х ) - условная энтропия входного символа канала при на­блюдении выходного символа (ненадежность канала),Н х (Y ) - услов­ная энтропия выходного символа канала при наблюдении входных символов (энтропия шума).

Скорость передачи информации по каналу с помехами:

dI(B)/dt= B I(X,Y).

Пропускная способность канала с помехами:

где { р} - множество всех возможных распределений вероятностей входного алфавита символов канала.

Рассмотрим пример

Найти пропускную способность двоичного симметричного канала (канала с двухсимвольными входными и выходными алфавитами) и одинаковыми вероятностями ошибок (рис.1), если априорные вероят­ности появления входных символов:P(x 1 )=P 1 =P, P(x 2 )=P 2 =1-P .

Решение. В соответствии с моделью канала условные веро­ятности

P(y 1 | x 2 ) = P(y 2 | x 1 ) = P i ,

P(y 1 | x 1 ) = P(y 2 | x 2 ) = 1-P i .

Пропускная способность канала - C K = B . max{H(Y)-H(X|Y)}. Найдем энтропию шума:

По теореме умножения: P (y j x i )=P (x i )P (y j |x i ), следовательно,

P (x 1 y 1 )=P (1-P i ), P (x 2 y 1 )=(1- P )P i ,P (x 1 y 2 )=PP i ,P (x 2 y 2 )=(1-P )(1-P i ).

Подставляя в формулу, получаем:

Таким образом, H( Y | X ) не зависит от распределения входного алфавита, следовательно:

Определим энтропию выхода:

Вероятности P (y 1 ) иP (y 2 ) получаем следующим образом:

P (y 1 )=P (y 1 x 1 )+P (y 1 x 2 )=P (1-P i )+(1-P i )P i , P (y2 )=P (y 2 x 1 )+P (y 2 x 2 )=PP i +(1-P )(1-P i ).

Варьируя Р, убеждаемся, что максимальное значение H (Y ), равное 1, получается при равновероятных входных символахP (y 1 ) иP (y 2 ). Следовательно,

Задача . Найти пропускную способность канала с трехсимвольными входными и выходными алфавитами (x 1 ,x 2 ,x 3 иy 1 ,y 2 ,y 3 соответсвенно). Интенсивность появления символов на входе канала k =V . 10 символов/с.

Вероятности появления символов:

,
, .

Вероятности передачи символов через канал связи:

,
,,

,
,,

,
,.

4. КОДИРОВАНИЕ ИНФОРМАЦИИ

4.1. Общие сведения Кодом называется:

Правило, описывающее отображение одного набора знаков в другой набор знаков или в набор слов без знаков;

Множество образов, получающихся при таком отображении.

В технических кодах буквы, цифры и другие знаки почти всегда кодируются двоичными последовательностями, называемыми двоичными кодовыми словами. У многих кодов слова имеют оди­наковую длину (равномерные коды).

Выбор кодов для кодирования конкретных типов сообщений определяется многими факторами:

Удобством получения исходных сообщений из источника;

Быстротой передачи сообщений через канал связи;

Объёмом памяти, необходимым дня хранения сообщений;

Удобством обработки данных;

Удобством декодирования сообщений приемником.

Закодированные сообщения передаются по каналам связи, хра­нятся в ЗУ, обрабатываются процессором. Объемы кодируемых данных велики, и поэтому во многих случаях важно обеспечить таксе кодирование данны:"., которое характеризуется минимальной длиной получающихся сообщений, Это проблема сжатия данных. Существуют два подхода сжатия данных:

Сжатие, основанное на анализе статистических свойств коди­руемых сообщений.

Сжатие на основе статистических свойств данных называется так же теорией экономного или эффективного кодирования. Эко­номное кодирование основано на использовании кодов с перемен­ной длиной кодового слова, например, код Шеннона-Фано, код Хафмана /31. Идея использования кодов переменной длины для сжа­тия данных состоит в том, чтобы сообщения с большей вероят­ностью появления ставить в соответствие кодовые комбинации мень­шей длины и, наоборот, сообщения с малой вероятностью появле­ния кодировать словами большей длины. Средняя длина кодового слова определяется с.о.:

где /, - длина кодового слова для кодирования i - го сообщения; p t - вероятность появления i - го сообщения.

4.2. Задания

4.2.1. Из табл.4 выбрать дня последующего кодирования ис­ходный алфавит, содержащий 10 символов, начиная с N-ro (N - порядковый номер студента в журнале группы). Пронормировать вероятности символов.

4.2.2. Пронормировать выбранный в п.4.2.1. исходный алфавит равномерным двоичным кодом, кодом Шеннона-Фано, кодом Хафмана. Для каждого варианта кодирования рассчитать мини­мальное, максимальное, среднее значение длины кодового слова. Проанализировать результаты.

4.2.3. Проделать задание 4.2.2. для троичного кода.

Таблица 4

4.3. Указания к выполнению отдельных заданий К заданию 4.2.1. Нормирование вероятностей производится по формуле:

/W-HO / *Рк " JC=AT

где Pi - вероятности появления символов, приведенные в табл.4.

К заданию 4.2.2. Правила построения двоичных кодов изло­жены в /4,6/.

К заданию 4.2.3. При построении троичного кода в качестве кодовых слов берутся слова, записанные в троичной системе счис­ления. Оптимальный троичный код строится с помощью процедуры Хафмана (с помощью процедуры Шеннона-Фано строится субоп-тимальный код). При этом разбиение алфавита ведется на три груп­пы, первой группе приписывается "О", второй - "1", третьей - "2".

На сегодняшний день информация так быстро распространяется, что не всегда хватает времени ее осмыслить. Большинство людей редко задумываются о том, как и с помощью каких средств она передается, а уж тем более не представляют себе схему передачи информации.

Основные понятия

Передачей информации принято считать физический процесс перемещения данных (знаков и символов) в пространстве. С точки зрения передачи данных - это спланированное заранее, технически оснащенное мероприятие по перемещению информационных единиц за установленное время от так называемого источника к приемнику посредством информационного канала, или канала передачи данных.

Канал передачи данных - совокупность средств или среда распространения данных. Другими словами, это та часть схемы передачи информации, которая обеспечивает движение информации от источника к получателю, а при определенных условиях и обратно.

Классификаций каналов передачи данных много. Если выделить основные из них, то можно перечислить следующие: радиоканалы, оптические, акустические или беспроводные, проводные.

Технические каналы передачи информации

Непосредственно к техническим каналам передачи данных относятся радиоканалы, оптоволоконные каналы и кабельные. Кабель может быть коаксиальный или на основе витых пар. Первые представляют собой электрический кабель с медным проводом внутри, а вторые - витые пары медных проводов, изолированные попарно, находящиеся в диэлектрической оболочке. Эти кабели довольно гибкие и удобные в использовании. Оптоволокно состоит из оптоволоконных нитей, передающих световые сигналы посредством отражения.

Основными характеристиками являются пропускная способность и помехоустойчивость. Под пропускной способностью принято понимать тот объем информации, который можно передать по каналу за определенное время. А помехоустойчивостью называют параметр устойчивости канала к воздействию внешних помех (шумов).

Общее представление о передаче данных

Если не конкретизировать область применения, общая схема передачи информации выглядит несложно, включает в себя три компонента: «источник», «приемник» и «канал передачи».

Схема Шеннона

Клод Шеннон, американский математик и инженер, стоял у истоков теории информации. Им была предложена схема передачи информации по техническим каналам связи.

Понять эту схему несложно. Особенно если представить её элементы в виде знакомых предметов и явлений. Например, источник информации - человек, говорящий по телефону. Телефонная трубка будет являться кодирующим устройством, которое преобразует речь или звуковые волны в электрические сигналы. Каналом передачи данных в этом случае является узлы связи, в общем, вся телефонная сеть, ведущая от одного телефонного аппарата к другому. Декодирующим устройством выступает трубка абонента. Она преобразует электрический сигнал обратно в звук, то есть в речь.

В этой схеме процесса передачи информации данные представлены в виде непрерывного электрического сигнала. Такая связь называется аналоговой.

Понятие кодирования

Кодированием принято считать преобразование информации, посылаемой источником, в форму, пригодную для передачи по используемому каналу связи. Самый понятный пример кодирования - это азбука Морзе. В ней информация преобразуется в последовательность точек и тире, то есть коротких и длинных сигналов. Принимающая сторона должна декодировать эту последовательность.

В современных технологиях используется цифровая связь. В ней информация преобразуются (кодируется) в двоичные данные, то есть 0 и 1. Существует даже бинарный алфавит. Такая связь называется дискретной.

Помехи в информационных каналах

В схеме передачи данных также присутствует шум. Понятие "шум" в данном случае означает помехи, из-за которых происходит искажение сигнала и, как следствие, его потеря. Причины помех могут быть различные. Например, информационные каналы могут быть плохо защищены друг от друга. Для предотвращения помех применяют различные технические способы защиты, фильтры, экранирование и т. д.

К. Шенноном была разработана и предложена к использованию теория кодирование для борьбы с шумом. Идея заключается в том, что раз под воздействием шума происходит потеря информации, значит, передаваемые данные должны быть избыточны, но в то же время не настолько, чтобы снизить скорость передачи.

В цифровых каналах связи информация делится на части - пакеты, для каждого из которых вычисляется контрольная сумма. Эта сумма передается вместе с каждым пакетом. Приемник информации заново вычисляет эту сумму и принимает пакет, только если она совпадает с первоначальной. В противном случае пакет отправляется снова. И так до тех пор, пока отправленная и полученная контрольные суммы не совпадут.

Передача информации по каналу с решающей обратной связью

дипломная работа

1.2.1 Способы передачи информации по каналам связи

Передача информации с повторением (накоплением). Такой метод передачи применяют для повышения достоверности при отсутствии обратного канала, хотя нет принципиальных ограничений для его использования и при наличии обратной связи. Иногда такой метод классифицируют как прием сообщений с накоплением. Сущность метода заключается в передаче одного и того же сообщения несколько раз, запоминании принятых сообщений, сравнении их поэлементно и составлении сообщения, включая элементы, выбранные «по большинству». Предположим, что трижды передана одна и та же кодовая комбинация 1010101. Во всех трех передачах она подверглась воздействию помех и была искажена:

Приемник поразрядно сравнивает три принятых символа и проставляет те символы (под чертой), количество которых в данном разряде преобладает.

Существует и другой метод передачи информации с накоплением, при котором производится не посимвольное сравнение, а сравнение всей комбинации в целом. Этот метод проще реализуется, но обеспечивает более плохие результаты.

Таким образом, высокая помехоустойчивость метода передачи информации с повторением (накоплением) основана на том, что сигнал и помехи в канале не зависят друг от друга и изменяются по разным законам (сигнал периодичен, а помеха случайна), поэтому повторяющаяся комбинация в каждой передаче, как правило, будет искажаться по-разному. Вследствие этого на приеме накопление, то есть суммирование сигнала, возрастает пропорционально числу повторений, тогда как сумма помехи возрастает по другому закону. Если считать, что помехи и сигнал независимы, то суммируются средн-ие квадраты и средний квадрат суммы возрастает пропорционально первойстепени. Поэтому при n повторениях отношение сигнал/помеха увеличивается в n раз, причем это происходит без увеличения мощности сигнала. Однако это достигается за счет усложнения аппаратуры и возрастания времени передачи или полосы частот в случае, если сигнал передается на нескольких частотах одновременно во времени. Кроме того, при зависимых ошибках и пачках ошибок помехоустойчивость системы снижается.

Передача информации с обратной связью. Помехоустойчивость передачи без обратной связи (ПБОС) обеспечивается следующими способами: помехоустойчивым кодированием, передачей с повторением, одновременной передачей по нескольким параллельным каналам. В ПБОС применяются обычно коды с исправлением ошибок, что связано с высокой избыточностью и усложнением аппаратуры. Передача с обратной связью (ПОС) во многом устраняет указанные недостатки, так как позволяет применять менее помехоустойчивые коды, обладающие, как правило, меньшей избыточностью. В частности, можно использовать коды с обнаружением ошибок. Преимуществом обратного канала является также возможность контроля работоспособности объекта, принимающего информацию.

При ПОС вводят понятие прямого канала, т.е. канала от передатчика к приемнику, например передается сигнал команды с пункта управления (ПУ) на контролируемый пункт (КП). Обратным каналом при этом явится передача сообщения с КП на ПУ о принятии сигнала команды, причем по обратному каналу могут передаваться как сообщение только о том, что сигнал принят на входе КП (в этом случае контролируется лишь прохождение сигнала по каналу связи), так и сведения о полном выполнении команды. Возможна и обратная связь, дающая сведения о поэтапном прохождении сигнала команды по тракту приема.

Рассмотрим отдельные виды передачи с обратной связью.

Передача с информационной обратной связью (ИОС). Если сообщение передается в виде непомехозащищенного кода, то в кодирующем устройстве данный код может быть преобразован в помехозащищенный. Однако, поскольку в этом обычно нет необходимости, кодирующее устройство представляет собой регистр для превращения простого параллельного кода в последовательный. Одновременно c передачей по прямому каналу сообщение запоминается в накопителе на передатчике (рис.1.1а). На контролируемом пункте принятое сообщение декодируется и также запоминается в накопителе. Однако получателю сообщение передается не сразу: сначала оно поступает через обратный канал на пункт управления. В схеме сравнения ПУ происходит сравнение принятого сообщения с переданным. Если сообщения совпадают, то формируется сигнал «Подтверждение» и происходит передача последующих сообщений (иногда перед посылкой последующего сообщения на КП сначала посылается сигнал «Подтверждение» о том, что предыдущее сообщение было принято верно и с накопителя можно передать информацию получателю). При несовпадении сообщений, что свидетельствует об ошибке, формируется сигнал «Стирание». Этот сигнал запирает ключ для прекращения передачи очередного сообщения и посылается на КП для уничтожения записанного в накопителе сообщения. После этого с ПУ производится повторная передача сообщения, записанного в накопителе.

Рис.1.1а. Способ передачи информации с ИОС.

В системах с ИОС ведущая роль принадлежит передающей части, так как она определяет наличие ошибки, приемник только информирует передатчик о том, какое сообщение им получено. Имеются различные варианты передачи с ИОС. Так, существуют системы с ИОС, в которых передача сигналов происходит непрерывно и прекращается лишь при обнаружении ошибки: передатчик посылает сигнал «Стирание» и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная на КП, называются системами с ретрансляционной обратной связью. В некоторых системах с ИОС передается не вся информация, а только некоторые характерные сведения о ней (квитанции). Например, по прямому каналу передаются информационные, а по обратному каналу -- контрольные символы, которые будут сравниваться на передатчике с предварительно записанными контрольными символами. Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его (дублирование сообщения), либо послать дополнительную информацию, необходимую для исправления (корректирующая информация). Число повторений может быть ограниченным или неограниченным.

Обратный канал используют для того, чтобы определить, необходима ли повторная передача информации. В системах с ИОС повышение достоверности передачи достигается путем повторения информации только при наличии ошибки, тогда как в системах без обратной связи (при передаче с накоплением) повторение осуществляется независимо от искажения сообщения. Поэтому в системах с ИОС избыточность информации значительно меньше, чем в системах с ПБОС: она минимальна при отсутствии искажений и увеличивается при ошибках. В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Передача с решающей обратной связью (РОС). Переданное с передатчика по прямому каналу сообщение принимается на приемнике (рис.1.1б), где оно запоминается и проверяется в декодирующем устройстве (декодере). Если ошибок нет, то из накопителя сообщение поступает к получателю информации, а через обратный канал на передатчик подается сигнал о продолжении дальнейшей передачи (сигнал продолжения). Если ошибка обнаружена, то декодер выдает сигнал, стирающий информацию в накопителе. Получателю сообщение не поступает, а через обратный канал на передатчик подается сигнал о переспросе или повторении передачи (сигнал повторения или переспроса). На передатчике сигнал повторения (иногда называемый решающим сигналом) выделяется приемником решающих сигналов, а переключающее устройство отключает вход кодера от источника информации и подключает его к накопителю, что позволяет повторить переданное сообщение. Повторение сообщения может происходить несколько раз до его правильного приема.

Рис.1.1б. Способ передачи информации с РОС.

При передаче с РОС ошибка определяется приемником. Для этого передаваемое сообщение должно кодироваться обязательно помехозащищенным кодом, что позволяет приемнику выделить разрешенную комбинацию (сообщение) из неразрешенных. Это означает, что передача с РОС осуществляется с избыточностью. Достоверность передачи в системах РОС определяется выбором кода и защитой решающих сигналов повторения и продолжения. Последнее не представляет особых трудностей, так как эти сигналы несут одну двоичную единицу информации и могут передаваться достаточно помехоустойчивым кодом.

Системы с РОС, или системы с переспросом, подразделяют на системы с ожиданием решающего сигнала и системы с непрерывной передачей информации.

В системах с ожиданием передача новой кодовой комбинации или повторение переданной происходит только после поступления на передатчик сигнала запроса.

В системах с непрерывной передачей происходит непрерывная передача информации без ожидания сигнала запроса. Скорость передачи при этом выше, чем в системах с ожиданием. Однако после обнаружения ошибки по обратному каналу посылается сигнал переспроса и за время прихода на передатчик с последнего уже будет передано какое-то новое сообщение. Поэтому системы с непрерывной передачей необходимо усложнять соответствующей блокировкой приемника, чтобы он не принимал информацию после обнаружения ошибки.

Для сравнения эффективности системы без обратной связи, в которой применяется код Хэмминга с исправлением одной ошибки, и системы с РОС, использующей простой код, вводят понятие коэффициента эффективности. Этот коэффициент учитывает уменьшение вероятности ошибочного приема и затраты на его достижение, выигрыш в защите от ошибок (в случае применения указанных кодов), относительное снижение скорости передачи и схемную избыточность, связанные с использованием разных кодов. Итоговое сравнение показало, что в отличие от системы без обратной связи, использующей сложный код, система с РОС дает выигрыш в 5,1 раза. Высокая эффективность систем с РОС обеспечила их широкое распространение.

Сравнительный анализ достоверности передачи систем с ИОС и РОС, показал, что:

1) системы с ИОС и РОС обеспечивают одинаковую достоверность передачи при одинаковых суммарных затратах энергии сигналов в прямом и обратном каналах при условии, что эти каналы симметричны и имеют одинаковый уровень помех;

2) системы с ИОС обеспечивают более высокую достоверность передачи, чем Системы с РОС при относительно слабых помехах в обратном канале в отличие от прямого. При отсутствии помех в обратном канале системы с ИОС обеспечивают безошибочную передачу сообщений по основному каналу;

3) при сильных помехах в обратном канале более высокую достоверность обеспечивают системы с РОС;

4) при пачках ошибок в прямом и обратном каналах более высокую достоверность обеспечивают системы с ИОС.

1.1 Акустическая информация К защищаемой речевой (акустической) информации относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями...

Защита акустической (речевой) информации от утечки по техническим каналам

Защита акустической (речевой) информации от утечки по техническим каналам

Генераторы пространственного зашумления Генератор шума ГРОМ-ЗИ-4 предназначен для защиты помещений от утечки информации и предотвращения съема информации с персональных компьютеров и локальных вычислительных сетей на базе ПК...

Методы защиты информации

Методы защиты информации в телекоммуникационных сетях

Угрозу отождествляют обычно либо с характером (видом, способом) дестабилизирующего воздействия на информацию, либо с последствиями (результатами) такого воздействия. Однако такого рода термины могут иметь много трактовок...

Методы сбора и обработки цифровых сигналов

Передача данных -- физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило...

Моделирование объекта защиты

3.1 Утечка информации через строительные конструкции и инженерно-технические системы Для обеспечения защиты помещения от данной угрозы можно применить как метод пассивной защиты (звукопоглощающие материалы)...

Определение состава системы передачи информации

Сигнал на выходе аппаратуры ПТИ представляет собой, как правило, сигнал кодоимпульсной формы, спектр частот которого в общем случае бесконечный...

Организация работ по строительству волоконно-оптической линии связи (ВОЛС)

Возможность передачи информации по волоконно-оптическим линиям появилась благодаря переложению квантовой теории света на его распространение в прозрачных однородных средах...

3.1 Анализ возможности передачи конфиденциальной информации по квантовым каналам связи При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов...

Передача информации по квантовым каналам связи

Примером протокола исправления ошибок является способ коррекции ошибок, состоящий в том, что блок данных, который должен быть согласован между пользователями, рассматривается как информационный блок некоторого кода...

Проектирование и программная реализация комплексной системы стрелочных переводов

Канал связи представляет собой тракт связи, который начинается с информационного источника, проходит через все этапы кодирования и модулирования, передатчик, физический канал...

Проектирование магистральной волоконно-оптической системы передачи с повышенной пропускной способностью

Развитие телекоммуникаций идет ускоренными темпами. Получили широкое развитие современные цифровые технологии передачи данных, к которым можно отнести ATM, Frame Relay, IP, ISDN, PCM, PDH, SDH и WDM. Причем такие технологии, как АТМ, ISDN, PCM, PDH...

Расчет надежности работы атмосферной оптической линии связи

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи...

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.2. Среда и методы передачи данных в вычислительных сетях

1.2.2. Линии связи и каналы передачи данных

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель "витая пара", коаксиальные кабель, волоконно-оптический кабель и окружающее пространство.

Линии связи или линии передачи данных - это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи - это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи.

Канал передачи данных - это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных линии связи можно разделить на:

  • проводные линии связи без изолирующих и экранирующих оплеток;
  • кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;
  • беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналом, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям "простой старой телефонной линии" (POST - Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные линии связи

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей.

Витая пара (twisted pair) - кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку. Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара UTP и экранированная витая пара STP.

Характерным для этого кабеля является простота монтажа. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа “звезда”. Кабель подключается к сетевым устройствам при помощи соединителя RJ45.

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Витая пара обычно используется для связи на расстояние не более нескольких сот метров. К недостаткам кабеля "витая пара" можно отнести возможность простого несанкционированного подключения к сети.

Коаксиальный кабель (coaxial cable) - это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (медной оплетки или слой алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией.

Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5 мм и толстый коаксиальный кабель диаметром 10 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой.

Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа “общая шина”.

Коаксиальный кабель более помехозащищенный, чем витая пара и снижает собственное излучение. Пропускная способность – 50-100 Мбит/с. Допустимая длина линии связи – несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре.

Кабельные оптоволоконные каналы связи . Оптоволоконный кабель (fiber optic) – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование.

Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

Беспроводные (радиоканалы наземной и спутниковой связи) каналы передачи данных

Радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи образуются с помощью передатчика и приемника радиоволн и относятся к технологии беспроводной передачи данных.

Радиорелейные каналы передачи данных

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями - до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

Спутниковые каналы передачи данных

В спутниковых системах используются антенны СВЧ-диапазона частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке


Рис. 1.

Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Сотовые каналы передачи данных

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Базовые станции подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи.

LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами. Скорость передачи данных до 45 Мбит/c.

Радиоканалы передачи данных WiMAX (Worldwide Interoperability for Microwave Access) аналогичны Wi-Fi. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Эксперты считают, что мобильные сети WiMAX открывают гораздо более интересные перспективы для пользователей, чем фиксированный WiMAX, предназначенный для корпоративных заказчиков. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

Радиоканалы передачи данных MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Радиоканалы передачи данных для локальных сетей . Стандартом беспроводной связи для локальных сетей является технология Wi-Fi. Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении.

Радиоканалы передачи данных Bluetooht - это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.



Рекомендуем почитать

Наверх