Качество напряжения импульсных источников питания. Дизайн печатной платы импульсного блока питания

Инструмент 21.06.2019
Инструмент

  • Введение
  • Заключение

Введение

Импульсные источники питания в настоящее время уверенно приходят на смену устаревшим линейным. Причина - свойственные данным источникам питания высокая производительность, компактность и улучшенные показатели стабилизации.

При тех стремительных изменениях, которые претерпели принципы питания электронной техники за последнее время, информация о расчете, построении и использовании импульсных источников питания становиться все более актуальной.

В последнее время в среде специалистов в области электроники и радиотехники, а также в промышленном производстве особую популярность завоевали импульсные источники питания. Наметилась тенденция отказа от типовых громоздких трансформаторных и переход на малогабаритные конструкции импульсных блоков питания, преобразователей напряжения, конвертеров, инверторов.

В общем, тема импульсных источников питания достаточно актуальная и интересная, и является одной из важнейших областей силовой электроники. Данное направление электроники перспективное и стремительно развивающееся. И его основной целью является разработка мощных устройств питания, отвечающих современным требованиям надежности, качества, долговечности, минимизации массы, размеров, энерго- и материалоемкости. Необходимо отметить, что практически вся современная электроника, включая всевозможные ЭВМ, аудио-, видеотехнику и другие современные устройства питается от компактных импульсных блоков питания, что еще раз подтверждает актуальность дальнейшего развития указанной области источников питания.

1. Принцип функционирования импульсных источников питания

Импульсный источник питания является инверторной системой. В импульсных источниках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы - это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

Рисунок 1 - Структурная схема импульсного источника питания

Напряжение сети поступает на выпрямитель, после чего сглаживается емкостным фильтром. С конденсатора фильтра, напряжение которого возрастает, выпрямленное напряжение через обмотку трансформатора поступает на коллектор транзистора, выполняющего функцию ключа. Устройство управления обеспечивает периодическое включение и выключение транзистора. Для надежного запуска БП используется задающий генератор, выполненный на микросхеме. Импульсы подаются на базу ключевого транзистора и вызывают запуск цикла работы автогенератора. На устройство управления возлагается функция отслеживания уровня выходного напряжения, выработка сигнала ошибки и, часто, непосредственного управления ключом. Питание микросхемы задающего генератора осуществляется цепочкой резисторов непосредственно с входа накопительной емкости, стабилизируя напряжение опорной емкостью. За работу оптопары отвечает задающий генератор и ключевой транзистор вторичной цепи. Чем сильнее открыты транзисторы, отвечающие за работу оптрона, тем меньше амплитуда импульсов обратной связи, тем раньше выключится силовой транзистор и тем меньше энергии накопится в трансформаторе, что вызовет прекращение роста напряжения на выходе источника. Наступил рабочий режим источника питания, где не малую роль отводится оптопаре, как регулировщику и управленцу выходными напряжениями.

Спецификация промышленного источника питания более жесткая, чем у обычного бытового источника питания. Это выражается не только в том, что на входе источника питания действует высокое трехфазное напряжение, но еще и в том, что промышленные источники питания должны сохранять работоспособность при существенном отклонении входного напряжения от номинального значения, включая провалы и броски напряжения, а также пропадание одной или нескольких фаз.

Рисунок 2 - Принципиальная схема импульсного источника питания.

Схема работает следующим образом. Трехфазный вход может быть выполнен по трехпроводной, четырехпроводной схеме или даже однофазным. Трехфазный выпрямитель состоит из диодов D1 - D8.

Резисторы R1 - R4 осуществляют защиту от броска напряжения. Использование защитных резисторов с размыканием при перегрузке делает ненужным использование отдельных вставок плавких. Входное выпрямленное напряжение фильтруется П-образным фильтром, состоящим из С5, С6, С7, С8 и L1.

Резисторы R13 и R15 уравнивают напряжение на входных фильтрующих конденсаторах.

Когда открывается MOSFET микросхемы U1, потенциал истока Q1 понижается, ток затвора обеспечивается резисторами R6, R7 и R8, соответственно емкость переходов VR1… VR3 отпирает Q1. Диод Зенера VR4 ограничивает напряжение исток-затвор приложенное к Q1. Когда MOSFET U1 закрывается, напряжение стока ограничивается на уровне 450 вольт ограничительной цепочкой VR1, VR2, VR3. Любое дополнительное напряжение на конце обмотки будет рассеиваться на Q1. Такое подключение эффективно распределяет суммарное выпрямленное напряжение на Q1 и U1.

Цепочка поглощения VR5, D9, R10, поглощает избыточное напряжение на первичной обмотке, возникающее из-за индукции рассеяния трансформатора во время обратного хода.

Выходное выпрямление осуществляется диодом D1. C2 - выходной фильтр. L2 и C3 формируют вторую ступень фильтра для снижения нестабильности выходного напряжения.

VR6 начинает проводить, когда выходное напряжение превышает падение на VR6 и оптопаре. Изменение выходного напряжения вызывает изменение тока, текущего через диод оптопары U2, который в свою очередь вызывает изменение тока через транзистор оптопары U2. Когда этот ток превышает порог на выводе FB микросхемы U1, следующий рабочий цикл пропускается. Заданный уровень выходного напряжения поддерживается путем регулирования числа пропущенных и совершенных рабочих циклов. Когда рабочий цикл начался, он закончиться, когда ток через микросхему U1 достигнет установленного внутреннего предела. R11 ограничивает ток через оптопару и устанавливает коэффициент усиления обратной связи. Резистор R12 подает смещение на VR6.

Эта схема защищена от обрыва петли обратной связи, КЗ на выходе, перегрузки благодарю функциям, встроенным в U1 (LNK304). Так как микросхема запитывается прямо со своего вывода сток, не требуется отдельная обмотка питания.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

2. Основные параметры и характеристики импульсных источников питания

Классификация импульсных источников питания (ИИП) производится по нескольким основным критериям:

По виду входного и выходного напряжения;

По типологии;

По форме выходного напряжения;

По типу питающей цепи;

По напряжению на нагрузке;

По мощности нагрузки;

По роду тока нагрузки;

По числу выходов;

По стабильности напряжения на нагрузке.

По виду входного и выходного напряжения

1. AC/DC - это преобразователи переменного напряжения в постоянное. Такие преобразователи применяют в самых разных областях - это промышленная автоматика, телекоммуникационное оборудование, контрольно-измерительное оборудование, оборудование промышленного назначения для обработки данных, средства обеспечения безопасности, а также техника специального назначения.

2. DC/DC - это преобразователи постоянного напряжения. В таких DC/DC конверторах используют импульсные трансформаторы с двумя и более обмотками, причем между входной и выходной цепью связь отсутствует. Импульсные трансформаторы имеют большую разность потенциалов между входом и выходом конвертора. Примером их применения может быть блок питания (БП) для импульсных фотовспышек с напряжением на выходе порядка 400 В.

3. DC/AC - это преобразователи постоянного напряжения в переменное (инвентор). Основная область применения инверторов - работа в подвижном составе железнодорожных и других транспортных средств, имеющих бортовую электросеть постоянного напряжения. Также они могут быть применены в качестве основных преобразователей в составе источников резервного питания.

Высокая перегрузочная способность позволяет осуществлять питание широкого спектра устройств и оборудования, включая конденсаторные двигатели компрессоров холодильных установок и кондиционеров.

По типологии ИИП классифицируются следующим образом:

обратноходовые импульсные преобразователи (flybackconverter);

прямоходовые импульсные преобразователи (forwardconverter);

преобразователи с двухтактным выходом (push-pull);

преобразователи с полумостовым выходом (halfbridgeconverter);

преобразователи с мостовым выходом (fullfbridgeconverter).

По форме выходного напряжения ИИП классифицируются так:

1. C модифицированной синусоидой

2. C синусоидой правильной формы.

Рисунок 3 - Формы выходного сигнала

По типу питающей цепи:

ИИП, использующие электрическую энергию, получаемую от однофазной сети переменного тока;

ИИП, использующие электрическую энергию, получаемую от трехфазной сети переменного тока;

ИИП, использующие электрическую энергию автономного источника постоянного тока.

По напряжению на нагрузке:

По мощности нагрузки:

ИИП малой мощности (до 100 Вт);

ИИП средней мощности (от100 до 1000 Вт);

ИИП большой мощности (свыше 1000 Вт).

По роду тока нагрузки:

ИИП с выходом на переменном токе;

ИИП с выходом на постоянном токе;

ИИП с выходом на переменном и постоянном токе.

По числу выходов:

одноканальные ИИП, имеющие один выход постоянного или переменного тока;

многоканальные ИИП, имеющие два или более выходных напряжений.

По стабильности напряжения на нагрузке:

стабилизированные ИИП;

нестабилизированные ИИП.

3. Основные способы построения импульсных источников питания

На рисунке ниже будет представлен внешний вид импульсного источника питания.

Рисунок 4 - Импульсный источник питания

Итак, для начала в общих чертах обозначим, какие основные модули есть в любом импульсном блоке электропитания. В типовом варианте импульсный блок питания условно можно разделить на три функциональные части. Это:

1. ШИМ-контроллер (PWM), на базе которого собирается задающий генератор обычно с частотой около 30…60 кГц;

2. Каскад силовых ключей, роль которых могут выполнять мощные биполярные, полевые или IGBT (биполярные с изолированным затвором) транзисторы; этот силовой каскад может включать в себя дополнительную схему управления этими самыми ключами на интегральных драйверах или маломощных транзисторах; также важна схема включения силовых ключей: мостовая (фул-бридж), полумостовая (халф-бридж) или со средней точкой (пуш-пул);

3. Импульсный трансформатор с первичной (ыми) и вторичной (ыми) обмоткой (ами) и, соответственно, выпрямительными диодами, фильтрами, стабилизаторами и проч. на выходе; в качестве сердечника обычно выбирается феррит или альсифер; в общем, такие магнитные материалы, которые способны работать на высоких частотах (в некоторых случаях свыше 100 кГц).

Существует три основных способа построения импульсных ИП (см. рис.3): повышающая (выходное напряжение выше входного), понижающая (выходное напряжение ниже входного) и инвертирующая (выходное напряжение имеет противоположную по отношению к входному полярность). Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

импульсный источник питание напряжение

Рисунок 5 - Типовые структурные схемы импульсных источников питания

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикладывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток, протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. Запасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

4. Разновидности схемотехнических решений импульсных источников питания

Схема ИИП 90-х годов показана на рис.6. Источник питания содержит сетевой выпрямитель VD1-VD4, помехоподавляющий фильтр L1C1-СЗ, преобразователь на коммутирующем транзисторе VT1 и импульсном трансформаторе Т1, выходной выпрямитель VD8 с фильтром C9C10L2 и узел стабилизации, выполненный на стабилизаторе DA1 и оптроне U1.

Рисунок 6 - Импульсный источник питания 1990-х годов

Схема ИИП показана на рис.7. Предохранитель FU1 защищает элементы от аварийных ситуаций. Терморезистор RK1 ограничивает импульс зарядного тока конденсатора С2 до безопасного для диодного моста VD1 значения, а совместно с конденсатором С1 образует RC-фильтр, служащий для уменьшения импульсных помех, проникающих из ИИП в сеть. Диодный мост VD1 выпрямляет сетевое напряжение, конденсатор С2 - сглаживающий. Выбросы напряжения первичной обмотки трансформатора Т1 уменьшает демпфирующая цепь R1C5VD2. Конденсатор С4 является фильтром питания, от которого запитаны внутренние элементы микросхемы DA1.

Выходной выпрямитель собран на диоде Шотки VD3, пульсации выходного напряжения сглаживает LC-фильтр C6C7L1C8. Элементы R2, R3, VD4 и U1 обеспечивают совместно с микросхемой DA1 стабилизацию выходного напряжения при изменении тока нагрузки и сетевого напряжения. Цепь индикации включения выполнена на светодиоде HL1 и токоограничивающем резисторе R4.

Рисунок 7 - Импульсный источник питания 2000-х годов

На рис.8 двухтактный импульсный блок питания с полумостовым включением силового оконечного каскада, состоящего из двух мощных MOSFET IRFP460. В качестве ШИМ-контроллера выбрали микросхему К1156ЕУ2Р.

Дополнительно с помощью реле и ограничивающего резистора R1 на входе реализован плавный пуск, позволяющий избежать резких бросков тока. Реле можно применить на напряжение как 12, так и 24 вольта с подбором резистора R19. Варистор RU1 защищает входную цепь от импульсов чрезмерной амплитуды. Конденсаторы С1-С4 и двухобмоточный дроссель L1 образуют сетевой помехоподавляющий фильтр, предотвращающий проникновение высокочастотных пульсаций, создаваемых преобразователем, в питающую сеть.

Подстроечный резистор R16 и конденсатор С12 определяют частоту преобразования.

Для уменьшения ЭДС самоиндукции трансформатора Т2 параллельно каналам транзисторов включены демпферные диоды VD7 и VD8. Диоды Шоттки VD2 и VD3 защищают коммутирующие транзисторы и выходы микросхемы обратного напряжения DA2 от импульсов.

Рисунок 8 - Современный импульсный источник питания

Заключение

В ходе проделанной научно-исследовательской работы мною проведено исследование импульсных источников питания, позволившее проанализировать существующую схемотехнику данных устройств и сделать соответствующие выводы.

Импульсные источники питания обладают гораздо большими преимуществами по сравнению с другими - у них более высокий КПД, они имеют существенно меньшие массу и объём, кроме того они обладают гораздо меньшей себестоимостью, что в конечном итоге приводит к их сравнительно небольшой цене для потребителей и, соответственно, высокому спросу на рынке.

Многие современные электронные компоненты, используемые в современных электронных устройствах и системах, требуют высокого качества питания. Кроме того, выходное напряжение (ток) должно быть стабильным, иметь требуемую форму (например, для инверторов), а также минимальный уровень пульсаций (например, для выпрямителей).

Таким образом, импульсные источники питания являются неотъемлемой частью любых электронных устройств и систем, питающихся как от промышленной сети 220 В, так и других источников энергии. При этом надежность работы электронного устройства напрямую зависит от качества источника питания.

Таким образом, разработка новых усовершенствованных схем импульсных источников питания позволит улучшить технические и эксплуатационные характеристики электронных устройств и систем.

Список используемой литературы

1. Гуревич В.И. Надежность микропроцессорных устройств релейной защиты: мифы и реальность. - Проблемы энергетики, 2008, № 5-6, с.47-62.

2. Источник питания [Электронный ресурс] // Википедия. - Режим доступа: http://ru. wikipedia.org/wiki/Источник_питания

3. Вторичный источник питания [Электронный ресурс] // Википедия. - Режим доступа: http://ru. wikipedia.org/wiki/Вторичный_источник_ питания

4. Высоковольтные источники питания [Электронный ресурс] // ООО "Оптосистемы" - Режим доступа: http://www.optosystems.ru/power _supplies_about. php

5. Ефимов И.П. Источники питания - Ульяновский Государственный Технический Университет, 2001, с.3-13.

6. Области применения силовых источников питания [Электронный ресурс] - Режим доступа: http://www.power2000.ru/apply_obl.html

7. Компьютерные блоки питания [Электронный ресурс] - Режим доступа: http://offline.computerra.ru/2002/472/22266/

8. Эволюция импульсных источников питания [Электронный ресурс] - Режим доступа: http://www.power-e.ru/2008_4_26. php

9. Принцип работы импульсных источников питания [Электронный ресурс] - Режим доступа: http://radioginn. ucoz.ru/publ/1-1-0-1

Подобные документы

    Понятие, назначение и классификация вторичных источников питания. Структурная и принципиальная схемы вторичного источника питания, работающего от сети постоянного тока и выдающего переменное напряжение на выходе. Расчет параметров источника питания.

    курсовая работа , добавлен 28.01.2014

    Источники вторичного электропитания как неотъемлемая часть любого электронного устройства. Рассмотрение полупроводниковых преобразователей, связывающих системы переменного и постоянного тока. Анализ принципов построения схем импульсных источников.

    дипломная работа , добавлен 17.02.2013

    Источник питания как устройство, предназначенное для снабжения аппаратуры электрической энергией. Преобразование переменного напряжения промышленной частоты в пульсирующее постоянное напряжение с помощью выпрямителей. Стабилизаторы постоянного напряжения.

    реферат , добавлен 08.02.2013

    Стабилизация среднего значения выходного напряжения вторичного источника питания. Минимальный коэффициент стабилизации напряжения. Компенсационный стабилизатор напряжения. Максимальный ток коллектора транзистора. Коэффициент сглаживающего фильтра.

    контрольная работа , добавлен 19.12.2010

    Совмещение функций выпрямления с регулированием или со стабилизацией выходного напряжения. Разработка схемы электрической структурной источника питания. Понижающий трансформатор и выбор элементной базы блока питания. Расчет маломощного трансформатора.

    курсовая работа , добавлен 16.07.2012

    Расчёт трансформатора и параметров интегрального стабилизатора напряжения. Принципиальная электрическая схема блока питания. Расчет параметров неуправляемого выпрямителя и сглаживающего фильтра. Подбор выпрямительных диодов, выбор размеров магнитопровода.

    курсовая работа , добавлен 14.12.2013

    Анализ системы вторичных источников электропитания зенитного ракетного комплекса "Стрела-10". Характеристика схематических импульсных стабилизаторов. Анализ работы модернизированного стабилизатора напряжения. Расчет его элементов и основных параметров.

    дипломная работа , добавлен 07.03.2012

    Принцип работы инверторного источника питания сварочной дуги, его достоинства и недостатки, схемы и конструкции. Эффективность эксплуатации инверторных источников питания с точки зрения энергосбережения. Элементная база выпрямителей с инвертором.

    курсовая работа , добавлен 28.11.2014

    Последовательность сбора инвертирующего усилителя, содержащего функциональный генератор и измеритель амплитудно-частотных характеристик. Осциллограмма входного и выходного сигналов на частоте 1 кГц. Схема измерения выходного напряжения, его отклонения.

    лабораторная работа , добавлен 11.07.2015

    Анализ электрической цепи: обозначение узлов, токов. Определение входного и выходного сигналов, передаточной характеристики четырехполюсника. Структурная схема системы управления. Реакции системы на единичное ступенчатое воздействие при нулевых условиях.

В отличие от традиционных линейных ИП, предполагающих гашение излишнего нестабилизированного напряжения на проходном линейном элементе, импульсные ИП используют иные методы и физические явления для генерации стабилизированного напряжения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение. Существует три типовых схемы построения импульсных ИП: повышающая (выходное напряжение выше входного) рис. 1,


Рис. 1. Повышающий импульсный источник питания (Uвых>Uвх).

понижающая (выходное напряжение ниже входного)


Рис. 2. Понижающий импульсный источник питания (Uвых

Понижающий импульсный источник питания (Uвых

Рис. 3. Инвертирующий импульсный источник питания (Uвых

Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикладывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток. протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. -апасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

Импульсный источник питания - это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.

Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы - ферритовые сердечники.

Рис. Как работает импульсный источник питания.

Выходное напряжение импульсного источника питания стабилизировано , это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.

Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.

Основные плюсы импульсных источников питания (ИИП):

  • малый вес конструкции;
  • небольшие размеры;
  • большая мощность;
  • высокий КПД;
  • низкая себестоимость;
  • высокая стабильность работы;
  • широкий диапазон питающих напряжений;
  • множество готовых компонентных решений.

К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.

Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.

Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.

Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.

Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.

Обычно для обеспечения надежности в импульсных источниках питания используют высоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).

Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.

Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.

Схема генератора импульсов регулируемой ширины

Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2.

Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.

Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.

На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, СЗ, VD5) подаются прямоугольные импульсы.

Заряд конденсаторов С2, СЗ происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или СЗ достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.

Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.

Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, СЗ) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.

Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.

При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.

В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.

Схема испульсного источника питания

Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.

Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DDI .1, DDI .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.

Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предварительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.

На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзистор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.

Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).

На выходе этого элемента формируются широкие управляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.

Рис. 2. Схема импульсного источника питания.

Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.

При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запуска схемы.

При максимальной длительности положительные и отрицательные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обусловленная наличием резистора R3 в формирующей цепи.

Тем самым снижается вероятность протекания сквозных токов через выходные относительно низкочастотные транзисторы оконечного каскада усиления мощности, которые имеют большое время рассасывания избыточных носителей на базовом переходе. Выходные транзисторы установлены на ребристые теплоотводящие радиаторы с площадью не менее 200 см^2. В базовые цепи этих транзисторов желательно установить сопротивления величиной 10…51 Ом.

Каскады усиления мощности и схема формирования двухполярных импульсов получают питание от выпрямителей, выполненных на диодах VD5 — VD12 и элементах R9 — R11, С6 — С9, С12, VD3, VD4.

Трансформаторы Т1, Т2 выполнены на ферритовых кольцах К10x6x4,5 ЗОООНМ; ТЗ — К28х16х9 ЗОООНМ. Первичная обмотка трансформатора Т1 содержит 165 витков провода ПЭЛШО 0,12, вторичные — 2×65 витков ПЭЛ-2 0,45 (намотка в два провода).

Первичная обмотка трансформатора Т2 содержит 165 витков провода ПЭВ-2 0,15 мм, вторичные — 2×40 витков того же провода. Первичная обмотка трансформатора ТЗ содержит 31 виток провода МГШВ, продетого в кембрик и имеющего сечение 0,35 мм^2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.

Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.

При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.

Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.

Сетевой импульсный источник питания

Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.

Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.

Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.

Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.

Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.

Рис. 3. Схема сетевого импульсного источника питания.

Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.

Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.

Высоковольтный источник постоянного напряжения

Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ .

Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.

Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, СЗ и R4, С4 задают частоту генератора. Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.

Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.

Рис. 4. Схема высоковольтного источника питания постоянного тока.

Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.

В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.

Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.

Корректор коэффициента мощности

Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.

Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.

Импульсный источник питания с микросхемой

Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.

Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.

Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.

Простой и высокоэффективный преобразователь напряжения

На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.

Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.

Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.

Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.

Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения - это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

Импульсный источник питания - это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты. В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением. Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц. Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания. Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A - входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B - входные с довольно большой емкостью сглаживающие конденсаторы. Правее установлен радиатор высоковольтных транзисторов;
C - импульсный трансформатор. Правее смонтирован радиатор низковольтных диодов;
D - катушка выходного фильтра, то есть дроссель групповой стабилизации;
E - конденсаторы выходного фильтра.
Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей. Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью. Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы. В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства. Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д. Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники. Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться. ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

Видео о работе импульсного источника питания

Импульсные источник питания(ИИП) на сегодняшний день получили самое широкое распространение и с успехом используются во всех современных радиоэлектронных устройствах.

На рисунке3 представлена структурная схема импульсного источника питания, выполненного по традиционной схеме.вторичные выпрямители, выполняются по однополупериодной схеме. Названия этих узлов раскрывает их назначение и не нуждается в пояснении. Основными узлами первичной цепи являются: входной фильтр, выпрямитель сетевого напряжения и ВЧ Преобразователь выпрямленного питающего напряжения с трансформатором.

Сетевой выпрямительный фильтр

Трансформатор

ВЧ преобразователь

Вторичные выпрямители

Входной фильтр


Рисунок 3 - Структурная схема импульсного БП

Основной принцип, положенный в основу работы ИИП заключается в преобразовании сетевого переменного напряжения 220 вольт и частотой 50 Гц в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.

Преобразование осуществляется с помощью мощного транзистора, работающего в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый выполняется по схеме импульсного автогенератора (например, такой использовался в ИБП телевизоров) и второй с внешним управлением (используется в большинстве современных радиоэлектронных устройств).

Поскольку частота преобразователя обычно выбирается от 18 до 50 кГц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно компактны, что является немаловажным параметром для современной аппаратуры.Упрощенная схема импульсного преобразователя с внешним управлением приведена на рисунке 4.

Рисунок 4 - Принципиальная схема импульсного БП с ВУ.

Преобразователь выполнен на транзисторе VT1 и трансформаторе Т1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ), где оно выпрямляется, фильтруется конденсатором фильтра (Сф) и через обмотку W1 трансформатора Т1 подается на коллектор транзистора VT1. При подаче в цепь базы транзистора прямоугольного импульса, транзистор открывается и через него протекает нарастающий ток I к. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к тому, что в сердечнике трансформатора увеличивается магнитный поток, при этом во вторичной обмотке W2 трансформатора наводится ЭДС самоиндукции. В конечном итоге на выходе диода VD появиться положительное напряжение. При этом если мы будем увеличивать длительность импульса приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к. энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, мы можем изменять выходные напряжения вторичной обмотки Т1, а следовательно осуществлять стабилизацию выходных напряжений БП. Единственное что для этого необходимо -схема, которая будет формировать импульсы запуска и управлять их длительность (широтой). В качестве такой схемы используется ШИМ контроллер. ШИМ – широтно – импульсная модуляция.

Для стабилизации выходных напряжений ИБП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этих целей используется цепь слежения (или цепь обратной связи), выполненная на оптопаре U1 и резистореR2. Увеличение напряжения во вторичной цепи трансформатора Т1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Что в свою очередь, приведет к увеличению падения напряжения на резисторе R2, который включен последовательно фототранзистору и уменьшению напряжения на выводе 1 ШИМ контроллера. Уменьшение напряжения заставляет логическую схему, входящую в состав ШИМ контроллера, увеличивать длительность импульса до тех пор, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. При уменьшении напряжения – процесс обратный.

В ИБП используются два принципа реализации цепей слежения – «непосредственный» и «косвенный». Выше описанный метод называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора рисунок 5.

Рисунок 5 - Принципиальная схема импульсного БП с ВУ.

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.

Защита ИИП от короткого замыкания.

Короткое замыкание (КЗ) в нагрузке ИБП. В этом случае вся энергия, отдаваемая во вторичную цепь ИБП, будет теряться и напряжение на выходе будет практически равно нулю. Соответственно схема ШИМ контроллера будет пытаться увеличить длительность импульса для того, что бы поднять уровень этого напряжения до соответствующего значения. В итоге транзистор VT1 будет все дольше и дольше находиться в открытом состоянии, и через него будет увеличиваться протекающий ток. В конце концов, это приведет к выходу из строя этого транзистора. В ИБП предусмотрена защита транзистора преобразователя от перегрузок по току в таких нештатных ситуациях. Основу ее составляет резисторRзащ, включенный последовательно в цепь, по которой протекает ток коллектораIк. Увеличение тока Iк протекающего через транзистор VT1, приведет к увеличению падения напряжения на этом резисторе, а, следовательно, напряжение, подаваемое на вывод 2 ШИМ контроллера также будет уменьшаться. Когда это напряжение снизится до определенного уровня, который соответствует максимально допустимому току транзистора, логическая схема ШИМ контроллера прекратит формирование импульсов на выводе 3 и блок питания перейдет в режим защиты или другими словами отключится.

В заключении необходимо подробно остановиться на достоинствах ИБП. Как уже упоминалось, частота импульсного преобразователя достаточно высока, в связи с чем, габаритные размеры импульсного трансформатора уменьшены, а значит, как это не парадоксальнозвучит, стоимость ИБП меньшетрадиционного БП т.к. меньше расход металла на магнитопровод и меди на обмотки, даже не смотря на то, что количество деталей в ИБП увеличивается. Еще одним из достоинств ИБП является малая, по сравнению с обычным БП, емкость конденсатора фильтра вторичного выпрямителя. Уменьшение емкости стало возможным за счет увеличения частоты. И, наконец, КПД импульсного блока питания доходит до 80%. Связано это с тем, что ИБП потребляет энергию электрической сети только во время открытого транзистора преобразователя, при его закрытии энергия в нагрузку отдается за счет разряда конденсатора фильтра вторичной цепи.

К недостаткам можно отнести усложнение схемы ИБП и увеличение импульсных помех излучаемым ИБП. Увеличение помех связано с тем, что транзистор преобразователя работает в ключевом режиме. В таком режиме транзистор является источником импульсных помех, возникающих в моменты переходных процессов транзистора. Это является недостатком любого транзистора работающего в ключевом режиме. Но если транзистор работает с малыми напряжениями (например, транзисторная логика с напряжением в 5В) это не страшно, в нашем же случае напряжение, приложенное к коллектору транзистора, составляет, примерно 315 В. Для борьбы с этими помехами в ИБП используются более сложные схемы сетевых фильтров, чем в обычном БП.



Рекомендуем почитать

Наверх