Математические модели динамических систем и процессов. Основные виды математических моделей

Авто 07.07.2019
Авто

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Теоретическая часть
    • 1.1 Понятие динамических систем
    • 1.2 Модели динамических систем и процессов
  • 1.3 Моделирование непрерывной системы контроля
    • 1.4 Математическое описание непрерывной системы контроля
    • 2. Практическая часть
    • 2.1 Выполнение задания 1
    • 2.2 Выполнение задания 2
  • Заключение
  • Список использованных источников
  • Введение
  • Достижения в теории и практике моделирования процессов и систем, в современных условиях, связано со стремительным развитием вычислительной техники. Что казалось невозможным при решении многих задач моделировании еще несколько лет назад, сейчас легко реализуется на доступном инженерном уровне. Появление и развитие инженерных пакетов моделирования, таких как Matlab, Skylab, Labview, создало условия высокопроизводительного, объектно-ориентированного моделирования на современных компьютерах.
  • Задачи моделирования процессов и систем многообразны. Моделирование широко используется при инженерном проектировании и научных исследованиях: для решения технических и экономических задач, при исследованиях в экологии и социологии, в приборостроении и автоматизации управления.
  • Особенности применения моделирования в приборостроении связаны в первую очередь с технологическими достижениями в датчикостроении, теории измерений и обработки информации.
  • В области экономических задач применение моделирования дает эффективный инструмент для управления проектами и прогнозирования развития экономических процессов. Многие современные методы теории управления оказались эффективными при решении экономических задач и достаточно легко реализуемыми на математических моделях и постановке вычислительных экспериментов на компьютерной технике.

Развитие нейросетей, микросистемотехники, нанотехнологии внесло много существенно нового в методы моделирования процессов и систем, что дало также эффективный инструмент для предварительного решения задач проектирования в математическом виде на моделях и их численном исследовании на компьютерах. Применение моделирования особенно эффективно при исследовании проектируемых систем с целью изучения и прогнозировании различных явлений и процессов в этих системах. Приближение к реальным условиям работы проектируемых систем осуществляется при стохастическом моделировании, когда к условиям моделирования добавляются случайные изменения параметров системы, возмущения и шумы измерений физических величин.

В приборостроении актуально моделирование задач управления, получения, передачи и преобразования информации. При этом современные модели везде для описания процессов и систем используют дифференциальные уравнения и линейные матричные преобразования.

Развитие современных методов моделирования создало предпосылки для создания и исследования высокоэффективных систем, которые, как правило, ориентированы на цифровые алгоритмы обработки информации, с применением современных микропроцессоров, нейрокомпьютеров, процессоров с нечеткой логикой и других современных технологических достижений.

1 . Теоретическая часть

1.1 Понятие динамических систем

Динамические системы - системы, под действием внешних и внутренних сил изменяющие во времени свои состояния. Представления о динамических системах возникли как обобщение понятия механической системы, поведение которой описывается законами динамики Ньютона. В современной науке понятие динамической системы охватывает системы практически любой природы: физические, химические, биологические, экономические, социальные и др. При этом системы характеризуются различной внутренней организацией жестко-детерминированные, стохастические, нелинейные, системы с элементами самоорганизации, самоорганизующиеся.

Важнейшим свойством динамических систем является их устойчивость, т. е. сохранение системой своей базовой структуры и основных выполняемых функций в течение определенного времени и при относительно небольших и разнообразных внешних воздействиях и внутренних возмущениях. Устойчивость есть внутреннее свойство систем, а не результат внешнего воздействия. Представления же о развитии этих систем отражают такие изменения их структурной организации, которые ведут к более эффективному выполнению системой своих основных функций. Качественные перестройки систем анализируются в теории катастроф, которая рассматривается как ветвь общей теории динамических систем.

Развитие представлений о динамических системах связано с переходом к познанию все более сложных систем. При этом особую роль приобретает изучение динамики внутренних свойств систем. В случае механических систем действие внутренних факторов сводилось к силам инерции. По мере усложнения систем возрастает значение внутренних факторов. На первый план выходят проблемы изучения источников внутренней активности систем и природы их целенаправленного функционирования и поведения.

Математической моделью динамической системы принято называть совокупность математических символов, однозначно определяющих развитие процессов в системе, т.е. ее движение. При этом в зависимости от используемых символов различают аналитические и графоаналитические модели. Аналитические модели строятся с помощью буквенных символов, в то время как графоаналитические допускают применение графических обозначений.

В зависимости от типа сигналов различаются непрерывные и дискретные модели систем. В зависимости от используемых операторов - линейные и нелинейные, а также временные и частотные модели. К временным относятся модели, в которых аргументом является (непрерывное или дискретное) время. Это дифференциальные и разностные уравнения, записанные в явном виде или в операторной форме. Частотные модели предусматривают использование операторов, аргументом которых является частота соответствующего сигнала, т.е. операторы Лапласа, Фурье и т.д.

1.2 Модели динамических систем и процессов

В современной математике используется представление динамических процессов и систем дифференциальными уравнениями в пространстве состояний. Такое описание процессов и систем позволяет легко проводить их цифровое моделирование, используя конечно-разностное представление и проектировать универсальные алгоритмы обработки информации с целью дальнейшего оптимального оценивания параметров систем и процессов. Оптимальные оценки необходимы для организации управления в системах автоматического управления современными методами, а в информационно-измерительных системах для получения достоверных данных об измеряемых физических величинах, для прогнозирования поведения исследуемых явлений и систем, повышения отказоустойчивости обработки информации. Одним из методов получения математической модели системы или процесса является идентификация.

Идентификацией динамической системы называется получение или уточнение по экспериментальным данным математической модели (числовых параметров) этой системы или процесса, выраженной посредством того или иного математического аппарата.

Используются следующие основные математические модели в пространстве состояний.

Непрерывная детерминированно-стохастическая динамическая система (ДС) - это система, описываемая линейными дифференциальными уравнениями состояния первого порядка и линейным уравнение выхода. В матричном виде:

X"(t)=A*Х(t)+B*U(t)+D*V(t), Y(t)=CX(t),

где Х"(t) - n-мерный вектор состояния системы; V(t) - r-мерный вектор гауссовских шумов с нулевым средним и корреляционной матрицей

E=Q(t)

моделирование матричный фазовый траектория

(Е - оператор математического ожидания); Y(t) - m-мерный вектор выхода; A, B, D - матрицы состояния (матрицы коэффициентов); С - матрица линейного преобразования размера m x n.

Дискретная детерминированно-стохастическая динамическая система (ДС) - это система, описываемая разностными уравнениями первого порядка состояния и дискретным уравнением выхода. Матричный вид соответствует уравнениям:

Х(k+1)=F*Х(k)+G*U(k)+T*V(k), Y(k)=CX(k),

где F, G, T, - переходные матрицы. Матрицы F, G, T вычисляются через A, B, D в виде:

F=I+A*y*dt, G=y*B*dt, T=y*D*dt,

где I - единичная матрица; dt - период дискретности системы (процесса). Период дискретности dt выбирается исходя из полосы пропускания ДС в соответствии с импульсной теоремой.

Детерминированной является ДС, у которой отсутствуют шумы возмущения и нет стохастических процессов (или всеми этими факторами можно пренебречь). У чисто стохастической ДС отсутствует детерминированный вектор входных сигналов. Детерминировано-стохастическая система содержит как детерминированные воздействия, так и стохастические процессы.

Объектами наблюдения динамических систем являются: информационные процессы (ИП), объекты управления (ОУ), датчики первичной информации (ДПИ), исполнительные устройства (ИУ). Первичной моделью объекта наблюдения типа ИП является спектральная или корреляционная функция. Первичной моделью объекта наблюдения типа ОУ, ДПИ и ИУ является дифференциальное уравнение (или эквивалентная передаточная функция), связывающая вход и выход.

Датчик первичной информации - это элемент устройства, преобразующий информацию о физической величине в сигнал, удобный для использования и обработки. Он задается дифференциальным уравнением или передаточной функцией. Передаточной функцией ДПИ является отношение преобразования Лапласа выходного процесса ДПИ к преобразованию Лапласа входного процесса при нулевых начальных условиях. Движением системы называется физический процесс изменения её переменных во времени и пространстве. Выходные переменные Y(t), управляющие входные воздействия U(t) и возмущающие входные воздействия V(t) рассматриваются в виде соответствующих векторов, которые записываются в виде столбцовых матриц:

1. 3 Моделирование непрерывной системы контроля

Система контроля предназначена для измерения и выдачи информации о контролируемом процессе h(t), который содержит среднюю (детерминированную) составляющую и стохастическую (случайную) g(t). Измерение происходит при воздействии аддитивных шумов n(t). Датчик, с помощью которого производятся измерения, является динамическим звеном (в данном случае второго порядка). Эквивалентная схема системы контроля представлена на рисунке 1

Рисунок 1 - Схема системы контроля

Случайная составляющая g(t) измеряемого процесса задана спектральной плотностью Sg(w); детерминированная - сигналом u(t); h(t)=g(t)+u(t) - полный информационный процесс; f(t)=h(t)+n(t) - измерение процесса h(t) c аддитивными шумами n(t) (задана спектральная плотность шума - Sn(w)); h(t) -выходной сигнал ДПИ (датчик первичной информации); W(S) - передаточная функция ДПИ. Детерминированное входное воздействие задано суммой ступенчатой и гармонической функций.

Для моделирования системы контроля в Matlab составляется схема моделирования, которая представлена на рисунке 2.

Рисунок 2 - Схема моделирования системы контроля

1.4 Математическое описание непрерывной системы контроля

Задана спектральная плотность контролируемого процесса:

Передаточная функция объекта наблюдения:

Интенсивность шумов измерений R=17 (при измерении выходного сигнала объекта наблюдения).

Путем факторизации из модели в виде спектральной плотности получим передаточную функцию формирующего фильтра входного процессора:

Матричная модель объекта наблюдения находится методом вспомогательной переменной. Уравнение состояния в данном случае:

Процесс h(t) на выходе объекта наблюдения вычисляется в матричном виде:

В данном примере получаем следующий вид матриц:

Матричная модель датчика:

Выход объекта наблюдения h=C 0 *X 0 .

Полное уравнение объекта контроля содержит уравнение состояния входного процесса и уравнение состояния объекта:

где матрицы A, B и D составляются на основе дифференциальных уравнений процесса и объекта контроля, которые имеют вид:

Или относительно полного вектора: :

Матрицы A, B, C, D в данном случае имеют следующий вид:

2 . Практическая часть

2.1 Выполнение задания 1

Алгоритм выполнения работы в среде Simulink.

1. Запускаем Matlab (версия R2012b) и выбираем в меню пункт «New > Simulink Model» (рисунок 3).

Рисунок 3 - Процесс создания новой модели в Simulink

2. Открываем библиотеку функциональных блоков "Simulink". Для этого кликнем левой кнопки мыши на панели управления по иконке "Simulink Library" (рисунок 4).

Рисунок 4 - Процесс создания новой модели в Simulink

3. В результате откроется меню библиотеки Simulink, главный вид которой представлен на рисунке 5.

Рисунок 5 - Главное окно "Simulink Library"

4. Извлекаем из библиотеки Simulink все необходимые функциональные блоки. Для этого воспользуемся поиском, в верхней панели окна "Simulink Lybrary Browser", который представлен на рисунке 6.

Рисунок 6 - Поиск блока в "Simulink Library"

5. Для моделирования непрерывной системы контроля нам будут необходимы следующие блоки:

Блоки "Sine Wave", "Step" и "Random number" с вкладки "Sources";

Три блока "Subsystem" и блок "Scope" с вкладки "Commonly Used Blocks";

Блок "Sum" с вкладки "Math Operations";

Блок "Fcn" с вкладки "User Define Function";

Блок "State-space" с вкладки "Continuous".

6. Cоберем схему верхнего уровня модели непрерывной системы контроля (рисунок 7), используя перечисленные в п.5 функциональные блоки:

Рисунок 7 - Схема верхнего уровня системы контроля

7. Рассмотрим более подробно блоки "Subsystem": "Object", "Sensor", "Filter".

8. Блок "Object" является объектом наблюдения системы и представляет собой динамическую систему, в которой содержится стохастический процесс (блок "State-Space") и датчик (блок "State-Space 1"). Функциональная схема динамической системы "Object" представлена на рисунке 8.

Рисунок 8 - Динамическая система "Object"

9. Настройка блоков уравнения состояния "State-Space" и "State-Space 1" представлена на рисунках 9 и 10 соответственно.

Рисунок 9 - Настройка параметров блока "State-Space"

Рисунок 10 - Настройка параметров блока "State-Space 1"

10. Функциональные блоки h(t)=C 0 X и g(u)=C g X, заданы функциями, представленными в окне параметров (рисунок 11).

Рисунок 11 - Настройка функциональных блоков h(t) и g(u)

11. Блок "Sensor" (датчик) производит измерение входного сигнала и представляет собой совокупность полезного сигнала h(t) и помехи n(t):

Модель датчика представлена на рисунке 12. Блок "Random Number" используется в качестве генератора белого шума с интенсивностью 0,4.

Рисунок 12 - Модель датчика (Sensor)

12. Блок "Filter" (фильтр) на основе измерений датчика выдает оценку выходного параметра объекта наблюдения - h^(t). Матрицы A, B, C соответствуют матрицам полной модели. Матрица С в блоке "State Space" - единичная. Модель фильтра представлена на рисунке 13.

Рисунок 13 - Модель фильтра (Filter)

Настройка параметров блока "State Space" и функционального блока f(u) представлена на рисунке 14.

Рисунок 14 - Настройка параметров блоков "State-Space" и "f(u)"

13. Результаты процессов системы регистрируются осциллографом (блок "Scope"). Произведем настройку параметров блока "Scope". Для этого кликнем правой кнопкой мыши по блоку и выберем в диалоговом окне пункт "Block Parametres" (параметры блока). Далее в области появившегося окна кликнем правой кнопкой мыши и выберем пункт "Axes properties" (рисунок 15). В появившемся диалоговом окне зададим область значений (Y) для каждого из трех графиков (рисунок 16).

Рисунок 15 - Настройка параметров блока "Scope"

Рисунок 16 - Настройка области значений Y

14. На панели инструментов Matlab в верхней части экрана можно настроить число рабочих тактов системы, по окончании которых работа Matlab прекратится. Настройка данного параметра представлена на рисунке 17.

Рисунок 17 - Настройка рабочих тактов системы

15. На этом настройка модели непрерывной системы контроля завершена. Далее запустим систему, кликнув левой кнопкой мыши по иконке "Run" на панели инструментов в верхней части экрана (рисунок 18).

Рисунок 18 - Запуск системы на выполнение

16. Результаты работы системы отражаются в блоке "Scope" и приведены на рисунке 19.

Рисунок 19 - Результаты работы системы

2.2 Выполнение задания 2

Колебания нелинейного осциллятора описываются следующим уравнением:

Используя данное дифференциальное уравнение, необходимо:

1. Создать модель механической системы;

2. Вычислить числовое значение координаты осциллятора в момент времени t=5 и вывести результат на display;

3. Построить графики зависимости координаты и скорости от времени;

4. Построить фазовую траекторию системы.

Запишем исходное уравнение в виде системы уравнений первого порядка.

Решим эту систему с помощью пакета Simulink, составляя блочную модель. Отдельным блоком в общей модели сформируем подмодель (блок Subsystem):

(библиотека Ports & Subsystems).

Подмодель -- это фрагмент модели, оформленный в виде отдельного блока. Использование подмодели при составлении модели имеет следующие положительные стороны:

1) уменьшает количество одновременно отображаемых блоков на экране, что облегчает восприятие модели;

2) позволяет создавать и отлаживать фрагменты модели по отдельности, что повышает технологичность создания модели;

3) дает возможность синхронизации параллельно работающих подсистем.

Используя созданную подмодель, значения и в основной модели связываем с соответствующими входами подмодели, а выход подмодели связываем с сумматором. Сигнал с выхода сумматора подаем на вход первого интегратора, замыкая цепь интегрирования.

В Simulink описанная процедура представлена на рисунках 20 и 21:

Рисунок 20 - Основная модель

Рисунок 21 - Подмодель

Если дважды щелкнуть мышью на блоке Scope (y(t)) в блок-схеме осциллятора, то появится графическое окно с графиком зависимости координаты y от времени. Результат показаний блока "Scope" представлен на рисунке 22.

Рисунок 22 - Показания блока Scope

В данной модели для построения фазовой траектории системы используется блок -- графопостроитель, который строит график одного сигнала в функции другого (график вида Y(X)). Блок имеет два входа. Верхний вход предназначен для подачи сигнала, который является аргументом (X), нижний вход -- для подачи значений функции (Y). Зависимость X от Y представлена на рисунке 23.

Рисунок 23 - Зависимость X от Y

Заключение

При выполнении данной работы были решены следующие задачи:

1) смоделирована непрерывная система контроля на основе матричной модели объекта наблюдения;

2) получена и построена передаточная функция формирующего фильтра входного процесса;

3) составлена и построена матричная модель датчика и функция выхода для объекта наблюдения;

4) на основе дифференциальных уравнений процесса и объекта контроля сформировано полное уравнение объекта контроля;

5) построены графики для выходного параметра фильтра h(t), для выхода объекта наблюдения h(t) и выхода датчика (сенсора) y(t);

6) спроектирована модель механической системы;

7) построен график зависимости координаты и скорости от времени, а также фазовая траектория системы.

Список использованных источников

1. Волков, В.Л. Моделирование процессов и систем. Учеб. пособие /В.Л. Волков. - Н.Новгород; НГТУ, 1997. -80 c.

2. Лебедев, А.Н. Моделирование в научно-технических исследованиях. - М.: Радио и связь, 1989.

3. Прохоров, С.А. Математическое описание и моделирование случайных процессов. - Самара. Самарский гос. аэрокосм. ун-т, 2001. -209 с.

4. Моделирование процессов и систем. Стохастические и детерминированные динамические системы и информационные процессы. Лабораторные работы. Методические Указания / Сост: Волков В.Л., Гущин О.Г., Поздяев В.И. - Н.Новгород. НГТУ, 1998. -32 c.

Размещено на Allbest.ru

Подобные документы

    Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.

    курсовая работа , добавлен 21.06.2015

    Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.

    курсовая работа , добавлен 20.10.2013

    Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.

    курсовая работа , добавлен 08.03.2016

    Моделирование входного заданного сигнала, построение графика, амплитудного и фазового спектра. Моделирование шума с законом распределения вероятностей Рэлея, оценка дисперсии отсчетов шума и проверка адекватности модели шума по критерию Пирсона.

    курсовая работа , добавлен 25.11.2011

    Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.

    контрольная работа , добавлен 22.12.2014

    Схема блоков модели Карааслана, система дифференциальных уравнений, методы решения. Блоки и биохимические законы системы Солодянникова, переход между фазами. Моделирование патологий, графики экспериментов. Построение комплексной модели гемодинамики.

    дипломная работа , добавлен 24.09.2012

    Разработка проекта системы автоматического управления тележкой, движущейся в боковой плоскости. Описание и анализ непрерывной системы, создание ее математических моделей в пространстве состояний и модели "вход-выход". Построение графиков реакций объекта.

    курсовая работа , добавлен 25.12.2010

    Математическое моделирование задач коммерческой деятельности на примере моделирования процесса выбора товара. Методы и модели линейного программирования (определение ежедневного плана производства продукции, обеспечивающей максимальный доход от продажи).

    контрольная работа , добавлен 16.02.2011

    Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.

    реферат , добавлен 19.06.2008

    Операторы преобразования переменных, классы, способы построения и особенности структурных моделей систем управления. Линейные и нелинейные модели и характеристики систем управления, модели вход-выход, построение их временных и частотных характеристик.

Система может быть дискретной или непрерывной по входам, по выходам и по времени в зависимости от того, дискретными или непрерывными являются множества U, Y, Т соответственно. Под дискретным понимается конечное или счетное множество. Под непрерывным будем понимать множество объектов, для которого адекватной моделью служит отрезок, луч или прямая линия, т.е. связное числовое множество. Если система имеет несколько входов и выходов, то это значит, что соответствующие множества U, Т лежат в многомерных пространствах, т.е. непрерывность и дискретность понимаются покомпонентно.

Удобство числового множества как модели реальных совокупностей объектов состоит в том, что на нем естественным образом определяются несколько отношений, формализующих реально встречающиеся отношения между реальными объектами. Например, отношения близости, сходимости формализуют понятия похожести, сходства объектов и могут быть заданы посредством функции расстояния (метрики) d(x, у) (например, d(x, у) = |х - у |). Числовые множества являются упорядоченными: отношение порядка следования (х ≤ у ) формализует предпочтение одного объекта другому. Наконец, над элементами числовых множеств определены соответствующие операции, например, линейные: х + у , х*у . Если для реальных объектов на входе и выходе также имеют смысл аналогичные операции, то естественным образом возникают требования к моделям (1) – (3): быть согласованными с этими операциями, сохранять их результаты. Таким образом, приходим, например, к линейным моделям: y = au + b , dy/dt = ay + bu и т.д., являющихся простейшими моделями многих процессов.

Как правило, дискретность множества U влечет за собой дискретность Y . Кроме того, для статических систем исчезает различие между непрерывным и дискретным временем. Поэтому классификация детерминированных систем по признакам «статические-динамические», «дискретные-непрерывные» включает шесть основных групп, представленных в таблице 2 , где для каждой группы указан математический аппарат описания систем, методы численного анализа и оценки их параметров, методы синтеза (оптимизации), а также типичные области применения.

Таблица 2

ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ СИСТЕМ

Типы систем Статические Динамические
Дискретные по U.Y Непрерывные по U.Y Дискретные по Т Непрерывные по Т
Дискретные по U, Y Непрерывные по U,Y Дискретные по U,Y Непрерывные по U, Y
Математический аппарат описания Графы, таблицы соответствий, булева алгебра Функции вещественных переменных Конечные автоматы Разностные уравнения Асинхронные автоматы, сети Петри, модели теории расписаний Обыкновенные дифференциальные уравнения
Методы оценки параметров и анализа Методы математической логики Методы интерполяции и аппроксимации Теория конечных автоматов Идентификация, теория устойчивости Методы идентификации Идентификация, численное интегрирование ОДУ
Методы синтеза Дискретное программирование, метод Куайна, карты Карно Методы оптимизации (линейное и нелинейное программирование) Динамическое программирование, методы синтеза микропрограммных автоматов Динамическое программирование, дискретный принцип максимума Динамическое программирование, теория расписаний Теория управления, методы оптимизации
Области применения Качественные модели исследования операций Количественные модели исследования операций Цифровые САУ, ГАП, логическое управление Импульсные и цифровые САУ Параллельные процессы в ЭВМ и ГАП САУ, механические, тепловые, электронные и др. процессы

Примечание: U - множество входов, Y - множество выходов системы

Модели состояния динамических систем

Модели общего вида

Важнейшую роль при описании динамических систем играет понятие состояния. Состояние - это совокупность величин (вектор) , которые определяют (вместе с входным воздействием) будущее поведение системы.

В общем случае уравнения состояния – это системы дифференциальных или разностных уравнений первого порядка вместе с уравнениями для выходных величин. Начальное состояние представляет, «память» системы о прошлом. Модель состояния непрерывной динамической системы записывается в виде

(4)

(5)

где u 1 , …, u m - входные переменные, y 1 , …, y l - выходные переменные, x 1 , …, x n -переменные состояния. Вводя векторные обозначения, можно записать (5) в более компактном виде:

(6)

где , , .

Для моделей состояния справедлив следующий факт: любая нелинейная динамическая система может быть представлена как соединение линейных динамических и нелинейных статических звеньев.

Еще более общей формой описания динамических систем являются сингулярные дифференциальные (алгебро-дифференциальные) системы

(7)

частным случаем которых являются неявные системы

(8)

Линейные модели

Часто вместо (5) используют упрощенные ММ, основанные на том, что процессы в системе протекают, мало отклоняясь от некоторой так называемой опорной траектории удовлетворяющей уравнениям

Тогда можно записать приближенную линеаризованную модель в отклонениях от этого режима:

(10)

Если расчетный режим является установившимся, т.е. не зависит от времени, то коэффициенты в (10) также не зависят от времени: A(t)=A , B(t)=B и т.д. Такие системы называются стационарными. Особенно часто на практике встречаются стационарные линейные непрерывные системы, описываемые более простыми уравнениями

, у = Сх . (11)

Матрицы А, В, С являются параметрами модели (11).

Если линеаризация приводит к большим погрешностям, то стараются, по возможности, выбрать ММ линейную по параметрам:

где А - матрица параметров порядка n × N , - нелинейная функция. К этому классу относятся, в частности, билинейные объекты.

Сказанное выше относится и к уравнениям дискретных по времени систем. Уравнения дискретной системы в общем случае имеют вид

, . (12)

Дискретным аналогом уравнений линейной стационарной системы (20) являются уравнения:

(13)

Наряду с уравнениями состояния широкое применение находят также модели в переменных «вход-выход» и модели, описываемые передаточными функциями. Для непрерывного времени уравнение «вход-выход» имеет вид

A(p)y(t)=B(p)u(t), (14)

где р = d/dt - символ дифференцирования по времени, , , причем в (14) всегда m < n . Дробно-рациональная функция называется передаточной функцией системы (14), а полином А(λ) - ее характеристическим полиномом . Если уравнение (14) получено из (11), то

(15)

Они справедливы и в случае, когда вход и выход системы (11) являются векторами, при этом - матрица. Пользуясь (15), можно показать, что замена переменных состояния в (11) по формуле , где Т - неособая n×n матрица (det T = 0), не приводит к изменению передаточной функции (15). Это значит, что обратный переход от описания «вход-выход» к уравнениям состояния (11) неоднозначен: при сохранении передаточной функции базис в пространстве состояний можно выбирать по-разному. На практике применяются несколько типовых способов перехода от передаточной функции к уравнениям состояния. Эти способы соответствуют так называемым каноническим представлениям системы. Опишем один из них, приводящий к управляемому каноническому представлению . Вместо (13) вводятся два уравнения.

Создание некоторой универсальной модели, отвечающей различным аспектам ее применения, практически невозможно. Для получения информации, отражающей те или иные свойства управляемого объекта, необходима классификация моделей. В основе классификации лежат особенности оператора φ. Все многообразие объектов управления, исходя из временного и пространственного признаков, можно разделить на следующие классы: статические или динамические; линейные или нелинейные; непрерывные или дискретные во времени; стационарные или нестационарные; процессы, в ходе которых их параметры изменяются в пространстве, и процессы без пространственного изменения параметров. Так как математические моделии являются отражением соответствующих объектов, то для них характерны те же классы. Полное наименование модели может включать в себя совокупность перечисленных признаков. Эти признаки послужили основой названия соответствующих типов моделей.

В зависимости от характера изучаемых процессов в системе все модели могут быть разделены на следующие виды:

Детерминированные модели – отображают детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий.

Стохастические модели – отображают вероятностные процессы и события; в этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

Стационарные и нестационарные модели. Модель называется стационарной, если вид оператора φ и его параметры p не изменяются во времени, то есть, когда справедливо

φ= φ, т.е. y= φ(p,x).

Если же параметры модели изменяются во времени, то модель является

параметрически нестационарной

Самый общий вид нестационарности – когда от времени зависит и вид функции. Тогда в запись функции добавляется еще один аргумент

Статические и динамические модели. В основе такого разделения типов моделей лежат особенности движения исследуемого объекта как материальной системы.

Говоря о моделях с позиций задач управления, надо отметить, что под пространством здесь понимается не геометрическое пространство, а пространство состояний – координат состояний выходных переменных у . Элементами вектора y являются обычно контролируемые технологические параметры (расход, давление, температура, влажность, вязкость и т.д.). Состав элементов вектораy для самого объекта может быть шире, чем для модели этого объекта, так как при моделировании требуется изучение только части свойств реальной системы. Движение объекта управления в пространстве состояний и во времени оценивается с помощью векторного процесса y(t).


Модель системы называется статической , если состояние системы не изменяется, то есть система находится в равновесии, но движение связано со статичным состоянием объекта, находящегося в равновесии. Математическое описание в статических моделях не включает время как переменную и состоит из алгебраических уравнений либо дифференциальных уравнений в случае объектов с распределенными параметрами. Статические модели обычно являются нелинейными. Они точно отражают состояние равновесия, вызванное переходом объекта от одного режима к другому.

Динамическая модель отражает изменение состояния объекта во времени. Математическое описание таких моделей обязательно включает производную во времени. Динамические модели используют дифференциальные уравнения. Точные решения этих уравненийизвестны только для некоторого класса дифференциальных уравнений. Чаще приходится прибегать к использованию численных методов, являющихся приближенными.

Для целей управления динамическую модель представляют в виде передаточной функции, связывающей входные и выходные переменные.

Линейные и нелинейные модели. Математически функция L(x) – линейна, если

L(λ 1 x 1 +λ 2 x 2)=λ 1 L(x 1)+λ 2 L(x 2).

Аналогично и для функций многих переменных. Линейной функции присуще использование только операций алгебраического сложения и умножения переменной на постоянный коэффициент. Если в выражении для оператора моделиесть нелинейные операции, то модель является нелинейной , в противном случае модель – линейна .

Модели с сосредоточенными и распределенными параметрами. Следует отметить, что с учетом введенной терминологии было бы корректнее в названии модели вместо слова «параметры» употреблять понятие «координата состояния». Однако это сложившееся название, которое часто встречается во всех работах по моделированию технологических процессов.

Если основные переменные процесса изменяются как во времени, так и в пространстве (или только в пространстве), то модели, описывающие такие процессы, называются моделями с распределенными параметрами. В этом случае вводится геометрическое пространство z=(z 1 ,z 2 ,z 3 ) и уравнения имеют вид:

y(z)=φ, p(z)=ψ.

Их математическое описание включает обычно дифференциальные уравнения в частных производных, либо обыкновенные дифференциальные уравнения в случае стационарных процессов с одной пространственной координатой.

Если можно пренебречь пространственной неравномерность значений координат состояний объекта, т.е. градиент , то соответствующая модель – модель с сосредоточенными параметрами. Для них масса и энергия как бы сосредоточены в одной точке.

Трехмерность пространства не всегда обязательна. Например, модель змеевика с нагреваемым рабочим телом и с тонкостенной оболочкой обычно исходит из одномерности объекта – учитывается только длина змеевика. В то же время процесс передачи тепла в ограниченный объем рабочего тела через толстую стенку может быть описан одномерной моделью, учитывающей только толщину оболочки и т.п. Для конкретных объектов форма соответствующих уравнений требует обоснований.

Модели непрерывные и дискретные во времени. Непрерывные модели отражают непрерывные процессы в системах. Модели, описывающие состояние объектов относительно времени как непрерывного аргумента – непрерывные (по времени):

y(t)=φ, p(t)=ψ.

Дискретные модели служат для описания процессов, которые предполагаются дискретными. Дискретная модель не может дать прогноз поведения объекта на интервале между дискретными отсчетами времени. Если введем квантование по времени с шагом ∆t, то рассматривается дискретная шкала , где i=0,1,2…- приобретает смысл относительного времени. И дискретная модель:

y(i)=φ; p(i)=ψ.

При правильном выборе шага ∆t можно ожидать от дискретной модели результата с наперед заданной точностью. При изменении ∆t должны быть пересчитаны и коэффициенты разностного уравнения.

Дискретно-непрерывные модели используются для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

Требования, предъявляемые к математическим моделям: точность – свойство, отражающее степень совпадения предсказанных с помощью модели значений параметров объекта с их истинными значениями; экономичность затрат машинного времени; универсальность – применимость к анализу группы однотипных объектов.

Динамическая система первого порядка . Рассмотрим рис. 10.3. Пусть в момент - объем воды в резервуаре , a - объем воды в резервуаре , связанном с трубой. В данный момент мы не рассматриваем резервуар , показанный пунктиром. Пусть вода может подаваться в или забираться из него по трубе ; имеются механические средства, позволяющие изменять уровень, а следовательно, и объем воды в нужным образом вне зависимости от того, что происходит в .

Если объем в первом резервуаре поддерживается на постоянном уровне, вода будет перетекать из одного резервуара в другой до тех пор, пока уровни в них не станут одинаковыми. Если теперь изменить объем , вода будет снова перетекать из одного резервуара в другой до тех пор, пока не наступит равновесие. Объем воды в , находящийся в равновесии как функция заданного объема в , описывается стационарным соотношением

. (10.1.4)

В этом случае стационарное усиление геометрически выражается как отношение заштрихованных площадей двух резервуаров. Если два уровня в момент не совпадают, различие в уровне воды между резервуарами пропорционально .

Пусть теперь, выкачивая или впуская жидкость по трубе , мы заставляем объем следовать графику, показанному на рис. 10.3. Тогда объем воды в будет изменяться в соответствии с ходом графика, показанного на том же рисунке. В общем случае функция , определяющая режим системы, называется вынуждающей функцией .

Для того чтобы связать вход и выход, заметим, что с хорошей точностью скорость потока через трубу пропорциональна разности в уровнях, т. е.

, (10.1.5)

где - константа. Дифференциальное уравнение (10.1.5) можно переписать в виде

где. Динамическую систему, описываемую таким образом при помощи дифференциального уравнения первого порядка, часто называют динамической системой первого порядка.

Рис. 10.3. Представление простой динамической системы.

Постоянная называется постоянной времени системы. Та же модель первого порядка может приближенно описывать поведение многих простых систем. Например, может быть выходной температурой воды в системе водяного отопления, а - скоростью поступления воды в систему.

Можно показать (см. например ), что решение линейного дифференциального уравнения такого типа, как (10.1.6), можно записать в виде

, (10.1.7)

где - вообще говоря, (непрерывная) функция отклика на единичный импульс. Видно, что получается из как непрерывно взвешенная сумма, точно так же, как получалось из в (10.1.2) как дискретно взвешенная сумма. Далее видно, что роль непрерывной весовой функции в непрерывном случае совершенно аналогична роли в дискретном случае. Для конкретной системы первого порядка, определенной (10.1.6),

.

Таким образом, отклик на единичный импульс затухает в этом случае по экспоненте (см. рис. 10.3).

В непрерывном случае определение выхода для произвольной вынуждающей функции, такой, как на рис. 10.3, обычно выполняется либо моделированием на аналоговом вычислительном устройстве, ибо расчетом на цифровой вычислительной машине

Рис. 10.4. Функция отклика на единичный скачок системы первого порядка.

Аналитические решения можно получить только для вынуждающих функций специального вида. Пусть, например, вначале гидравлическая система пуста, а затем внезапно достигает уровня и сохраняет это значение. Такую вынуждающую функцию, внезапно изменяющую нулевой стационарный уровень на стационарный уровень, равный единице, мы будем называть (единичным) скачком. Отклик системы на такую функцию, названный откликом на единичный скачок, можно получить, решая дифференциальное уравнение (10.1.6) с единичным скачком на входе, что дает

. (10.1.8)

Как следует из этого результата, уровень в резервуаре возрастает по экспоненте (рис. 10.4). Когда , . Это означает, что постоянная времени - это время, необходимое системе первого порядка (10.1.6) для достижения 63,2% ее заключительного равновесного уровня после подачи на вход единичного скачка.

Иногда существует начальный интервал чистого запаздывания, или холостое время, перед тем как проявится какая бы то ни было реакция на данное изменение входа. Например, если труба между и (рис. 10.3) достаточно длинна, внезапное изменение уровня в может не оказать эффекта на до тех пор, пока через трубу не прошло достаточное количество жидкости. Пусть введенное таким образом запаздывание занимает единиц времени. Тогда отклик запаздывающей системы будет описываться дифференциальным уравнением, подобным (10.1.6), но только справа вместо будет стоять , т. е.

Соответствующие функции отклика на единичный импульс и скачок имеют точно такую же форму, как в системе без запаздывания, но смещены по оси времен на расстояние .

Рис. 10.5. Функции отклика на единичный скачок совпадающих дискретной и непрерывной систем второго порядка, имеющих характеристические уравнения с действительными (кривая ) и комплексными корнями (кривая).

Динамическая система второго порядка . Рассмотрим рис. 10.3 еще раз. Вообразим, что имеется система трех резервуаров с трубой, ведущей от резервуара к резервуару , объем жидкости в котором обозначен. Пусть - временная постоянная, и - стационарное усиление дополнительной системы. Тогда и связаны дифференциальным уравнением

После подстановки в (10.1.6) мы получаем дифференциальное уравнение второго порядка , связывающее выход третьего резервуара и вход первого,

где . Для такой системы функция отклика на единичный импульс - это наложение экспонент

а функция отклика на единичный скачок имеет вид

. (10.1.12)

Непрерывная кривая на рис. 10.5 показывает отклик на скачок системы

у которой , , . Отметим, что в отличие от системы первого порядка система второго порядка имеет отклик на скачок с начальным нулевым наклоном. действительными, действительными и равными или комплексными. У перезатушенной системы функция отклика на скачок образована наложением экспонент такого типа как (10.1.12), и всегда располагается ниже асимптоты . Как и в системе первого порядка, отклик может иметь холостое время, для этого надо заменить аргумент в правой части (10.1.13) на . Многие весьма сложные динамические системы можно достаточно точно описывать такими системами второго порядка с запаздыванием.

Более сложные линейные динамические системы могут быть описаны, если допустить, что не только сами значения уровня вынуждающей функции , но также скорость ее изменения и более высокие производные влияют на поведение системы. Поэтому общая модель для описаний (непрерывных) динамических систем - это линейное дифференциальное уравнение

Непрерывные и дискретные модели

Непрерывные модели отражают непрерывные процессы, протекающие, в частности, во времени. Значения независимой переменной (аргумента) принадлежат континуальному множеству. Континуальное множество обладает свойством, соответственно которому между любыми сколь угодно близкими точками множества всегда можно найти еще более близкие точки. Очень часто такой характер изменения приписывается времени.

Непрерывными моделями достаточно точно описываются такие реальные процессы, как изменение силы тока в определенной точке электрической схемы, изменение угловой скорости на выходе электропривода, набор линейной скорости при разгоне автомобиля, истечение газа или жидкости из резервуара и т.п.

Дискретные модели описывают дискретные, т.е. прерывистые процессы. Такие процессы происходят, например, в дискретных СУ, содержащих импульсный элемент (ключ), периодически замыкающий цепь через постоянный тактовый период Т .

Дискретными моделями достаточно точно описываются такие реальные процессы, как штамповка деталей, продажа мелких товаров с помощью автомата, работа микропроцессора и т.п.

Существуют также комбинированные – дискретно-непрерывные модели, в которых обычно можно отделить непрерывную часть от дискретной.

Статической называется модель объекта, отражающая оригинал в какой-то отдельный момент времени, т.е. «моментальная фотография» объекта. Например, буквально фотография или схема.

С фотографией (рис. 1.11) все ясно, что же касается схемы, то даже если это структурная схема с указанием передаточных функций звеньев, по ней явно не видно, как модель изменяется с течением времени (рис. 1.12).

Рис.1.11. Фотография как пример статической модели

Рис. 1.12. Структурная схема системы

Другой очевидный и знакомый пример статической модели –статическая характеристика, т.е. зависимость выходной переменной объекта (системы) от входной переменной в установившемся режиме , т.е. при t®∞: y(∞)=F (рис. 1.13).

Рис. 1.13. Статическая характеристика системы ”System

Динамическая модель, в отличие от статической, учитывает изменения, происходящие в системе с течением времени. Это может выражаться в зависимости входной, выходной и промежуточных переменных от времени. Примером могут служить переходные функции – реакции систем на единичное ступенчатое входное воздействие (рис. 1.14).

Рис. 1.14. Переходная функция h(t) системы “System

Обычно переходные функции получаются в результате: 1) аналитического решения; 2) численного интегрирования дифференциальных уравнений, описывающих исследуемую систему; 3) обратного преобразования Лапласа от передаточной функции системы, деленной на s . Модельв виде дифференциальных уравнений (ДУ) является широко распространенной динамической моделью.



Пример. Пусть система описывается моделью в виде дифференциального уравнения:

входное воздействие x(t)= 1[t] – единичное ступенчатое (как на рис. 1.14), а начальные условия имеют вид: y(t= 0) = 0, т.е. процесс начинается из начала координат.

Аналитическое решение. Это линейное дифференциальное уравнение первого порядка с постоянными коэффициентами (стационарное). Его решение складывается из двух слагаемых – общего и частного решения:

Общее решение ищется в виде:

где А – неизвестный коэффициент, определяемый из начальных условий;

l – корень характеристического уравнения, которое в данном случае выглядит так:

откуда l=– 2.

В стандартной форме исходное уравнение должно иметь при y(t) коэффициент, равный единице. Для этого исходное уравнение разделим на 4 и получим:

Частное решение зависит от вида правой части ДУ; в данном примере, поскольку x(t)= 1[t] , частное решение будет равно константе:

Суммарное решение будет выглядеть так:

Теперь, подставив в решение y(t) начальное условие (для уравнения 1-го порядка оно одно), можно найти значение коэффициента А :

откуда А = – 1,25. Окончательно решение имеет вид:

Поскольку входным воздействием было единичное ступенчатое, то полученное решение является переходной функцией и обозначается, как обычно, h(t) . График этой функции показан на рис. 1.15.

Рис. 1.15. Переходная функция h(t) – решение ДУ из примера

Подобный h(t) характер (с разной погрешностью) имеют такие процессы, как разгон автомобиля, нагрев жидкости, накопление знаний в некоторой предметной области, увеличение численности популяции животных, рост производства (при определенных условиях) и многие другие. В этом заключается одно из важнейших свойств математическихмоделей – их универсальность.



Рекомендуем почитать

Наверх