Многомерное представление данных. Общая схема организации хранилища данных

Авто 15.07.2019

Система оперативной обработки данных (ON LINE TRANSACTION PROCESSING) OLTP рассчитаны на быстрое обслуживание относительно простых запросов большого числа пользователей. Эти системы требуют защиты от несанкционированного доступа, от нарушения целостности данных, аппаратных и программированных сбоев.

Их характеризует малое время ожидания выполнения запросов.

Сфера применения √ это сфера платежей, учета, резервирования мест, банки и биржевые операции

Транзакция - это некоторое законченное с точки зрения пользователя действие над БД.

Системы аналитической обработки данных (ON LINE ANALIZIS PROCESSING) OLAP- это системы поддержки принятия решений, ориентированны на выполнение более сложных запросов, требующих статистической обработки исторических данных, накопленных за определенный промежуток времени. Аналитические системы включают:

1. средства обработки информации на основе методов искусственного интеллекта

2. средства графического представления данных.

Эти системы определяются большим объемом исторических данных, позволяя выделить из них содержательную информацию, т.е. получить знания из данных.

Требования к скорости и качеству анализу привело к появлению систем аналитической обработки (OLAP). Оперативность обработки достигается за счет применения мощной многопроцессорной техники, сложных методов анализа, специализированных хранилищ данных.

Приведенные классы систем (OLAP и OLTP), они основаны на использовании СУБД, но типы запросов сильно отличаются.

Обработка транзакций в OLTP системах

Транзакция - неделимая с позиции воздействия на БД последовательность операций манипулирования данными. Это может быть операция чтения, удаления, вставки и т.д.

Транзакция реализует некоторое осмысленное с точки зрения пользователя действие, например, перевод денег со счета, резервирования места, доставления нового служащего.

Транзакция должна обладать 4 основными свойствами:

1. атомарность, транзакция должна выполнятся как единая операция доступа к БД, она должна быть выполнена полностью или не выполнена вообще.

2. согласованность , гарантирует взаимную целостность данных.

3. изолированность , транзакции будут выполнятся изолированно в пользовательской системе.

4. долговечность , если транзакция выполнена успешно, то произведенные ею изменения в данных не будут потеряны ни при каких обстоятельствах.

Результатом выполнения транзакции может быть ее фиксация и откат.

Фиксация - это действие, обеспечивающее запись в БД всех изменений.

Откат - если нормальное завершение транзакции невозможно, БД возвращается в исходное состояние, все изменения аннулируются.


При откате и фиксации транзакции используется журнал транзакций, в котором сохраняются все изменения.

При выполнении любой операции, изменяющей базу данных СУБД автоматически сохраняет в журнал транзакций состояния модифицируемых строк до операции и после ее. Только после этого, изменения вносится в БД.

При откате СУБД по журналу транзакций восстанавливает те строки, которые были модифицированы.

Границы транзакции - это первая и последняя, входящая в неё операции. Предполагается, что транзакция начинается с 1-го SQL оператора, следующие операторы составляют тело транзакции и тело может разветвляется:

1. SQL оператором commit work

SQL оператором rollback

2. простым завершением оператора, вызвавшего транзакцию.

Точки сохранения - применяются в длинных транзакциях, т.е. в теле транзакции может быть определены точки, в которых сохраняется состояние БД.

Применение транзакции - это эффективный механизм организации многопользовательского доступа к БД.

Проблемы:

1. как избежать потери изменений в базе данных в ситуации, когда несколько программ читают одни и те же данные, изменяют их и записывают на прежнее место. В базе данных могут быть сохранены изменения от одной программы, результаты работы всех остальных будут потеряны.

2. исключить возможность чтения нефиксированных изменений, например, когда одна транзакция вносит изменения в базу данных они тут же считываются в других транзакциях, но затем другая транзакция прерывается оператором rollback.

Для устранения этого используют сериализацию (совместная отработка):

1. транзакция не может получить доступ к незафиксированным данным

2. результат совместного выполнения транзакций должен быть эквивалентен результату их последовательности выполнения.

В современном СУБД сериализация транзакций реализуется через механизм блокировок: на время выполнения транзакции 1 СУБД блокирует часть базы данных к которой транзакция 1 обращается. Блокировка сохраняется до момента фиксации транзакции 1, если в этот момент другая транзакции 2 обращается к блокированным данным, то транзакции 2 приостанавливается до момента завершения транзакции 1

Взаимоблокировка транзакций

Пусть транзакция т1 обновляет отношение - о1. Далее эта транзакция т1 пытается модифицировать отношение о2 , которая была ранее заблокирована транзакцией т2. Транзакция т1 переводится в состояния ожидания пока не снята блокировка с отношения о2; в тот же момент транзакция т2 пытается изменить данные отношения о1, ранее заблокирована транзакцией т1. СУБД вынуждена перевести в состояния ожидания и транзакцию т2 следовательно возникает ситуация взаимоблокировки транзакций.

СУБД периодически проверяет блокировку и если есть взаимоблокировки, то одна из транзакции насильственно прерывается.

Средства восстановления после сбоев

Одно из основных требований к современным информационным системам является надежность хранения данных. СУБД должна уметь восстановить базу данных после любых аппаратных и программных сбоев. Для этого существует журнал транзакций. Принцип восстановления - результаты выполнения транзакции до сбоя должны быть восстановлены, результаты незафиксированные транзакцией должны быть удалены.

Если физически уничтожено содержимое внешней памяти, то для устранения этого реализуют дублированное хранение данных.

Принимая во внимание все перечисленное, сравнение между различными MDDпродуктами можно проводить только по самым обобщенным категориям. В более дешевом секторе рынка присутствуют лишь однопользовательские и предназначенные для небольших локальных сетей средства просмотра многомерных данных. Хотя они обладают довольно высоким уровнем функциональных возможностей и удобны в использовании, эти системы ограниченны по своему масштабу. и им недостает средств, необходимых для реализации OLAPобработки в широком смысле. В данную категорию попадают такие продукты, как PowerPlay корпорации Cognos, PaBlo фирмы Andyne и Mercury компании Business Objects. Дорогой же сектор рынка представлен системами Acumate ES фирмы Kenan Technologies, Express корпорации Oracle, Gentium компании Planning Sciences и Holos фирмы

Holistic Systems. Они настолько разнятся по своим возможностям, что любую из них можно смело выделять в отдельную категорию. И наконец, MDD-системы в чистом виде: Essbase корпорации Arbor Software, LightShip Server фирмы Pilot Software и TM/1 компании Sinper .

Второй класс OLAP-средств -реляционные OLAP-системы (ROLAP). Здесь для хранения данных используются старые реляционные СУБД, а между БД и клиентским интерфейсом организуется определяемый администратором системы слой метаданных. Через этот промежуточный слой клиентский компонент может взаимодействовать с реляционной БД как с многомерной. Подобно средствам первого класса, ROLAP-системы хорошо приспособлены для работы с крупными информационными хранилищами, требуют значительных затрат обслуживания специалистами информационных подразделений и предусматривают работу в многопользовательском режиме. Среди продуктов этого типа - IQ/Vision корпорации IQ Software, DSS/Server и DSS/Agent фирмы MicroStrategy и DecisionSuite компании Information Advantage.

ROLAP-средства реализуют функции поддержки принятия решений в надстройке над реляционным процессором БД.

Такие программные продукты должны отвечать ряду требований,

в частности:

- иметь мощный оптимизированный для OLAP генератор SQLвыражений, позволяющий применять многопроходные SQL-операторы SELECT и/или коррелированные подзапросы;

- обладать достаточно развитыми средствами для проведения нетривиальной обработки, обеспечивающей ранжирование, сравнительный анализ и вычисление процентных соотношений в рамках класса;

Генерирвать SQL-выражения, оптимизированные для целевой реляционной СУБД, включая поддержку доступных в ней расширений этого языка;

- предоставлять механизмы описания модели данных с помощью метаданных и давать возможность использовать эти метаданные для построения запросов в реальном масштабе времени;

- включать в себя механизм, позволяющий оценивать качество построения сводных таблиц с точки зрения скорости вычисления, желательно с накоплением статистики по их использованию.

Третий, сравнительно новый тип OLAP-средств -инструменты генерации запросов и отчетов для настольных ПК , дополненные

OLAP-функциями или интегрированные с внешними средствами, выполняющими такие функции. Эти весьма развитые системы осуществляют выборку данных из исходных источников, преобразуют их и помещают в динамическую многомерную БД, функционирующую на ПК конечного пользователя. Указанный подход, позволяющий обойтись как без дорогостоящего сервера многомерной БД, так и без сложного промежуточного слоя метаданных, необходимого для ROLAPсредств, обеспечивает в то же время достаточную эффективность анализа. Эти средства для настольных ПК лучше всего подходят для работы с небольшими, просто организованными БД. Потребность в квалифицированном обслуживании для них ниже, чем для других OLAP-систем, и примерно соответствует уровню обычных сред обработки запросов. В числе основных участников этого сектора рынка -

компания Brio Technology со своей системой Brio Query Enterprise, Business Objects с одноименным продуктом и Cognos с PowerPlay.

В настоящее время увеличивается число Web-совместимых продуктов OLAP.

Важным является вопрос приспосабливания OLAP к остальному ПО. Хотя поставщики OLAP начинают предлагать некоторые способы взаимодействия с SQL-СУБД и другими инструментами, но однако, пользователи и аналитики предупреждают, что уровень интеграции может быть различным и, вероятно, потребует значительного объема кодирования, включая написание запросов на языке SQL. Более того, для интеграции OLAP с остальным программным обеспечением предприятия не существует промышленного стандарта.

Решение данной проблемы может состоять в следующем. Например, многие компании позиционируют базы данных с OLAP в качестве клиентских частей хранилищ данных. При таком подходе хранилища питают ядро многомерной OLAP выборками данных, к которым в дальнейшем могут получить доступ пользователи для

быстрого выполнения комплексных запросов. При этом целью является создание среды запросов, скрывающей от пользователя местоположение данных. В этой среде будут автоматически выполняться комплексные запросы к ядру многомерной обработки или поиск детализированной информации и простых запросов на реляционных серверах. Для компаний, которые не могут пойти этим путем, важную роль в настройке связей между инструментами OLAP и другим программным обеспечением играют фирмы-консультанты.

OLTP-системы , являясь высокоэффективным средством реализации оперативной обработки, оказались мало пригодны для задач аналитической обработки. Это вызвано следующим:

1. средствами традиционных OLTP-систем можно построить аналитический отчет и даже прогноз любой сложности, но заранее регламентированный. Любой шаг в сторону, любое нерегламентированное требование конечного пользователя, как правило, требует знаний о структуре данных и достаточно высокой квалификации программиста;

2. многие необходимые для оперативных систем функциональные возможности являются избыточными для аналитических задач и в то же время могут не отражать предметной области. Для решения большинства аналитических задач требуется использование внешних специализированных инструментальных средств для анализа, прогнозирования и моделирования. Жесткая же структура баз не позволяет достичь приемлемой производительности в случае сложных выборок и сортировок и, следовательно, требует больших временных затрат для организации шлюзов.

3. в отличие от транзакционных, в аналитических системах не требуются и, соответственно, не предусматриваются развитые средства обеспечения целостности данных, их резервирования и восстановления. Это позволяет не только упростить сами средства реализации, но и снизить внутренние накладные расходы и, следовательно, повысить производительность при выборке данных.

Круг задач, эффективно решаемых каждой из систем, определим на основе сравнительных характеристик OLTP- и OLAP-систем (табл. 8).

Таблица 8

Круг задач решаемых OLTP- и OLAP-системами

Характеристика

Частота обновления

Высокая частота,

Малая частота, большие "порции"

небольшие "порции"

Источники данных

В основном, внутренние

По отношению к аналитической

системе, в основном,

Возраст данных

Текущие (несколько

Исторически (за годы) и

прогнозируемые

Уровень агрегации

Детализированные данные

В основном

агрегированные данные

Возможности

Регламентированные

Последовательность

аналитических

интерактивных очетов,

операций

динамическое изменение уровней

агрегаций и срезов данных

Назначение

Фиксация, оперативный

Работа с историческими

поиск и обработка данных,

данными, аналитическая

регламентированная

обработка, прогнозирование,

аналитическая обработка

моделирование

Таблица 9

Сравнение OLTP и OLAP

характеристика

Преобладающие

Ввод данных, поиск

Анализ данных

операции

Характер запросов

Сложные транзакции

транзакций

Хранимые данные

Оперативные,

охватывающие

детализированные

агрегированные

Вид деятельности

Оперативная,

Аналитическая,

тактическая

стратегическая

Тип данных

Структурированные

Разнотипные

3.7. Подходы к выбору экономических информационных систем

Прежде чем ответить на вопрос, какой же вариант автоматизации для предприятия наиболее выгоден и даст наибольший эффект, следует рассмотреть ряд факторов, влияющих на этот выбор.

1. Насколько технологии бизнеса в фирме отличаются от традиционных.

Если отличия весьма серьезны и пути изменения этих технологий в направлении стандартизации видятся неприемлемыми или чрезмерно затратными, покупка и адаптация готовой ЭИС российского производства либо неприменима вовсе, либо может оказаться

неэффективной - часть модулей системы будут неприменимы или неработоспособны в поставленных условиях.

2. Как часто потребуется вносить значительные изменения во внедряемую информационную систему.

Если сфера деятельности фирмы или сама фирма очень динамичны в плане технологических приемов, то как покупка и адаптация готовой ЭИС российского производства, так (в подавляющем большинстве случае) и разработка ЭИС сторонней организациейразработчиком неприемлемы. В систему потребуется вносить изменения, интегрировать в нее новые компоненты и т.д., что для первого случая может оказаться невозможно вовсе, а для третьего - либо слишком дорого, либо недостаточно реактивно.

3. Какие суммы готова вложить фирма в автоматизацию.

Для очень ограниченных в ресурсах предприятий, как покупка зарубежного комплекса автоматизации, так и заказ на разработку в сторонней фирме обычно неприемлемы. Выбор между покупкой существующего программного обеспечения или разработкой своего силами небольшого отдела автоматизации решается обычно на основании ответов на вышеприведенные вопросы.

Таким образом, покупку и адаптацию готовой ЭИС следует выбирать для фирм со стабильными и более или менее традиционными методиками ведения дел и в том случае, когда на рынке программного обеспечения есть соответствующие информационные системы.

При этом для очень крупных и разветвленных структур (особенно если фирма предполагает активную интеграцию или просто взаимодействия с зарубежными партнерами) рекомендуется выбирать мощную западную систему, для небольшой и средней фирмы - отечественную.

Разработка ЭИС своими средствами и заказ разработки ЭИС сторонней организации-разработчику наиболее привлекательны для редкого или нетипичного ведения "делового хозяйства". При этом конкретный выбор стоит делать на основании информации о финансовом состоянии фирмы, наличии надежной фирмы разработчика или интегратора и возможности установить с ней длительные партнерские отношения и других факторов.

Более подробный анализ достоинств и недостатков методов автоматизации представлен в таблице.

Таблица 10

Достоинства и недостатки методов автоматизации

Достоинства подхода

Недостатки подхода

Ориентация

российские

Проблема

инвестиций

адаптация

законы, "особенности" бизнеса,

первоначальные

готовой ЭИС

бухгалтерского учета

абсолютные

величины

российского

оказаться

невелики,

дальнейшие

производства

Доступность

разработчиков

обучение,

поддержки

обслуживание

развитие

сопровождения, что в варианте

информационной

с зарубежным продуктом либо

быть весьма значительными). В

имеет куда меньше масштабы,

условиях

нестабильности

обходится

экономики

несовершенства

дороже (возможно в десятки и

законодательства,

сотни раз). Рабочий день одного

гарантии

стабильности

квалифицированного

производителя

программного

специалиста

настройке

обеспечения (ПО) на протяжении

адаптации систем такого класса

всего срока эксплуатации ПО.

западная фирма вполне может

оценить очень дорого.

1.2.Покупка и

Наибольшим

начальные

адаптация

подобного

является

готовой ЭИС

огромная

мощность

Весьма значительные

затраты на

зарубежного

потенциал западных продуктов

внедрение

продукта,

обучение

производства

и комплексов автоматизации.

персонала и связанные с этим

Обычно они состоят из ряда

изменения

комплектуются

коснуться

аппаратного

зависимости

обеспечения фирмы.

потребителя (хотя существует и

В связи со многими чисто

целый ряд систем, которые по

российскими факторами (большая

причинам

динамичность

модульными

являются;

обстановки,

системам

свойственна

человеческого

большая закрытость и большая

другое) величина риска подобного

трудность

эксплуатации

рода вложений очень высока.

внедрении).

Основной

проблемой

является

необходимость

переориентации

технических

аспектов деятельности фирмы под

то, как это представляли себе

разработчики продукта, что в

наших условиях возможно очень

редко, даже если эти технологии

признаны

общепринятыми.

Отсутствие

некоторых

продуктах

типичных

российского

пользователя

компонент,

недостаточная

локализация

затруднить

значительно

эффективность его применения.

Стратегии

и критерии выбора

западной

информационной

достаточно

непросты,

главными из требований, которые

могут быть предъявлены системе

подобного

являются:

функциональная

открытость,

модульность,

масштабируемость, способность к

работе в распределенной среде,

настраиваемость

поставки в исходных текстах),

ценовая политика производителя

продукта и его представителей в

2.Разработка

Этот подход в большинстве

Большое (причем подчас трудно

случаев применим лишь в двух

прогнозируемое) время разработки

собственным

вариантах: для достаточно

и, во многих случаях, большая

крупной фирмы, способной

величина затрат.

квалифицированных

разработчиков ПО и в том

случае, если комплекс

автоматизации не очень велик и

может быть разработан

достаточно ограниченными

ресурсами.

Обычно этот вариант

автоматизации используется в

том случае, когда ни один из

существующих коммерческих

продуктов не удовлетворяет

руководство предприятия, либо

если бизнес настолько

динамичен, что перенастройка

готового продукта окажется

дороже или менее

эффективной, чем своего.

Достоинства:

ориентированный

конкретную фирму

комплекс

автоматизации,

покрывающий

требуемый

качество,

эффективность и оперативность

"поддержки" (никто не знает

всех особенностей бизнеса

фирме лучше

ее собственных

сотрудников).

3.Разработка

Этот вариант перекликается с

Однако тут возникают проблемы,

предыдущим, но отличается от

сходные первым вариантом

совместно с

него следующим: фирме не

автоматизации, но обычно этими

проблемами легче управлять из-за

разработчико

программистов с одной

более тесных контактов

стороны, и она получает

потребителя информационной

ориентированный чисто на нее

системы и фирмы-разработчика

продукт - с другой.

(или интегратора).

В случае наличия у фирмы-

разработчика технологического

"конструктора" (ядра

информационной системы,

достаточно легко развиваемого

и адаптируемого под

меняющиеся условия) такой

вариант автоматизации может

оказаться дешевле и

эффективнее второго подхода и

динамичнее и технологичнее

Выбор автоматизированной системы для предприятия должен проводиться не по принципу, какая ЭИС лучше, а какая хуже. Здесь необходимо определить в какой степени определенная ЭИС подходит для работы в конкретном предприятии при заданных условиях. Разработка сравнительных критериев представленных на рынке ЭИС нецелесообразна без учета конкретных условий, таких как: экономическое состояние предприятия, уровень подготовки служащих, ранее сделанные инвестиции в программное и техническое обеспечение и т.д. В связи с этим возникает необходимость в определении рациональной с точки зрения технико-экономических показателей, структуры ЭИС, предполагающей возможность гибкой перенастройки техники и программного обеспечения в случае изменения структуры предприятия при реинжиниринге бизнес-процессов.

Внедрение качественной ЭИС является одним из важнейших элементов рыночного успеха предприятия и условием ее динамичного развития.

3.8. Критерии выбора ЭИС

При выборе ЭИС необходимо учитывать следующие критерии:

репутация фирмы, репутация системы, стаж пребывания фирмы на рынке, число продаж.

сколько работающих систем в России. Имеются ли внедрения на родственных предприятиях? Потребовалась ли помощь внешних консультантов?

терминология и качество русификации западной системы.

качество локализации западной системы. Есть области производства, где действуют стандарты - юридические и фактические. Например - методы бухгалтерского учета, бухгалтерская и налоговая отчетность. В конструкторской и технологической подготовке производства у отечественных предприятий повсеместно приняты стандарты ЕСКД и ЕСТД. На западных предприятиях принята предметно замкнутая организация производства, а для отечественных - более привычна технологическая специализация. На западе безцеховая структура управления, в России - цеховая. Все эти моменты должны быть отработаны при локализации. Желательно, чтобы система отрабатывала такие российские реалии как бартер, цепочки зачетов, предоплату, оплата в неденежной форме, неотфактурованные поставки и т.д.

какая российская команда стоит за западной системой. Кто ее русифицировал, кто внедряет? Знают ли они производство? Какое у них образование? Какой опыт? Какая за ними “история успехов”? Какой их подход к внедрению?

разумная цена . Покупая систему, необходимо помнить, что на весь цикл - покупка, внедрение, сопровождение, развитие - придется затратить в 3 - 10 раз больше денег, чем стоимость программных средств. Чем сложнее и дороже система, тем больше коэффициент. Если придется привлекать западных консультантов, это будет стоить минимум в 1000 $ в день, причем заранее неясно, то ли они будут учить работать с их системой, то ли сотрудники предприятия за эти деньги будут их знакомить с волнующими особенностями российской экономики,

функциональная полнота. Система должна покрывать основные потребности в управлении. Практически все западные системы сильно избыточны в этом отношении, но на уровне базовых возможностей - они все близнецы,

модульность. Чтобы не тратить лишних денег, нужно иметь возможность покупать и внедрять систему по частям и только на нужное число пользователей.

гибкость. Система будет внедряться полтора-три года и будет работать пять - десять лет. За это время предприятие изменится. Изменится продукция, оргструктура, организация управления, бизнес - процессы, роли и полномочия управленцев. Система управления должна меняться вместе с производством. Значит система должна позволять легко менять АРМы и меню, формировать отчеты и справки, делать произвольные выборки информации в удобном представлении, менять бизнес - процессы и алгоритмы путем параметрической настройки и так далее. Обычная проблема с западными системами - не понятно, для какого пользователя экраны для ввода информации. Вроде бы для технолога, но при чем тут нормативы планирования? Вроде бы для кладовщика, но при чем тут цены и длительность цикла? Вроде бы для бухгалтера, но для какого раздела учета? В этом случае придется разбивать экраны, убирать лишние реквизиты, добавлять нужные, менять названия полей, менять их расположение на экране, менять значность, добавлять поля в базу данных, менять HELP. Позволит ли это делать система и какой ценой? Система должна также легко интегрироваться с другими модулями, например, с российскими программами расчета зарплаты или управления персоналом (не очевидно, что удастся использовать соответствующие западные аналоги) или с уже существующими старыми разработками, которые нельзя отключить (из-за специфики, уникальности и т.п.). Системы европейского производства обычно более гибки, чем американские, - они изначально ориентированы на учет национальных особенностей разных стран Европейского сообщества,

архитектура. Желательна трехзвенная - сервер базы данных, сервер приложений, клиент - клиент-серверная архитектура с возможностью использования “тупых терминалов”. Клиент может быть “толстым” или “тонким”,

техническая платформа. За время жизни системы сменится не одно поколение технических средств. Привязанность к определенной платформе опасна. Система должна уметь мигрировать с платформы на платформу,

Недостатки
OLTP-системы оптимизированы для небольших дискретных транзакций. А вот запросы на некую комплексную информацию (к примеру поквартальная динамика объемов продаж по определённой модели товара в определённом филиале), характерные для аналитических приложений (OLAP), породят сложные соединения таблиц и просмотр таблиц целиком. На один такой запрос уйдет масса времени и компьютерных ресурсов, что затормозит обработку текущих транзакций.

Транза?кция (англ. transaction) - группа последовательных операций, которая представляет собой логическую единицу работы с данными. Транзакция может быть выполнена либо целиком и успешно, соблюдая целостность данных и независимо от параллельно идущих других транзакций, либо не выполнена вообще и тогда она не должна произвести никакого эффекта. Транзакции обрабатываются транзакционными системами, в процессе работы которых создаётся история транзакций.

Различают последовательные (обычные), параллельные и распределённые транзакции. Распределённые транзакции подразумевают использование больше чем одной транзакционной системы и требуют намного более сложной логики (например, two-phase commit - двухфазный протокол фиксации транзакции). Также, в некоторых системах реализованы автономные транзакции, или под-транзакции, которые являются автономной частью родительской транзакции.

Пример: Необходимо перевести с банковского счёта номер 5 на счёт номер 7 сумму в 10 денежных единиц. Этого можно достичь, к примеру, приведённой последовательностью действий:
Начать транзакцию
прочесть баланс на счету номер 5
уменьшить баланс на 10 денежных единиц
сохранить новый баланс счёта номер 5
прочесть баланс на счету номер 7
увеличить баланс на 10 денежных единиц
сохранить новый баланс счёта номер 7

Окончить транзакцию
Эти действия представляют собой логическую единицу работы «перевод суммы между счетами», и таким образом, являются транзакцией. Если прервать данную транзакцию, к примеру, в середине, и не аннулировать все изменения, легко оставить владельца счёта номер 5 без 10 единиц, тогда как владелец счета номер 7 их не получит.

Режим оперативной обработки транзакций OLTP

Режим оперативной обработки транзакций OLTP (On-Line Transaction Processing) применяется в информационных системах организационного управления для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную нишу.
OLTP

Обычно аналитические возможности OLTP-систем сильно ограничены, они используются для того, чтобы способствовать повседневной деятельности корпорации, и опираются на актуальные для текущего момента данные. Информационные системы класса OLTP предназначены для сбора, регистрации, ввода исходных данных, относящихся к той или иной предметной области, первичной обработки данных, их хранения, адекватной визуализации, поиска, выдачи справок и отчетных материалов. Первичная обработка включает проверку корректности вводимых данных и их соответствия ограничениям целостности, идентификацию описываемых данными объектов, кодирование, передачу данных по горизонтальным и вертикальным связям. Данные в информационную систему вводятся либо с документа, имеющего определенную правовую силу, либо непосредственно с места возникновения данных. В последнем случае документ, содержащий введенные данные, печатается системой и ему придается правовая сила.

В OLTP системах над целевыми БД исполняются целевые транзакции (например, занесение в таблицу записи с параметрами выписанного счета, оприходованной фактуры или любого другого факта), которые изменяют состояние БД и приводят их в соответствие текущему состоянию того фрагмента реального мира, который моделирует БД. Таким образом, основным назначением целевых БД является обработка транзакций.

Подобные системы предназначены для ввода, структурированного хранения и обработки информации в режиме реального времени. OLTP-системы позволяют сформулировать запросы типа: сколько, где и т.п. Предоставляя данные из постоянно синхронизируемых (обновляемых) БД, операционные системы не отслеживают динамику изменения процессов на больших временных промежутках, практически не производят обработку данных (за исключением определенных расчетов) и, что самое важное, не формируют выводы по имеемым данным, оставляя эту функцию лицу, принимающему решение.

OLTP -приложениями охватывается широкий спектр задач во многих отраслях - автоматизация бухгалтерского и складского учета и учета документов и т. п.

Основная функция подобных систем заключается в одновременном выполнении большого количества коротких транзакций от большого числа пользователей. Сами транзакции выглядят относительно просто, например, "снять сумму денег со счета А, добавить эту сумму на счет В".

Информационные системы класса OLTP характеризуются следующими особенностями.
Характеристики ИС - информационных систем - класса OLTP
-относительной алгоритмической простотой,
-повышенной динамикой в части номенклатуры и структуры обрабатываемых документов, что связано с непосредственной близостью этих систем к предметной области,
-массовостью и территориальной распределенностью мест сбора исходных данных,
-высокими требованиями к достоверности и актуальности вводимых данных,
-массовостью, достаточно частой сменяемостью и относительно невысокой компьютерной -квалификацией персонала (пользователей).
-поддержкой большого числа пользователей;
-малым временем отклика на запрос;
-относительно короткими запросами;
-участие в запросах небольшого числа таблиц.

Исторически такие системы возникли в первую очередь, поскольку реализовывали потребности в учете, скорости обслуживания, сборе данных и пр. Однако вскоре пришло понимание, что сбор данных - не самоцель и накопленные данные могут быть полезны: из данных можно извлечь информацию.
Стратегия разработки систем
Длительное время в качестве стратегии разработки подобных систем использовалось следующее:
построение отдельных АРМ, предназначенных для обработки групп функционально связанных документов, и тиражирование готовых АРМ на места,
построение полнофункциональных параметризуемых систем с тиражированием и настройкой по местам. Однако получаемые таким способом системы имели невысокие адаптационные возможности по преодолению динамики предметных областей. Они предъявляли высокие требования к эксплуатационному персоналу и требовали больших накладных расходов на сопровождение.
Относительно недавно начала применяться новая, третья стратегия разработки информационных систем класса OLTP. Ее суть состоит в следующем: тиражируются не готовые системы, а некоторые заготовки и технологический инструмент, позволяющие непосредственно на месте быстро построить/достроить систему с необходимой функциональностью и далее с помощью этого же инструмента ее модифицировать в соответствии с динамикой предметной области.

Транзакции – это действия, которые выполняются либо полностью, либо не выполняются вообще. Если во время выполнения транзакции происходит нарушение работы системы, то база данных возвращается в исходное состояние, которое было до транзакции (откат). Все выполненные транзакции регистрируются в журнале транзакций. Транзакция считается завершенной, когда в журнале появляется соответствующая запись о транзакции.

OLTP-технологии

В практике общения с представителями информационных служб предприятий нередко приходится сталкиваться с серьезным недопониманием различий в возможностях, назначении и роли технологий, предназначенных для сбора информации, - OLTP-систем (On-Line Transaction Processing) и технологий анализа информации. Между тем они существенно различны по функциональности, и каждая из них отвечает за свою область в информационной системе.
Задачи OLTP-системы – это быстрый сбор и наиболее оптимальное размещение информации в базе данных, а также обеспечение ее полноты, актуальности и согласованности. Однако такие системы не предназначены для максимально эффективного, быстрого и многоаспектного анализа.
Разумеется, по собранным данным можно строить отчеты, но это требует от бизнес-аналитика или постоянного взаимодействия с IT-специалистом, или специальной подготовки в области программирования и вычислительной техники.
Как выглядит традиционный процесс принятия решений в российской компании, использующей информационную систему, построенную на OLTP-технологии?
Менеджер дает задание специалисту информационного отдела в соответствии со своим пониманием вопроса. Специалист информационного отдела, по-своему осознав задачу, строит запрос оперативной системе, получает электронный отчет и доводит его до сведения руководителя. Такая схема принятия критически важных решений обладает следующими существенными недостатками:
-используется ничтожное количество данных;
-процесс занимает длительное время, поскольку составление запросов и интерпретация электронного отчета – операции довольно канительные, тогда как руководителю, может быть, необходимо принять решение незамедлительно;
-требуется повторение цикла в случае необходимости уточнения данных или рассмотрения данных в другом разрезе, а также при возникновении дополнительных вопросов. Причем этот медленный цикл приходится повторять и, как правило, неоднократно, при этом времени на анализ данных тратится ещё больше;
негативным образом сказывается различие в профессиональной подготовке и областях деятельности специалиста по информационным технологиям и руководителя. Зачастую они мыслят разными категориями и, как следствие, не понимать друг друга;
неблагоприятное действие оказывает такой фактор, как сложность электронных отчетов для восприятия. У руководителя нет времени выбирать интересующие цифры из отчёта, тем более что их может оказаться слишком много. Понятно, что работа по подготовке данных чаще всего ложится на специалистов информационных отделов. В результате грамотный специалист отвлекается на рутинную и малоэффективную работу по составлению таблиц, диаграмм и т. д., что, естественно, не способствует повышению его квалификации.
Выход из этой ситуации один, и сформулирован он Биллом Гейтсом в виде выражения: "Информация на кончиках пальцев". Исходная информация должна быть доступна ее непосредственному потребителю – аналитику. Именно непосредственно доступна (!). А задачей сотрудников информационного отдела является создание системы сбора, накопления, хранения, защиты информации и обеспечения ее доступности аналитикам.

Сфера применения - это сфера платежей, учета, резервирования мест, банки и биржевые операции.

OLTP - системы , являясь высокоэффективным средством реализации оперативной обработки, оказались мало пригодны для задач аналитической обработки. Это вызвано следующим:
1. средствами традиционных OLTP -систем можно построить аналитический отчет и даже прогноз любой сложности, но заранее регламентированный. Любой шаг в сторону, любое нерегламентированное требование конечного пользователя, как правило, требует знаний о структуре данных и достаточно высокой квалификации программиста;
2. многие необходимые для оперативных систем функциональные возможности являются избыточными для аналитических задач и в то же время могут не отражать предметной области. Для решения большинства аналитических задач требуется использование внешних специализированных инструментальных сре дств дл я анализа, прогнозирования и моделирования. Жесткая же структура баз не позволяет достичь приемлемой производительности в случае сложных выборок и сортировок и, следовательно, требует больших временных затрат для организации шлюзов.
3. в отличие от транзакционных, в аналитических системах не требуются и, соответственно, не предусматриваются развитые средства обеспечения целостности данных, их резервирования и восстановления. Это позволяет не только упростить сами средства реализации, но и снизить внутренние накладные расходы и, следовательно, повысить производительность при выборке данных.

Круг задач, эффективно решаемых каждой из систем, определим на основе сравнительных характеристик OLTP - и OLAP –систем

Данные в OLTP-системах организованы главным образом для поддержки таких транзакций, как:

регистрация заказа, введенного с кассового терминала или через Web-узел;

размещение заказа на комплектующие изделия, когда их количество на складе становится меньше определенного числа;

отслеживание компонентов во время сборки конечного продукта на производстве;

регистрация сведений о работниках;

регистрация идентификационных данных держателей лицензий, например владельцев ресторанов или водителей.

Отдельные транзакции, обращаясь к относительно небольшому объему данных, завершаются быстро. Системы OLTP созданы и оптимизированы для одновременной обработки сотен и тысяч транзакций.

OLTP-системы превосходно выполняют регистрацию данных, необходимых для поддержки ежедневных операций. Однако данные в них организованы иначе, чем это необходимо в том случае, когда информация предназначена менеджерам для планирования работы их организаций. Менеджерам часто нужна итоговая информация - для анализа трендов, влияющих на вверенную им организацию или группу.

Современные задачи Хранилищ данных
Разделение данных с конкретными целями

Развитие технологии Хранилищ данных началось с необходимости разделить данные, используемые для операций, и данные, применяемые в аналитических целях. Хранилище обеспечивает возможности, наиболее приспособленные для отчетности. Кроме того, разделение пользователей, выполняющих транзакции, и пользователей отчетности, чьи нерегламентируемые запросы могут негативно сказаться на эффективности оперативных систем, гарантируют оптимальное использование ресурсов инфраструктуры данных.
Временная ценность данных

И хотя Хранилища дают организации отличную платформу отчетности и анализа, в реальном времени они, как правило, не работают, если судить по возрасту доступных данных. Из-за технологических ограничений Хранилища обычно пополняются по ночам с помощью пакетной передачи данных. Для этого используется пакетная программа, которая выполняет вертикальное чтение всей базы в поисках изменений. Данные, поступающие в Хранилище с помощью такого ETL-подхода, - всегда устаревшие (как правило, на сутки).

По мере роста объема обрабатываемых данных, а также количества и разнообразия систем обработки данных, увеличивается время и сложность процесса наполнения Хранилища. Вместе с тем, глобализация, растущая продолжительность эксплуатации систем, ограниченность договоров о сервисном обслуживании приводят к необходимости сокращения пакетных операций. Сочетание большего количества данных и конкурентного давления создает серьезные проблемы для IT-организации.

Решения, принятые на основе вчерашних данных, перестают удовлетворять большинство организаций. Принятие решений в реальном времени требует данных в реальном времени, что это накладывает особые требования на интеграцию данных для Хранилища.

Кроме того, аналитические операции, выполняемые в Хранилище, необходимо вновь передавать в OLTP-систему, откуда поступили данные. Таким образом происходит централизация аналитической обработки и гарантируется передача решений, принятых на агрегированных данных в Хранилище, в соответствующие OLTP-системы.

Эти тенденции реализуются следующим образом:
Интеграция данных в реальном времени для Хранилища данных. Получение и передача данных в реальном времени из операционных систем в Хранилище, что делает данные доступными для анализа.
Активное Хранилище данных. ХД в реальном времени, дополняемое инструментами Business Intelligence для обработки и выполнения бизнес-решений. Решения автоматически передаются в OLTP-системы. В результате формируется замкнутый цикл обработки.

В стремлении добиться функционирования Хранилища в режиме реального времени, успех часто зависит от грамотного выбора инструмента интеграции и подхода к получению данных, что обеспечивает возможность повышения качества и своевременности информации.
Интеграция данных для Хранилища в реальном времени

Для поддержки интеграции в реальном времени пакетный подход к извлечению операционных данных должен быть заменен на процессы, которые постоянно отслеживают состояние исходных систем, захватывают и преобразуют изменения в данных по мере их возникновения, затем загружают их в Хранилище в режиме, максимально приближенном к реальному времени. Постоянный сбор данных позволяет анализировать прибыль и ценовые элементы в любых временных рамках. Тенденции можно анализировать с любой выбранной периодичностью и без задержки.

ETL является идеальным решением задачи сходной загрузки больших объемов данных в Хранилище, а также дает широкие возможности преобразования данных. Однако ETL-операции обычно выполняются в момент приостановки обновления исходной системы, чтобы гарантировать, что в момент получения данных источник не изменяется. Это, в свою очередь, приводит к несоответствиям между OLTP-системами и Хранилищем. В итоге данные и приложения не всегда доступны бизнес-пользователям.

EAI-решения, ранее предназначенные для интеграции приложений, сегодня часто конкурируют или сосуществуют с ETL-технологиями, представляя собой средства интеграции и получения данных в реальном времени. EAI-решения передают информацию между исходной и целевой системами, гарантируют поставку данных, обеспечивают развитую поддержку потока и упрощают основные элементы преобразования.

Однако EAI-технология накладывает ограничения на объемы, так как исходным посылом этого метода была интеграция именно приложений (а не данных), и суть его в запуске приложений и передаче инструкций и сообщений. Тем не менее, возможность перемещать информации в реальном времени и поддерживать ее целостность в процессе интеграции в ряде случаев делает технологию EAI пригодной для взаимообмена между операционными системами и активным Хранилищем.

Другим подходом к интеграции данных в реальном времени является технология управления транзакционными данными (transactional data management - TDM), предназначенная для получения, передачи, преобразования, поставки и верификации транзакционных данных в гетерогенной среде в реальном времен.TDM функционирует на выполненных транзакциях: выбирает их из OLTP-системы, применяет основные методы преобразования и передает их в Хранилище. По своей архитектуре технология асинхронна, однако обеспечивает синхронное поведение, работает с задержкой в долю секунды, поддерживая целостность данных в транзакции.

EAI и TDM предназначены для передачи изменений и обновлений данных, а не целостных выборок данных. Ни то, ни другое не требует приостановки исходных систем, так как эти технологии поддерживают целостность операций языка манипулирования данными (data manipulation language - DML). За счет этого существенно сокращается объем необходимых перемещений данных. И если ETL-средства в основном предназначены для исходной загрузки и преобразования данных, то EAI и TDM больше подходят для постоянного сбора данных.

Все большее количество компаний используют TDM-технологию с целью сбора данных для Хранилища. TDM-средства захватывают, направляют, доставляют и проверяют операции с данными в среде гетерогенных баз данных с задержкой в доли секунды.

Передача измененных данных на уровне транзакции позволяет системе работать в активном режиме и обрабатывать операции одновременно с наполнением Хранилища. В этом случае полностью устраняется зависимость интервала пакетной обработки и сохраняется целостность каждой из транзакций.

Интеграция Хранилища и OLTP-системы подразумевает получение и передачу транзакционных данных в Хранилище одновременно с передачей данных о принятых решениях на основе данных ХД в одну или нескольких оперативных систем. Такой замкнутый цикл работы также обеспечивается средствами TDM.
Основные характеристики и возможности средств интеграции

Инструменты интеграции TDM обладают рядом важных функциональных особенностей.

Сбор данных

Модули сбора данных устанавливаются на исходной базе и постоянно отслеживают все вновь поступающие транзакции. Это достигается за счет чтений больших объемов данных из журналов операций в тот момент, когда транзакции еще выполняются и, как правило, находятся в памяти. Данные обрабатываются на уровне транзакции, и только выполненные операции отсылаются в Хранилище.

Доставка данных

Все новые данные передаются в промежуточную область хранения ХД, при этом временная задержка составляет доли секунды. А значит, наиболее актуальные данные всегда доступны для самых передовых методов Business Intelligence, а также для отчетности и принятия решений. Поскольку в течение заданного промежутка времени передаются меньшие выборки данных (чем в случае пакетной передачи), то дополнительная нагрузка на OLTP-систему оказывается очень незначительной.

Гетерогенность

Хранилище данных не обязательно работает в рамках той же операционной системы или базы данных, что и OLTP-система. Кроме того, часто возникают ситуации, когда нужно собрать данные из нескольких операционных систем и баз. Следовательно, инструменты интеграции должны поддерживать широкий диапазон СУБД, а также платформ, что упрощает требования даже для наиболее гетерогенных IT-инфраструктур. Так организация может делать выбор платформы исходя из корпоративных стандартов и предпочтений, а также развиваться с минимальным влиянием на свое готовое ХД-решение.

Собранные инструментом интеграции данные преобразуются в платформо- и СУБД-независимый формат. Таким образом поддерживается гетерогенность и устраняется риск потери или повреждения данных в случае перебоя в работе исходной или целевой системы.

Выборочность данных

Инструменты интеграции передают только те данные, которые требуются в Хранилище. В обычной OLTP-системе существуют поля, относящиеся только к тому приложению, которое обслуживает база данных. Далеко не все эти параметры нужны в Хранилище. Инструмент интеграции должен обеспечивать идентификацию столбцов, которые нужно извлечь из баз и передать в Хранилище.

Также, в зависимости от критериев пользователя, могут выбираться те или иные строки из базы исходной системы. Например, для разделения данных по географическому признаку или для выбора продуктов, относящихся только к целевому Хранилищу.

Преобразование данных

Выборочность в передаче данных важна, однако остается задача преобразования, нормализации или денормализации данных, в зависимости от целевой системы. В связи с различными моделями данных и структурами объектов между OLTP-базой и Хранилищем, столбцы и исходной системе можно преобразовать так, чтобы они соответствовали столбцам в целевой системе. В некоторых случаях возникает необходимость в слиянии нескольких столбцов из различных исходных строк в единую строку и наоборот. Для сложных преобразований данных предлагаются точки выхода к программе пользователя, чтобы внедрить любые специфические для данной организации правила наполнения ХД.

Гибкость

Возможность быстро и легко включать новые источники БД, либо целевые системы, включая процессы захвата и доставки данных, играет важную роль.

Динамическое определение таблиц

Чтобы не прерывать работу Хранилища оно проектируется с возможностью быстрой адаптации к возможным изменениям в базе данных. Определения исходной и целевой таблиц изменяются либо с появлением новых версий ПО, либо с изменением требований к емкости Хранилища. Динамическое задание схем таблиц возможно с помощью параметрических файлов. Таким образом можно вносить изменения в исходные или целевые таблицы для быстрого внесения изменений без модернизации ПО или устаревания систем.

Обратная связь

Активное Хранилище передает данные, если выполнены определенные условия или правила. Сложная операция может включать в себя обновление записей в OLTP. Например, система обнаружения мошенничеств может выделить подозрительные операции и изменить статус счета пользователя в Хранилище. Такое изменение статуса может отслеживаться инструментом интеграции и передаваться в соответствующую систему оперативной обработки транзакций. Обратная передача информации в OLTP-систему очень значительна для любых приложений замкнутого цикла, а также для одновременной посылки информации в среду отчетности, склады данных, резервные копии или другие целевые системы.
Комбинирование технологий

В задаче интеграции DW и OLTP возможно комбинирование TDM и ETL-процессов. В том числе для обработки данных в реальном времени, постоянном захвате и извлечении данных на транзакционном уровне. Средства TDM могут передавать данные в реальном времени в промежуточный уровень хранения целевой БД, где ETL-сервер будет перехватывать данные и, применив к ним преобразования, загружать в Хранилище. У такого подхода есть недостатки (в частности, дополнительная задержка и необходимость поддерживать ETL-сервер), однако они обоснованы, в случае если требования к преобразованию данных слишком сложны.

Преимущества в том, что новые транзакционные данные немедленно захватываются с очень малым эффектом по производительности на OLTP-систему (по сравнению с обычным ETL-процессом).
и т.д.................

Оперативная обработка транзакций (OnLine Transaction Processing - OLTP) - важнейшее средство взаимодействия с информацией, находящейся в внутри «умных» железяк. Между тем, построение сложных, высокопроизводительных OLTP-систем - непростая задача. Многообразие технологий, модные веяния зачастую ставят разработчика в тупик при выборе конкретного решения или заставляют «натягивать» известные технологии на поставленную задачу, что порой ведет к непредсказуемым результатам. Когда в одном проекте фигурирует несколько платформ, задача становится на порядок сложнее.

С точки зрения прикладных задач любая интерактивная система имеет три основных уровня: хранение данных; прикладная логика; представление (интерфейс с конечным пользователем). Соответственно, с точки зрения реализации, система может включать сервер данных, сервер прикладной логики (сервер приложения) и набор интерфейсов для представления информации конечному пользователю. В качестве основы для сервера данных, как правило, используют СУБД SQL-типа, файловые структуры или специальные источники данных. С интерфейсными формами тоже все понятно: можно реализовывать графические интерфейсы, текстовые «зеленые экраны», Web-интерфейсы и т.п. А вот вопрос реализации сервера приложения не так прост, как может показаться на первый взгляд. Если посмотреть на существующие отечественные реализации систем, можно выделить две тенденции:

  • логика размещается вместе с интерфейсами («толстый» клиент);
  • логика размещается на стороне сервера данных (встречается гораздо чаще).

В последнем случае, как правило, используются СУБД SQL-типа, которые наделены некоторыми функциями поддержки сервера приложения в виде механизма хранимых процедур. Трехзвенная схема при реализации трансформируется в двухзвенную клиент-серверную архитектуру. Для небольших систем это вполне приемлемое решение, однако такой архитектуре присущ ряд недостатков, в том числе ограниченная масштабируемость. Ее реализация, даже на мощных платформах класса S/390, позволяет достичь пиковой производительности не более 200 транзакций в секунду .

В некоторых реализациях разработчики выделяют сервер приложений в самостоятельный компонент. Но эти реализации, как правило, представляют лишь набор прикладных программ, которые не опираются на какие-либо специальные службы, а пользуются стандартными механизмами операционной системы, что, вообще говоря, не выводит систему на иной качественный уровень по сравнению с двухзвенной архитектурой. Это справедливо практически для любой платформы, за исключением AS/400 и VM/ESA, где сами операционные системы являются транзакционным сервером. На других платформах подобная функциональность может быть достигнута только при помощи дополнительных специальных продуктов, которые в числе прочих и будут затронуты в данной статье.

Мозаика технологий

Начиная с платформы ПК, используя на начальных этапах технологии Borland и Microsoft, наша компания реализовала несколько проектов в двухзвенной архитектуре. По мере роста размеров проектов, включения в них нескольких платформ, встал вопрос поиска и оптимизации применяемых технологий для построения систем с необходимыми потребительскими свойствами.

Опробовав различные технологии и инструменты, мы остановили свой выбор на технологиях IBM, предоставляющей широкий спектр открытых аппаратно-программных решений. Учитывая, что мы реализуем OLTP-проекты для заказчиков, которые часто уже применяют технологии Microsoft, Oracle и других компании, возможность совместного использования решений IBM и альтернативных поставщиков была весьма кстати (рис. 1).

Для реализации особо тонких системных моментов мы прибегаем также к программированию на языках С++ или Кобол, однако это занимает не более 1-2% от общего объема работ.

Монитор транзакций IBM CICS

Монитор транзакций CICS (Custom Information Control System), имеющий богатую историю, более чем за 30 лет своего существования стал в своей области лидером. Именно программное обеспечение промежуточного слоя является надежным хребтом для построения OLTP-систем.

Монитор транзакций - достаточно сложный продукт, который привносит функции контроля целостности данных при выполнении операций . Сложная OLTP-система может иметь несколько источников данных (СУБД, файлы и т.д.); монитор транзакций позволяет прикладной программе работать с ними одновременно и изменять их состояние. При этом, если в рамках транзакции хотя бы один источник данных не будет переведен в последующее состояние, то и остальные источники будут возвращены в состояние до начала транзакции. Это гарантирует целостность данных, предотвращает рассогласование данных в источниках. Такая служба отсутствует в большинстве операционных систем. При этом источники данных могут быть как локальными, так и распределенными, находясь на различных серверах и платформах. Если в системе используется монитор транзакций, то со стороны разработчика не требуется ощутимых затрат для поддержки функций контроля целостности на уровне прикладной логики.

Будучи реализован практически для всех основных платформ, CICS позволяет построить сложную распределенную гетерогенную транзакционную среду. CICS использует интерфейс X/Open XA для взаимодействия с различными менеджерами ресурсов и организации интерфейсов с продуктами основных производителей СУБД. Применение монитора транзакций делает систему более масштабируемой по сравнению решениями, «в центр» которых помещена СУБД. Так, на базе стандартных редакций CICS можно строить системы с пиковой производительностью 500 транзакций в секунду, а при помощи специальных версий (например, ПО Transaction Processing Facility, применяемое в системах оперативного резервирования авиабилетов) и с более высокими пиковыми нагрузками.

Заметим, что TPC, отраслевые тесты на пиковую производительность СУБД (www.tpc.org ), проводятся с применением мониторов транзакций, что позволяет получить наилучшие показатели. Почему? Монитор транзакций играет роль «турбонаддува» для СУБД, помимо прочего, ускоряя выполнение SQL-запросов из-за особенностей конструкции как своего ядра, так и интерфейса с СУБД (интерфейс в двухзвенной клиент-серверной архитектуре очень ограничен по производительности). Это позволяет минимизировать время на диспетчеризацию запроса перед его обработкой ядром СУБД. Кроме того, в мониторах транзакций лучше, чем в СУБД, решен вопрос с балансировкой нагрузки .

CICS поддерживает пять типов высокоуровневого взаимодействия между серверами, которые могут быть организованы поверх любых сетевых протоколов (TCP/IP, SNA, NetBIOS и др.).

  • Function Shipping (FS). Изменение источников данных (файлов), которые являются удаленными по отношению к локальному серверу CICS. При обращении из транзакции на локальном сервере CICS к такому источнику, он автоматически перенаправляет запрос к тому серверу, который владеет этим источником данных. Обеспечивается целостность данных в случае каких-либо сбоев.
  • Transaction Routing (TR). Перенаправление вызова транзакции между серверами CICS. Можно «переселять» транзакцию с сервера на сервер, при этом требуется лишь переопределить ссылку на сервере CICS без изменения кода программы.
  • Asynchronous Processing (AP). Асинхронный запуск транзакции на другом сервере CICS. Новая транзакция начинает «жить» самостоятельно, а управление немедленно возвращается в вызвавшую транзакцию.
  • Distributed Program Link (DPL). Вызов удаленной транзакции с возвратом управления после окончания работы вызванной транзакции. Этот тип взаимодействия в прикладных системах используется наиболее часто.
  • Distributed Transaction Processing (DTP). Диалог в оперативном режиме двух транзакций, работающих на разных серверах CICS. С точки зрения разработки и отладки это наиболее экзотический и сложный тип взаимодействия.

Все перечисленные типы взаимодействия относятся к синхронному типу: стороны должны быть активны в момент выполнения. Это не всегда удобно в случае распределенных систем с плохими коммуникациями. Для решения этой проблемы необходимо использовать программное обеспечение с асинхронным типом взаимодействия, ярким представителем которого является MQSeries .

Транзакционный сервер очередей MQSeries

Концепция работы программного обеспечения промежуточного слоя типа MOM, в частности MQSeries, довольно проста. Прикладная программа кладет некоторую структуру данных (сообщение) в очередь на локальном сервере MQSeries и заканчивает работу. Сохраненное сообщение из локальной очереди передается канальным агентом MQSeries (channel agent) на удаленный сервер MQSeries и сохраняется там во входной очереди. При этом из локальной очереди сообщение удаляется. MQSeries гарантирует транзакционность передачи - сообщение не будет потеряно или передано дважды (это основное преимущество перед почтовыми системами, которые нередко используются для реализации функций распределенной обработки). После получения сообщения на удаленном сервере прикладная программа может прочитать его в любой удобный момент и выполнить необходимые действия; пока приложение не прочтет это сообщение, оно будет храниться в MQSeries.

MQSeries может быть подключен к монитору транзакций CICS наравне с СУБД. В этом случае CICS выступает как внешний координатор транзакций (External Transaction Coordinator - ETC), что исключает ситуации, когда при каком-либо сбое данные в СУБД были изменены, а сообщение не отправлено или наоборот - данные не изменились, а сообщение об изменении было отправлено. Это, в конечном счете, приводит к ситуации рассогласования данных на распределенных узлах OLTP-системы. Использование монитора транзакций позволяет избежать таких ситуаций.

Возглавляя рынок MOM (более 70%), MQSeries дополняет CICS возможностью построения сложной гетерогенной распределенной транзакционной среды с асинхронным типом взаимодействия.

DB2 Universal Database

DB2 - флагманская СУБД корпорации IBM. Ее применение в качестве основы сервера данных OLTP-систем позволяет реализовать сложную обработку данных и хранение больших массивов. Эти функции перекладываются на сервер данных, разгружая сервер приложения. Но если необходимо сделать систему, где хранение и обработка данных не очень сложны, а требования к производительности и минимизации ресурсов выходят на первый план (код ядра СУБД требует значительных ресурсов), то можно использовать файловые структуры, подключенные к транзакционному серверу CICS. Например, многие известные крупные западные OLTP-системы для мэйнфреймов S/390 построены на базе CICS и VSAM.

WebSphere Application Server

Семейство программных продуктов, обозначаемых маркой WebSphere Application Server, включает три версии - Standard, Advanced и Enterprise. Если говорить о поддержке транзакционности, то версия Standard этой службы не имеет, версия Advanced поддерживает службу Java Transaction Service (JTS), равно как и спецификации Enterprise JavaBeans, а версия Enterprise содержит специальные коннекторы для взаимодействия с «полноприводными» транзакционными системами наподобие CICS.

Говоря о WebSphere, часто имеют в виду только Internet-составляющую этого продукта - Application Server , мощный кросс-платформный сервер приложений, поддерживающий практически все известные спецификации и протоколы.

В реальных проектах мы избегаем программирования бизнес-логики средствами языка Java, поскольку реализация сервера приложения, например, в формате Enterprise JavaBeans, приводит к значительному снижению производительности приложения и заставляет вести разработку на языке третьего поколения, что менее эффективно по сравнению с инструментарием VisualAge Generator. Однако применение Web-браузеров на рабочих местах дает определенные преимущества для интерактивных систем: не надо платить за дополнительные лицензии для клиентских машин; имеется возможность отображать графическую информацию; нет необходимости копировать приложение по клиентским местам.

Обеспечение соединения браузеров с мощными системами «заднего плана» (back-end) требует применения Internet-серверов. WebSphere Application Server можно рассматривать как своего рода адаптер, который позволяет коду из браузера через вызов сервлета (servlet) обратиться к транзакции в CICS и, получив результат, возвратить его в браузер, создав на ходу интерфейсную HTML-страницу.

Заметим, что для OS/390 поддерживается интерфейс CICS Web Support, посредством которого браузер может напрямую подсоединиться к серверу CICS. Но для унификации архитектуры между платформами и, учитывая, что средство разработки приложений VisualAge Generator строит системы с использованием WebSphere Application Server, мы применяем этот продукт и на S/390. Это помогает решить проблемы переноса кода таких приложений между платформами.

Разработка на VisualAge Generator

VisualAge Generator - средство быстрой разработки приложений. Именно этот продукт является тем «клеем», который позволяет достаточно просто соединить все перечисленные выше технологии в единую картину.

Широко распространенные средства разработки, как правило, поддерживают классический цикл создания приложения. При любом изменении в исходном коде необходимо заново проходить весь цикл, что требует значительных временных затрат. Кроме этого, с самого начала разработки нужно иметь целевую платформу для запуска и отладки кода времени выполнения (runtime), что усложняет и замедляет процесс отладки логики приложения (рис. 2).

Цикл разработки приложения средствами VisualAge Generator выглядит несколько иначе (рис. 3). В основе этой среды разработки лежит универсальная виртуальная машина Universal Virtual Machine (UVM), которая является базой для таких сред разработки, как VisualAge for Smalltalk и VisualAge for Java, поверх которых устанавливается VisualAge Generator.

Для запуска и отладки приложения нет необходимости производить компиляцию и сборку приложения. Для отладки работы логики и интерфейсных форм пользуются «малым» циклом (операции 1 и 2), что сокращает время разработки и не требует наличия целевой платформы. В этом цикле производится 80-90% работ и можно обойтись компьютером с Windows NT или OS/2, на котором может быть установлен VisualAge Generator Developer.

После того, как приложение отлажено, можно перейти к созданию кода времени выполнения (runtime) как для серверных, так и для клиентских платформ. При этом целевая платформа нужна только на момент выполнения операции 3. Замечу, что хотя в VisualAge Generator можно создавать приложения любой архитектуры, основное его предназначение - это разработка многоуровневых систем с четким разделением сервера данных, сервера приложения и уровня представления. В качестве клиентских интерфейсов поддерживаются графические, текстовые и Web-ориентированные интерфейсы. Цикл генерации исполняемого кода клиента значительно короче, чем для серверных компонентов. Фактически эта генерация производится в один этап, в результате которого создаются все необходимые компоненты для запуска приложения на клиентской стороне.

В качестве целевой платформы для сервера приложения поддерживаются более 20 платформ, включая CICS и MQSeries. После создания серверного кода времени исполнения его можно отлаживать из среды VisualAge Generator, т.е. проверить работоспособность окончательного кода (большой цикл из операций 3, 4, 5, 6).

В составе VisualAge Generator отсутствуют инструменты для разработки и программирования серверов данных, например, СУБД. Но, имея готовую структуру базы данных, можно автоматически создать всю структуру приложения, включая серверные и клиентские компоненты при помощи средства VisualAge Generator Templates (VAGT), которое входит в поставку. Предопределив некоторые условия, можно автоматически создать практически полную инфраструктуру приложения, что составляет до 80% работ по программированию. Это избавляет разработчика от «ручного» создания таких элементов, как серверные программы, процессы, бизнес-объекты, элементы форм, обработчики исключительных ситуаций и т.д. Учитывая, что в реальных проектах такие элементы исчисляются сотнями и тысячами, VAGT значительно сокращают время создания кода приложения. Далее необходимо лишь наполнить приложения соответствующей бизнес-логикой, которая пишется на языке 4GL.

«Обобщающее обобщение»

На рис. 4 показана общая архитектура распределенной OLTP-системы, которая базируется на описанных технологиях.

Основой системы является CICS (CICS A, например, на платформе Windows NT, CICS B - на платформе S/390). Два этих транзакционных сервера могут взаимодействовать как синхронно (TR, AC, FS, DPL, DTP), так и асинхронно, через MQSeries (менеджеры MQ1 и MQ2 для соответствующих платформ). Менеджеры очередей подсоединены к соответствующим серверам CICS через интерфейс XA. Также к серверам CICS подсоединены различные источники данных (на Windows NT - DB2 и/или СУБД Oracle и Microsoft SQL Server, на S/390 - DB2 и файловые структуры VSAM, которые определены в CICS через Resource Definition Online).

WebSphere Application Server (WSAS) играет роль конвертора вызовов от Web-клиентов к системе «заднего плана» (транзакции P1, P2, P3), написанной на VisualAge Generator.

VisualAge Generator Server (VAGen Srv) - платформнозависимый продукт, необходимый для запуска программ, разработанных на VisualAge Generator.

Возможны прямые соединения с CICS для клиентов с графическим или текстовым интерфейсом пользователя. При этом программы P1, P2 в CICS A могут быть определены как удаленные, тогда их вызовы в CICS A будут автоматически перенаправлены методом TR в CICS B и там запущены. P3 - локальная транзакция в CICS A, которая может посылать сообщения в CICS B через MQSeries.

Надо сказать, что экземпляры CICS, подобные CICS A и CICS B (в CICS их обозначают термином «регион») могут находиться не только на разных машинах, но и на одном сервере или в кластере. Работа регионов изолирована и «падение» одного из них не влияет на работу других. Это так же дает преимущества в масштабируемости, позволяя разделить задачи по регионам с точки зрения специализации. Такой подход наиболее часто практикуется на системах S/390, особенно в кластерах Sysplex. Реальные системы имеют несколько сотен регионов и десятки тысяч транзакций.

Однако сама по себе технология без соответствующих инструментов не дает ожидаемого «выхлопа». Скажем, CICS очень хорош, но если вы попробуете реализовать систему на С++ или Коболе, то это потребует от разработчика бизнес-логики хорошего знания как языка программирования, так и API-интерфейсов CICS, которые сродни API-интерфейсам операционных систем. Масса времени будет потрачена на создание инфраструктурных элементов (описание функций, переменных и т.д.) и отладку такого проекта. Но если взять VisualAge Generator, это избавит разработчика бизнес-логики от необходимости знать CICS, позволив ему сосредоточиться на своих прямых задачах. Конечно, для реализации сложных проектов требуется владение CICS, но это требование уже распространяется не на всех разработчиков, а на двух-трех специалистов, отвечающих за среду выполнения приложения.

«Сплав» технологий и инструментов как раз и дает оптимальный результат; рассмотрение же отдельных продуктов вне системного прикладного контекста для разработчиков сложных не «коробочных» решений не имеет большого смысла. Точно так же мало проку судить о СУБД вне рамок прикладной задачи. Скажем, вы большой поклонник Oracle. Но что делать, если заказчик требует приложение для целевой платформы AS/400? Или у вас большая любовь к DB2, а прикладная система заказчика на S/390 использует VSAM и заказчика полностью устраивает, и речь идет лишь о замене «зеленого» экрана на Web-браузер, чтобы, к примеру, показывать не только алфавитно-цифровые данные.

Реализация OLTP-системы для Внешторгбанка

Сложность этого проекта была не столько в объеме написанного кода (код прикладной логики предоставил заказчик), сколько в знании технической глубины работы различных механизмов транзакционных систем. Этот проект характеризуется как широким спектром платформ и технологий, так и необходимым знанием работы специфических механизмов, необходимым для интеграции с некоторыми готовыми прикладными пакетами.

В качестве центрального узла OLTP-системы используется S/390; возможно использование кластера Sysplex. В качестве «банковской машины» применяется пакет от Altel, реализованный на базе CICS TS, VSAM и имеющий «зеленый» интерфейс формата 3270. Кроме центрального узла банк имеет несколько десятков периферийных узлов, в которых используются серверы AS/400 и Windows NT (рис. 5).

Взаимодействие серверов осуществляется посредством MQSeries. Для того чтобы разработчики прикладной логики были изолированы от механизмов вызова транзакций из серверных процессов, написанных на 4GL в VisualAge Generator, была использована методика и набор программ («оборачивающие» транзакции), при помощи которых можно обращаться к функциям из 4GL. Стремясь унифицировать интерфейсы доступа к данным и снизить расходы на рабочие места, заказчик выдвинул требование использования Web-интерфейсов. При этом работа через Web-браузер должна вестись не по принципу «один к одному», как через терминалы 3270, а через HTML-страницу, создаваемую несколькими экранами 3270. При этом необходимо было обеспечить совместимость с системой безопасности. Все это порождало ряд проблем, которые пришлось решать в комплексе.

Проблема № 1. Для вызова транзакции CICS, которая работает с «зеленым экраном», используется протокол EPI (External Presentation Interface), работающий с потоком 3270. При активизации такой транзакции CICS использует терминальное устройство - структуру, которая идентифицирует соединение и является основным атрибутом для транзакции. Так, эта структура содержит четырехсимвольное поле TERMID (идентификатор терминала), которое используется транзакциями для собственной системы безопасности. Такой тип соединения в CICS называют терминальным.

Однако соединение, которое строится для работы Web-браузера, НЕ является терминальным, т. е. для этого соединения НЕ существует такой структуры (в понимании транзакции 3270), что сразу приведет к сбою выполнения транзакции.

Для вызова транзакций 3270 из нетерминальных соединений или из других транзакций CICS, которые были вызваны через протокол ECI (External Call Interface), в мониторе CICS для OS/390 был реализован механизм, называемый 3270 Bridge. Была добавлена новая команда EXEC CICS START BREXIT и при активизации транзакции 3270 через эту команду, CICS создает специальную структуру, называемую Bridge Facility, так называемый суррогатный терминал, который «предъявляется» транзакции 3270 в момент ее инициализации. Но при создании суррогатного терминала CICS самостоятельно генерирует идентификатор для поля TERMID по своей внутренней логике. Этот сгенерированный TERMID никак не связан с реальным идентификатором пользовательского соединения. Это и порождает проблему № 2.

Команда EXEC CICS START BREXIT не поддерживается и со стороны VisualAge Generator - нельзя установить такие параметры, чтобы он сгенерировал команду вызова, так как она появилась только в последних версиях CICS (начиная с версии 1.3). Для решения этой проблемы на Коболе была написана программа, принимающая необходимые параметры и активизирующая транзакцию через эту новую команду. Это пример использования Кобола как языка третьего поколения для реализации тонких системных функций. Программу на Коболе можно вызывать из прикладных транзакций, написанных на 4GL в VisualAge Generator.

Проблема № 2. Для вызова транзакции 3270 используется механизм 3270 Bridge, который создает суррогатный терминал. Но некоторые поля, включая TERMID, CICS инициализирует сам, никак не привязываясь к клиентскому соединению, из которого вызывается эта транзакция. CICS для каждого такого вызова ставит TERMID в значение из интервала с?{AAA? по?{999?, увеличивая его последовательно. Использует стратегию безопасности, которая пришла еще со времен до эпохи SQL - каждому клиенту присваивается для входа через VTAM (Virtual Telecommunication Access Method) восьмисимвольный идентификатор, называемый LU (Logical Unit), который проверяет VTAM. Четыре последних символа из LU берутся для генерации TERMID. Транзакция, отвечающая за идентификацию пользователя, принимает с клавиатуры имя пользователя и его пароль, берет TERMID и смотрит в свой внутренний файл, в котором ищет соответствие имени пользователя и TERMID. Это гарантирует, что данный пользователь может обращаться к системе только с определенного компьютера, так как при конфигурировании SNA-соединения на стороне сервера прописывается и MAC-адрес сетевой платы клиентского компьютера. Но web-соединения идут в обход VTAM и не имеют терминального устройства. Каким образом передавать TERMID или нечто, заменяющее его, чтобы минимизировать переделку транзакций?

Эта проблема была решена путем задействования пользовательской области терминала (Terminal Control Table User Area - TCTUA), нашей собственной транзакции 3270 первичной аутентификации пользователя и инициализации TCTUA, написанной на VisualAge Generator. Это привело к минимизации переделок в транзакции, которая свелась к замене слова?TERMID? на?TCTUA? в «кобольных» текстах.

Помимо этого, были проблемы с реализацией вызова последовательности 3270-транзакций в рамках одной 4GL-транзакции с промежуточной обработкой результатов: было необходимо обрабатывать и передавать параметры («экраны») для каждого вызова 3270.

Распределенная OLTP-система с интеграцией унаследованных программ

Данный проект стал примером того, как можно использовать описанные технологии для придания существующим системам новых функций. При этом не потребовалось какого-либо переписывания кода самих программ.

Компания Panasonic использует программу PSI для AS/400 и для Windows NT. При этом на AS/400 программа использовала в качестве структуры данных собственные таблицы и таблицы из ERP-системы J.D. Edwards, работающей на этом сервере. Сервер AS/400 находится в Хельсинки, а серверы NT - в Москве и Киеве, причем связаны между собой не очень надежными линиями. Между тем, логика работы программы PSI должна обеспечивать доставку информации к узлам через сервер AS/400. Существующая версия использовала механизм репликации баз данных, что в условиях плохих линий связи было неприемлемо.

Для решения этой проблемы была предложена модель транспортной системы между серверами на базе MQSeries. При этом не требовалось изменять код существующего приложения PSI, которое отвечало за взаимодействие с конечным пользователем, а предлагалось задействовать триггерные механизмы баз данных. Т. е., на необходимые таблицы «подсаживались» триггеры, которые для каждой операции (вставка, удаление, редактирование) посылали соответствующие сообщения в систему MQSeries. Эти сообщения, попав на AS/400, рассылались во все остальные узлы системы.

Это решение поддерживает использование нескольких баз данных (в среде NT) и библиотек (в среде AS/400) для возможности отладки или других целей. При этом при помощи специальных утилит можно назначить, откуда и куда будут передаваться данные для конкретной таблицы. Набор и структура таблиц в базе данных жестко заданы. Для реализации этого проекта были задействованы как MQSeries и VisualAge Generator, так и программирование на C++. На NT были реализованы триггерные мониторы MQSeries в виде служб NT, а на AS/400 - триггеры DB2.

В данном проекте, на первом этапе, каждая операция в базе порождала одно сообщение с соответствующим кодом операции (I - insert, D - delete, U - update), которое расшифровывалось на удаленных узлах. Но в реальности оказалось, что программа PSI изменяет ключевые поля, что вообще-то не рекомендуется. Это делает невозможным выполнение операции U («изменить») на удаленном узле, так как записи с измененным ключевым полем там еще не существует и СУБД не может ее найти. Вставить в структуру таблиц собственные ключевые поля было нельзя, так как использовались таблицы приложения J.D. Edwards, структуру которых менять нельзя. После анализа ситуации, с тем, чтобы решить проблему с минимальными переделками, было предложено вместо одного сообщения с кодом U соответствующий триггер стал посылать пару сообщений: первое - с кодом D («удалить») и старым значением ключа; второе - с кодом I («вставить») и новым значением ключа.

Эта система пропускает в сутки около 60 тыс. сообщений средней длины около 2 Кбайт. Проект был реализован за 8 недель силами 4 инженеров.

Литература

Masaharu Murozumi, A Challenge To A High Transaction Volume Client/Server DB2 Data Shared OLTP System. IBM, 2000

Г. Ладыженский, Технология «клиент-сервер» и мониторы транзакций. «Открытые системы», 1994, № 3

М. Рузинкевич, А. Цикоцки, Определение и выполнение потоков транзакций. «СУБД», 1995, № 2

E. Cobb, J. Hamilton, G. Sharman, Do I Need A Transaction Processing Monitor and a Database? IBM, 1996

Николай Игнатович, IBM MQSeries: архитектура системы очередей сообщений. «Открытые Системы», 1999, № 9-10

Николай Игнатович, Интеграция технологий управления данными в DB2. «Открытые системы», 2001, № 7-8

P. Wakelin, S. Day, S. Read, F. McKenna, CICS Transaction Gateway V3.1. The WebSphere Connector for CICS. SG24-6133-00, IBM, 2001

Илья Афанасьев ([email protected]) - генеральный директор компании «Диджитал Эмпайр», (Москва).

Основные типы программного обеспечения промежуточного слоя

  • Монитор распределенной обработки транзакций (distributed transaction processing monitor). Контроль выполнения интенсивного потока транзакций в системах оперативной обработки транзакций в многоплатформенной среде.
  • Удаленный вызов процедур (remote procedure call - RPC). Синхронизация взаимосвязи процессов, путем их удаленного вызова. Транзакционность не поддерживается.
  • Взаимосвязь баз данных (database connectivity). SQL-запрос, направленный через это программное обеспечение, может обработаться несколькими СУБД от разных производителей.
  • Обработчик объектных запросов (object request broker - ORB). Обмен программными объектами между различными платформами и по различным протоколам.

Все перечисленные выше типы ПО промежуточного слоя поддерживают только синхронный вид соединений; при обрыве соединения операция прекращается и автоматически не возобновляется.

ПО промежуточного слоя, основанное на передаче сообщений (message oriented middleware - MOM). Асинхронный обмен сообщениями между приложениями, которые могут выполняться на различных платформах. Обмен производится с гарантированной доставкой; при потере соединения операция будет автоматически возобновлена после восстановления.

OLTP и OLAP системы

В предыдущем подразделе отмечалось, что для адекватного представления предметной области, простоты разработки и поддержания базы данных отношения должны быть приведены к третьей нормальной форме (существуют формы нормализации и более высоких порядков, но на практике они используются достаточно редко), то есть быть сильно нормализованными. Однако слабо нормализованные отношения также имеют свои достоинства, основным из которых является то, что если к базе данных обращаться в основном только с запросами, а модификации и добавление данных проводить очень редко, то их выборка производится значительно быстрее. Это объясняется тем, что в слабо нормализованных отношениях уже как бы произведено их соединение и на это не тратится процессорное время. Выделяют два класса систем, для которых в большей степени подходят сильно и слабо нормализованные отношения.

Сильно нормализованные модели данных хорошо подходят для OLTP -приложений – On - Line Transaction Processing (OLTP ) – приложений оперативной обработки транзакций. Типичными примерами OLTP -приложений являются системы складского учета, заказов билетов, операционные банковские системы и другие. Основная функция подобных систем заключается в выполнении большого количества коротких транзакций. Сами транзакции являются достаточно простыми, но проблемы состоят в том, что таких транзакций очень много, выполняются они одновременно и при возникновении ошибок транзакция должна откатиться и вернуть систему в состояние, в котором та была до начала транзакции. Практически все запросы к базе данных в OLTP -приложениях состоят из команд вставки, обновления и удаления. Запросы на выборку, в основном, предназначены для предоставления пользователям выборки данных из различного рода справочников. Таким образом, большая часть запросов известна заранее ещё на этапе проектирования системы. Критическим для OLTP -приложений является скорость и надежность выполнения коротких операций обновления данных. Чем выше уровень нормализации данных в OLTP -приложениях, тем оно быстрее и надежней. Отступления от этого правила могут происходить тогда, когда уже на этапе разработки известны некоторые часто возникающие запросы, требующие соединения отношений и от скорости выполнения которых существенно зависит работа приложений.

Другим типом приложений являются OLAP -приложения – On - Line Analitical Processing (OLAP ) – приложения оперативной аналитической обработки данных. Это обобщенный термин, характеризующий принципы построения систем поддержки принятия решений – Decision Support System (DSS ), хранилищ данных – Data Warehouse , систем интеллектуального анализа данных – Data Mining . Такие системы предназначены для нахождения зависимостей между данными, для проведения динамического анализа по принципу «что если…» и тому подобных задач. OLAP -приложения оперируют с большими массивами данных, накопленными на предприятии или взятыми из других источников. Такие системы характеризуются следующими признаками:

    добавление в систему новых данных происходит относительно редко крупными блоками, например, один раз в месяц или квартал; данные, добавленные в систему, как правило, никогда не удаляются;
    перед загрузкой данные проходят различные подготовительные процедуры, связанные с приведением их к определенным форматам и тому подобное; запросы к системе являются нерегламентированными и достаточно сложными; скорость выполнения запросов важна, но не критична.

Базы данных OLAP -приложений обычно представлены в виде одного или нескольких гиперкубов, измерения которого представляют собой справочные данные, а в ячейках самого гиперкуба хранятся значения этих данных. Физически гиперкуб может быть построен на основе специальной многомерной модели данных – Multidimensional OLAP (MOLAP ) или представлен средствами реляционной модели данных – Relational OLAP (ROLAP ).

В системах OLAP , использующих реляционную модель данных, данные целесообразно хранить в виде слабо нормализованных отношений, содержащих заранее вычисленные основные итоговые данные. Избыточность данных и связанные с ней проблемы здесь не страшны, так как их обновление происходит достаточно редко и вместе с обновлением данных осуществляется пересчет итогов.

Характеристики и круг задач, эффективно решаемых каждой технологией, поясняется следующей сравнительной таблицей:

Характеристика

OLTP

OLAP

Назначение системы

Регистрация, оперативный поиск и обработка транзакций, регламентированный анализ

Работа с историческими данными, аналитическая обработка, прогнозирование, моделирование

Хранимые данные

Оперативные, детализированные

Охватывающие большой период времени, агрегированные

Тип данных

Структурированные

Разнотипные

"Возраст" данных

Текущие (несколько месяцев)

Исторические (за годы) и прогнозируемые

Частота обновления данных

Высокая, небольшими "порциями"

Малая, большими "порциями"

Уровень агрегации данных

Детализированные данные

В основном - агрегированные данные

Преобладающие операции

Ввод данных, поиск, обновление

Анализ данных

Способ использования данных

Предсказуемый

Непредсказуемый

На уровне транзакции

На уровне всей базы данных

Вид деятельности

Оперативная, тактическая

Аналитическая, стратегическая

Приоритеты

Гибкость
Автономность пользователя

Большое количество работников исполнительного звена

Относительно малое количество работников руководящего звена

Сравнение OLTP и OLAP

Характеристика

OLTP

OLAP

Характер запросов

Много простых транзакций

Сложные транзакции

Хранимые данные

Оперативные, детализи-рованные

Охватывающие большой период времени, агреги-рованные

Вид деятельности

Оперативная, тактическая

Аналитическая, страте-гическая

Тип данных

Структурированные

Разнотипные

Системная характеристика

Учетная система (OLTP)

OLAP

Взаимодействие с пользователем

На уровне транзакции

На уровне всей базы данных

Данные, используемые при обращении пользователя к системе

Отдельные записи

Группы записей

Время отклика

Секунды

От нескольких секунд до нескольких минут

Использование аппаратных ресурсов

Стабильное

Динамическое

Характер данных

Главным образом первичные (самый низкий уровень детализации)

В основном производные (сводные значения)

Характер доступа к базе данных

Предопределенные или статические пути доступа и отношения данных

Неопределенные или динамические пути доступа и отношения данных

Изменчивость данных

Высокая (данные обновляются с каждой транзакцией)

Низкая (во время запроса данные обновляются редко)

Приоритеты

Высокая производительность Высокая доступность

Гибкость
Автономность пользователя



Рекомендуем почитать

Наверх