Основные методы шифрования. Традиционные методы шифрования

Детские товары 07.07.2019
Детские товары

В этот день свой профессиональный праздник отмечает Криптографическая служба России.

«Криптография» с древнегреческого означает «тайнопись».

Как раньше прятали слова?

Своеобразный метод передачи тайного письма существовал во времена правления династии египетских фараонов:

выбирали раба. Брили его голову наголо и наносили на неё текст сообщения водостойкой растительной краской. Когда волосы отрастали, его отправляли к адресату.

Шифр — это какая-либо система преобразования текста с секретом (ключом) для обеспечения секретности передаваемой информации.

АиФ.ru сделал подборку интересных фактов из истории шифрования.

Все тайнописи имеют системы

1. Акростих — осмысленный текст (слово, словосочетание или предложение), сложенный из начальных букв каждой строки стихотворения.

Вот, например, стихотворение-загадка с разгадкой в первых буквах:

Д овольно именем известна я своим;
Р авно клянётся плут и непорочный им,
У техой в бедствиях всего бываю боле,
Ж изнь сладостней при мне и в самой лучшей доле.
Б лаженству чистых душ могу служить одна,
А меж злодеями — не быть я создана.
Юрий Нелединский-Мелецкий
Сергей Есенин, Анна Ахматова, Валентин Загорянский часто пользовались акростихами.

2. Литорея — род шифрованного письма, употреблявшегося в древнерусской рукописной литературе. Бывает простая и мудрая. Простую называют тарабарской грамотой, она заключается в следующем: поставив согласные буквы в два ряда в порядке:

употребляют в письме верхние буквы вместо нижних и наоборот, причём гласные остаются без перемены; так, например, токепот = котёнок и т. п.

Мудрая литорея предполагает более сложные правила подстановки.

3. «ROT1» — шифр для детишек?

Возможно, в детстве вы тоже его использовали. Ключ к шифру очень прост: каждая буква алфавита заменяется на последующую букву.

А заменяется на Б, Б заменяется на В и так далее. «ROT1» буквально означает «вращать на 1 букву вперёд по алфавиту». Фраза «Я люблю борщ» превратится в секретную фразу «А мявмя впсъ» . Этот шифр предназначен для развлечения, его легко понять и расшифровать, даже если ключ используется в обратном направлении.

4. От перестановки слагаемых...

Во время Первой мировой войны конфиденциальные сообщения отправляли с помощью так называемых перестановочных шрифтов. В них буквы переставляются с использованием некоторых заданных правил или ключей.

Например, слова могут быть записаны в обратном направлении, так что фраза «мама мыла раму» превращается во фразу «амам алым умар» . Другой перестановочный ключ заключается в перестановке каждой пары букв, так что предыдущее сообщение становится «ам ам ым ал ар ум» .

Возможно, покажется, что сложные правила перестановки могут сделать эти шифры очень трудными. Однако многие зашифрованные сообщения могут быть расшифрованы с использованием анаграмм или современных компьютерных алгоритмов.

5. Сдвижной шифр Цезаря

Он состоит из 33 различных шифров, по одному на каждую букву алфавита (количество шифров меняется в зависимости от алфавита используемого языка). Человек должен был знать, какой шифр Юлия Цезаря использовать для того, чтобы расшифровать сообщение. Например, если используется шифр Ё, то А становится Ё, Б становится Ж, В становится З и так далее по алфавиту. Если используется шифр Ю, то А становится Ю, Б становится Я, В становится А и так далее. Данный алгоритм является основой для многих более сложных шифров, но сам по себе не обеспечивает надёжную защиту тайны сообщений, поскольку проверка 33-х различных ключей шифра займёт относительно небольшое время.

Никто не смог. Попробуйте вы

Зашифрованные публичные послания дразнят нас своей интригой. Некоторые из них до сих пор остаются неразгаданными. Вот они:

Криптос . Скульптура, созданная художником Джимом Санборном, которая расположена перед штаб-квартирой Центрального разведывательного управления в Лэнгли, Вирджиния. Скульптура содержит в себе четыре шифровки, вскрыть код четвёртой не удаётся до сих пор. В 2010 году было раскрыто, что символы 64-69 NYPVTT в четвёртой части означают слово БЕРЛИН.

Теперь, когда вы прочитали статью, то наверняка сможете разгадать три простых шифра.

Свои варианты оставляйте в комментариях к этой статье. Ответ появится в 13:00 13 мая 2014 года.

Ответ:

1) Блюдечко

2) Слоненку все надоело

3) Хорошая погода

Основные алгоритмы шифрования

Основные понятия и определения

По мере образования информационного общества крупным государствам становятся доступны технические средства тотального надзора за миллионами людей. Поэтому криптография становится одним из основных инструментов, обеспечивающих конфиденциальность, доверие, авторизацию, электронные платежи, корпоративную безопасность и другие важные вещи.

Проблемой защиты информации путем ее преобразования занимается криптология , которая разделяется на два направления: криптографию и криптоанализ . Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации. Сфера интересов криптоанализа – исследование возможности расшифрования информации без знания ключей.

Современная криптография включает в себя 4 основных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов – передача конфиденциальной информации по каналам связи, установление подлинности передаваемых сообщений, хранение информации на носителях в зашифрованном виде.

Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа. В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите.

Алфавит – конечное множество используемых для кодирования информации знаков. Примеры:

ü алфавит Z33 – содержит 32 буквы русского алфавита и пробел;

ü алфавит Z256 – символы, входящие в стандартные коды ASCII и КОИ-8;

ü бинарный алфавит Z2 – два символа (0 и 1);

ü восьмеричный или шестнадцатеричный алфавиты.

Текст – упорядоченный набор из элементов алфавита.

Шифрование – преобразовательный процесс замены исходного (открытого) текста на шифрованный текст.

Дешифрование (обратный шифрованию) – преобразовательный процесс замены на основе ключа шифрованного текста на исходный текст.

Ключ – информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство Т [Т 1 , Т 2 , …, Т к ] преобразований открытого текста. Члены этого семейства индексируются или обозначаются символом к ; параметр к является ключом. Пространство ключей К – это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд знаков алфавита.

Криптосистемы разделяются на симметричные и асиммитричные . В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. В асимметричныхсистемах (с открытым ключом) используются два ключа – открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается – с помощью закрытого ключа, известного только получателю сообщения.

Термины распределение ключей и управление ключами относятся к процессам обработки информации, содержанием которых является составление ключей и распределение их между пользователями.

Электронной (цифровой) подписью называется присоединяемой к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая ее стойкость к дешифрованию без знания ключа (т.е. стойкостью к криптоанализу). Имеется несколько показателей криптостойкости:

количество всех возможных ключей;

среднее время, необходимое для криптоанализа.

Требования к криптосистемам

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако имеет высокую производительность, простоту, защищенность. Программная реализация более практична, допускает известную гибкость в использовании.

Общепринятые требования к криптографическим системам:

· зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

· число операций, необходимых для определения использованного ключа по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не менее общего числа возможных ключей;

· число операций, необходимых для расшифровывания информации путем перебора возможных ключей, должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможностей сетевых вычислений);

· знание алгоритма шифрования не должно влиять на надежность защиты;

· незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения;

· структурные элементы алгоритма шифрования должны быть неизменными;

· дополнительные биты, вводимые в сообщение в процессе шифрования, должны быть полностью и надежно скрыты в шифрованном тексте;

· длина шифрованного текста должна быть равной длине исходного текста;

· не должно быть простых и легко устанавливаемых зависимостей между ключами, последовательно используемыми в процессе шифрования;

· любой ключ из множества возможных должен обеспечивать надежную защиту информации;

· алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

Основные алгоритмы шифрования

Метод шифровки-дешифровки называют шифром . Ключ, используемый для дешифровки, может не совпадать с ключом, используемым для шифрования, однако в большинстве алгоритмов ключи совпадают.

Алгоритмы с использованием ключа делятся на два класса: симметричные (с секретным ключом) и асимметричные (с открытым ключом). Симметричные алгоритмы используют один и тот же ключ для шифрования и для дешифрования или же ключ для дешифрования просто вычисляется по ключу шифрования. В асимметричных алгоритмах используются разные ключи, и ключ для дешифровки не может быть вычислен по ключу шифровки.

Симметричные алгоритмы подразделяются на потоковые шифры и блочные шифры. Потоковые позволяют шифровать информацию побитово, в то время как блочные работают с некоторым набором битов данных (обычно размер блока составляет 64 бита ) и шифруют этот набор как единое целое.

Обычно ключ шифрования представляет собой файл или массив данных и хранится на персональном ключевом носителе (например, флешке или смарт-карте); обязательно принятие мер, обеспечивающих недоступность персонального ключевого носителя кому-либо, кроме его владельца.



Подлинность обеспечивается за счет того, что без предварительного расшифровывания практически невозможно осуществить смысловую модификацию и подлог криптографически закрытого сообщения. Фальшивое сообщение не может быть правильно зашифровано без знания секретного ключа.

Целостность данных обеспечивается присоединением к передаваемым данным специального кода (имитовставки ), вырабатываемой по секретному ключу. Имитовставка является разновидностью контрольной суммы, т.е. некоторой эталонной характеристикой сообщения, по которой осуществляется проверка целостности последнего. Алгоритм формирования имитовставки должен обеспечивать ее зависимость по некоторому сложному криптографическому закону от каждого бита сообщения. Проверка целостности сообщения выполняется получателем сообщения путем выработки по секретному ключу имитовставки, соответствующей полученному сообщению, и ее сравнения с полученным значением имитовставки. При совпадении делается вывод о том, что информация не была модифицирована на пути от отправителя к получателю.

Симметричное шифрование идеально подходит для шифрования информации «для себя», например, с целью предотвращения несанкционированного доступа к ней в отсутствие владельца. Обладаю высокой скоростью шифрования, одноключевые криптосистемы позволяют решать многие важные задачи защиты информации. Однако автономное использование симметричных криптосистем в компьютерных сетях порождает проблему распределения ключей шифрования между пользователями.

Перед началом обмена зашифрованными данными необходимо обменяться секретными ключами со всеми адресатами. Передача секретного ключа симметричной криптосистемы не может быть осуществлена по общедоступным каналам связи, секретный ключ надо передавать отправителю и получателю по защищенному каналу (или с помощью курьера). Для обеспечения эффективной защиты циркулирующих в сети сообщений необходимо огромное число часто меняющихся ключей (один ключ на каждую пару пользователей). Проблема распределения секретных ключей при большом количестве пользователей является весьма трудоемкой и сложной задачей. В сети на N пользователей необходимо распределить N(N-1)/2 секретных ключей.

Асимметричные шифры допускают, чтобы открытый ключ был доступен всем (например, опубликован в газете). Это позволяет любому зашифровать сообщение. Однако расшифровать это сообщение сможет только пользователь, владеющий ключом дешифровки. Ключ для шифрования называют открытым ключом , а ключ для дешифрования – закрытым ключом или секретным ключом .

Секретный и открытый ключи генерируются попарно. Секретный ключ должен оставаться у его владельца и быть надежно защищен от НСД (аналогично ключу шифрования в симметричных алгоритмах). Копия открытого ключа должна находиться у каждого абонента криптографической сети, с которым обменивается информацией владелец секретного ключа.

Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают свойством: при заданном значении х относительно просто вычислить значение f(x) , однако, если yM = j(x) , то нет простого пути вычисления значения х . Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом.

Процесс передачи зашифрованной информации в асимметричной криптосистеме осуществляется следующим образом.

Подготовительный этап :

· абонент В генерирует пару ключей: секретный ключ k в и открытый ключ К в;

· открытый ключ К в посылается абоненту А и остальным абонентам (или делается доступным, например на разделяемом ресурсе).

Использование (обмен информацией между А и В):

· абонент А зашифровывает сообщение с помощью открытого ключа К в абонента В и отправляет шифротекст абоненту В;

· абонент В расшифровывает сообщение с помощью своего секретного ключа k в; никто другой не может расшифровать данное сообщение, т.к. не имеет секретного ключа абонента В.

Защита информации в асимметричной криптосистеме основана на секретности ключа k в получателя сообщения.

Преимущества асимметричных криптографических систем перед симметричными криптосистемами:

ü в асимметричных криптосистемах решена сложная проблема распределения ключей между пользователями, т.к. каждый пользователь может сгенерировать свою пару ключей сам, а открытые ключи пользователей могут свободно публиковаться и распространяться по сетевым коммуникациям;

ü исчезает квадратичная зависимость числа ключей от числа пользователей; в асимметричной криптосистеме число используемых ключей связано с числом абонентов линейной зависимостью (в системе из N пользователей используется 2N ключей), а не квадратичной, как в симметричных системах;

ü асимметричные криптосистемы позволяют реализовывать протоколы взаимодействия сторон, которые не доверяют друг другу, поскольку при использовании асимметричных криптосистем закрытый ключ должен быть известен только его владельцу.

Недостатки асимметричных криптосистем:

ü на настоящий момент нет математического доказательства необратимости используемых в асимметричных алгортмах функций;

ü асимметричное шифрование существенно медленнее симметричного, поскольку при шифровке и расшифровке используются весьма ресурсоемкие операции; по этой же причине реализовать аппаратный шифратор с асимметричным алгоритмом существенно сложнее, чем реализовать аппаратно симметричный алгоритм;

ü необходимость защиты открытых ключей от подмены.

Современные алгоритмы шифровки-дешифровки достаточно сложны и их невозможно выполнять вручную. Настоящие криптографические алгоритмы разработаны для использования компьютерами или специальными аппаратными устройствами. В большинстве приложений криптография производится программным обеспечением и имеется множество доступных криптографических пакетов.

Симметричные алгоритмы работают быстрее, чем асимметричные. На практике оба типа алгортмов часто используются вместе: алгоритм с открытым ключом используется для того, чтобы передать случайным образом сгенерированный секретный ключ, который затем используется для дешифровки сообщения.

Многие качественные криптографические алгоритмы доступны широко. Наиболее известными симметричными алгоритмами являются DES и IDEA; лучший асимметричный алгоритм – RSA. В России за стандарт шифрования принят ГОСТ 28147-89.

В таблице 1 приведена классификации криптографического закрытия информации.

Таблица 1

Виды преобразования Способы преобразований Разновидности способа Способ реализации
Шифрование Замена (подстановка) Простая (одноалфавитная) Прогр.
Многоалфавитная одноконтурная обыкновенная Прогр.
Многоалфавитная одноконтурная монофоническая Прогр.
Прогр.
Перестановка Простая Прогр.
Усложненная по таблице Прогр.
Усложненная по маршрутам Прогр.
Аналитическое преобразование По правилам алгебры матриц Прогр.
По особым зависимостям Прогр.
Гаммирование С конечной короткой гаммой Аппар.-прогр.
С конечной длинной гаммой Аппар.-прогр.
С бесконечной гаммой Аппар.-прогр.
Комбинированные Замена+перестановка Аппар.-прогр.
Замена+гаммирование Аппар.-прогр.
Перестановка+гаммирование Аппар.-прогр.
Гаммирование+гаммирование Аппар.-прогр.
Кодирование Смысловое По специальным таблицам (словарям) Прогр.
Символьное По кодовому алфавиту Прогр.
Другие виды Рассечение-разнесение Смысловое Аппар.-прогр.
Механическое Прогр.
Сжатие-расширение

I. Под шифрованием понимается такой вид криптографического закрытия, при котором преобразованию подвергается каждый символ защищаемого сообщения.

Все известные способы шифрования можно разбить на пять групп: замена (подстановка), перестановка, аналитическое преобразование, гаммирование и комбинированное шифрование. Каждый из этих способов может иметь несколько разновидностей.

Разновидности способа замена (подстановка ):

1) Простая (одноалфавитная) – символы шифруемого текста заменяются другими символами того же самого алфавита. Если объем зашифрованного текста большой, то частоты появления букв в зашифрованном тексте будут ближе к частотам появления букв в алфавите (того языка, на котором написан текст) и расшифровка будет очень простой. Данный способ в настоящее время используется редко и в тех случаях, когда шифруемый текст короток.

2) Многоалфавитная подстановка - наиболее простой вид преобразований, заключающийся в замене символов исходного текста на символы других алфавитов по более или менее сложному правилу. Для обеспечения высокой криптостойкости требуется использование больших ключей.

При многоалфавитной одноконтурной обыкновенной подстановке для замены символов исходного текста используется несколько алфавитов, причем смена алфавита осуществляется последовательно и циклически, т.е. первый символ заменяется соответствующим символом первого алфавита, второй – символом второго алфавита и т.д. до тех пор, пока не будут использованы все выбранные алфавиты. После этого использование алфавитов повторяется.

Особенностью многоалфавитной одноконтурной монофонической подстановки является то, что количество и состав алфавитов выбираются таким образом, чтобы частоты появления всех символов в зашифрованном тексте были одинаковыми. При таком положении затрудняется криптоанализ зашифрованного текста с помощью его статистической обработки. Выравнивание частот появления символов достигается за счет того, что для часто встречающихся символов исходного текста предусматривается использование большего числа заменяющих элементов, чем для редко встречающихся.

Многоалфавитная многоконтурная подстановка заключается в том, что для шифрования используется несколько наборов (контуров) алфавитов, используемых циклически, причем каждый контур в общем случае имеет свой индивидуальный период применения. Этот период исчисляется, как правило, количеством знаков, после зашифровки которых меняется контур алфавитов.

Способ перестановки - несложный способ криптографического преобразования. Используется, как правило, в сочетании с другими способами. Данный способ заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Все процедуры шифрования и расшифровки способом перестановки являются в достаточной степени формализованными и могут быть реализованы алгоритмически.

Шифрование простой перестановкой осуществляется следующим образом:

· выбирается ключевое слово с неповторяющимися символами;

· шифруемый текст записывается последовательными строками под символами ключевого слова;

· зашифрованный текст выписывается колонками в той последовательности, в которой располагаются в алфавите буквы ключа (или в порядке следования цифр в натуральном ряду, если он цифровой).

Пример:

открытый текст: БУДЬТЕ ОСТОРОЖНЫ

ключ: 5 8 1 3 7 4 6 2

схема шифрования:

Б У Д Ь Т Е q О (где q – пробел)

С Т О Р О Ж Н Ы

Группируем по 2 символа и получаем зашифрованный текст:

ДООЫЬРЕЖБСqНТОУТ

Недостаток шифрования простой перестановкой заключается в том, что при большой длине шифруемого текста в зашифрованном тексте могут проявиться закономерности символов ключа. Для устранения этого недостатка можно менять ключ после шифрования определенного количества знаков. При достаточно частой смене ключа стойкость шифрования можно существенно повысить. При этом, однако, усложняется организация процесса шифрования и дешифрования.

Усложненная перестановка по таблицам заключается в том, что для записи символов шифруемого текста используется специальная таблица, в которую введены некоторые усложняющие элементы. Таблица представляет собой матрицу, размеры которой могут быть выбраны произвольно. В нее, как в случае простой перестановки, записываются знаки шифруемого текста. Усложнение заключается в том, что определенное число клеток таблицы не используются. Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования. Шифруемый текст блоками по (m x n S ) элементов записывается в таблицу (m x n – размеры таблицы, S – количество неиспользуемых элементов). Далее процедура шифрования аналогична простой перестановке.

Варьируя размерами таблицы, последовательностью символов ключа, количеством и расположением неиспользуемых элементов, можно получить требуемую стойкость шифрованного текста.

Усложненная перестановка по маршрутам обладает высокой стойкостью шифрования, использует усложненный метод перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считаются по маршрутам Гамильтона, причем используется несколько различных маршрутов.

Способ шифрования с помощью аналитических преобразований обеспечивает достаточно надежное закрытие информации. Для этого можно применять методы алгебры матриц, например, умножение матрицы на вектор. Если матрицу использовать в качестве ключа, а вместо компонента вектора подставлять символы исходного текста, то компоненты результирующего вектора будут представлять собой символы зашифрованного текста. Расшифровывание осуществляется с использованием того же правила умножения матрицы на вектор, только в качестве основы берется матрица, обратная той, с помощью которой осуществляется закрытие, а в качестве вектора-сомножителя – соответствующее количество символов закрытого текста. Значениями вектора-результата будут цифровые эквиваленты знаков открытого текста.

Гаммирование - этот метод заключается в наложении на исходный текст некоторой псевдослучайной последовательности, генерируемой на основе ключа. Процедуру наложения гаммы на исходный текст можно осуществлять двумя способами. В первом способе символы исходного текста и гаммы заменяются цифровыми эквивалентами, которые затем складываются по модулю К , где К – количество символов в алфавите, т.е.

t c = (t p + t g) mod K , где t c , t p ,t g – символы соответственно зашифрованного текста, исходного текста и гаммы.

При втором способе символы исходного текста и гаммы представляются в виде двоичного кода, а затем соответствующие разряды складываются по модулю 2. Вместо сложения по модулю 2 при гаммировании можно использовать другие логические операции, например, преобразование по правилу логической эквивалентности или логической неэквивалентности. Такая замена равносильна введению еще одного ключа, которым является выбор правила формирования символов зашифрованного сообщения из символов исходного текста и гаммы.

Стойкость шифрования способом гаммирования определяется, главным образом, свойствами гаммы – длительностью периода и равномерностью статистических характеристик. Последнее свойство обеспечивает отсутствие закономерностей в появлении различных символов в пределах периода.

При хороших статистических свойствах гаммы стойкость шифрования определяется только длиной ее периода. При этом, если длина периода гаммы превышает длину шифруемого текста, то такой шифр теоретически является абсолютно стойким. В качестве бесконечной гаммы может быть использована любая последовательность случайных символов, например, последовательность цифр числа ПИ. При шифровании с помощью ЭВМ последовательность гаммы формируется с помощью датчика псевдослучайных чисел.

Комбинированные способы шифрования используют одновременно несколько различных способов, т.е. последовательное шифрование исходного текста с помощью двух или более способов. Это является достаточно эффективным средством повышения стойкости шифрования.

Типичным примером комбинированного шифра является национальный стандарт США криптографического закрытия данных (DES).

II. Под кодированием понимается такой вид криптографического закрытия, когда некоторые элементы защищаемых данных (это не обязательно отдельные символы) заменяются заранее выбранными кодами (цифровыми, буквенными, буквенно-цифровыми сочетаниями и т. п.).

Этот метод имеет две разновидности: смысловое и символьное кодирование. При смысловом кодировании кодируемые элементы имеют вполне определенный смысл (слова, предложения, группы предложений). При символьном кодировании кодируется каждый символ защищаемого сообщения. Символьное кодирование по существу совпадает с шифрованием заменой.

При правильном использовании коды намного сложнее раскрыть, чем другие классические системы. Это объясняется тремя причинами. Во-первых , большая длина используемого кода (при шифровании – несколько сотен бит; кодовая книга – сотни тысяч – миллион бит). Во-вторых , коды удаляют избыточность – работа криптоаналитика осложняется. В-третьих , коды работают с относительно большими блоками открытого текста (словами и фразами) и, следовательно, скрывают локальную информацию, которая, в противном случае, могла бы дать ценные «зацепки» для криптоаналитика.

К недостаткам кодирования следует отнести то, что ключ при кодировании используется недостаточно хорошо, т.к. при кодировании отдельного слова и фразы используется только очень малая часть кодовой книги. В результате код при интенсивном использовании поддается частичному анализу и оказывается особенно чувствительным к вскрытию при наличии известного открытого текста. По этим причинам для обеспечения большей надежности коды необходимо чаще менять.

III. Другие способы криптографического закрытия включают в себя рассечение/разнесение и сжатие данных. Рассечение/разнесение данных состоит в том, что массив защищаемых данных рассекается на такие элементы, каждые из которых не позволяет раскрыть содержание защищаемой информации, и выделенные таким образом элементы размещаются в различных зонах памяти. Обратная процедура называется сборкой данных. Совершенно очевидно, что алгоритм разнесения и сборки данных должен сохраняться в тайне.

Сжатие данных представляет собой замену часто встречающихся одинаковых строк данных или последовательностей одинаковых символов некоторыми заранее выбранными символами.

Хеш-функции

Хеш-функцией называется односторонняя функция, предназначенная для получения дайджеста или "отпечатков пальцев" файла, сообщения или некоторого блока данных.

Изначально функции хеширования использовались как функции создания уникального образа информационных последовательностей произвольной длины, с целью идентификации и определения их подлинности. Сам образ должен быть небольшим блоком фиксированной длины, как правило, 30, 60, 64, 128, 256, или 512 бит. Поэтому операции поиска сортировки и другие с большими массивами или базами данных существенно упрощаются, т.е. занимают гораздо меньшее время. Для обеспечения требуемой вероятности ошибки необходимо обеспечивать ряд требований к функции хеширования:

· хеш-функция должна быть чувствительна к всевозможным изменениям в тексте M, таким как вставки, выбросы, перестановки;

· хеш-функция должна обладать свойством необратимости, то есть задача подбора документа M", который обладал бы требуемым значением хеш-функции, должна быть вычислительно неразрешима;

· вероятность того, что значения хеш-функций двух различных документов (вне зависимости от их длин) совпадут, должна быть ничтожно мала.

Обеспечить эти требования могут большое количество существующих математических функций. Если данные функции используются для сортировки, поиска и т.д. Однако позднее, опираясь на работы Симонсона по теории аутентификации, стало явным целесообразность использования методов хеширования в схемах аутентификации сообщений в каналах связи и телекоммуникационных системах. В связи с чем, открылся ряд направлений в исследованиях в области криптографии, которые связаны с разработкой новых и усовершенствованием существующих хеш-функций. Основная идея использования хеширующих функций является получение на их основе однонаправленных функций, которые являются основным продуктом для разработки современных криптографических механизмов и методов аутентификации.
Рассмотрим основные понятия касающиеся однонаправленных функций хеширования.

Большинство хеш-функций строится на основе однонаправленной функции f( ) , которая образует выходное значение длиной n при задании двух входных значений длиной n . Этими входами являются блок исходного текста Mi и хеш-значение Hi–1 предыдущего блока текста (рис.1):

Hi = f (Mi, Hi–1) .

Хеш-значение, вычисляемое при вводе последнего блока текста, становится хеш-значением всего сообщения M.

Рис.1. Схема однонаправленной хэш-функции

В результате однонаправленная хеш-функция всегда формирует выход фиксированной длины n (независимо от длины входного текста). Алгоритм хеширования является итерационным, поэтому функции хеширования еще называют итерационными алгоритмами. Сущность алгоритма хеширования заключается в его односторонности, т.е. функция должна работать в одну сторону – сжимать, перемешивать и рассеивать, но никогда не восстанавливать. Подобные схемы позволяют отслеживать изменения исходных текстов, что является обеспечением целостности данных, а в алгоритмах цифровой подписи еще обеспечивать аутентичность данных. Однако в чистой форме аутентичность эти функции не позволяют подтвердить.

Сергей Панасенко ,
начальник отдела разработки программного обеспечения фирмы «Анкад»,
[email protected]

Основные понятия

Процесс преобразования открытых данных в зашифрованные и наоборот принято называть шифрованием, причем две составляющие этого процесса называют соответственно зашифрованием и расшифрованием. Математически данное преобразование представляется следующими зависимостями, описывающими действия с исходной информацией:

С = Ek1(M)

M" = Dk2(C),

где M (message) - открытая информация (в литературе по защите информации часто носит название "исходный текст");
C (cipher text) - полученный в результате зашифрования шифртекст (или криптограмма);
E (encryption) - функция зашифрования, выполняющая криптографические преобразования над исходным текстом;
k1 (key) - параметр функции E, называемый ключом зашифрования;
M" - информация, полученная в результате расшифрования;
D (decryption) - функция расшифрования, выполняющая обратные зашифрованию криптографические преобразования над шифртекстом;
k2 - ключ, с помощью которого выполняется расшифрование информации.

Понятие "ключ" в стандарте ГОСТ 28147-89 (алгоритм симметричного шифрования) определено следующим образом: "конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований". Иными словами, ключ представляет собой уникальный элемент, с помощью которого можно изменять результаты работы алгоритма шифрования: один и тот же исходный текст при использовании различных ключей будет зашифрован по-разному.

Для того, чтобы результат расшифрования совпал с исходным сообщением (т. е. чтобы M" = M), необходимо одновременное выполнение двух условий. Во-первых, функция расшифрования D должна соответствовать функции зашифрования E. Во-вторых, ключ расшифрования k2 должен соответствовать ключу зашифрования k1.

Если для зашифрования использовался криптостойкий алгоритм шифрования, то при отсутствии правильного ключа k2 получить M" = M невозможно. Криптостойкость - основная характеристика алгоритмов шифрования и указывает прежде всего на степень сложности получения исходного текста из зашифрованного без ключа k2.

Алгоритмы шифрования можно разделить на две категории: симметричного и асимметричного шифрования. Для первых соотношение ключей зашифрования и расшифрования определяется как k1 = k2 = k (т. е. функции E и D используют один и тот же ключ шифрования). При асимметричном шифровании ключ зашифрования k1 вычисляется по ключу k2 таким образом, что обратное преобразование невозможно, например, по формуле k1 = ak2 mod p (a и p - параметры используемого алгоритма).

Симметричное шифрование

Свою историю алгоритмы симметричного шифрования ведут с древности: именно этим способом сокрытия информации пользовался римский император Гай Юлий Цезарь в I веке до н. э., а изобретенный им алгоритм известен как "криптосистема Цезаря".

В настоящее время наиболее известен алгоритм симметричного шифрования DES (Data Encryption Standard), разработанный в 1977 г. До недавнего времени он был "стандартом США", поскольку правительство этой страны рекомендовало применять его для реализации различных систем шифрования данных. Несмотря на то, что изначально DES планировалось использовать не более 10-15 лет, попытки его замены начались только в 1997 г.

Мы не будем рассматривать DES подробно (почти во всех книгах из списка дополнительных материалов есть его подробнейшее описание), а обратимся к более современным алгоритмам шифрования. Стоит только отметить, что основная причина изменения стандарта шифрования - его относительно слабая криптостойкость, причина которой в том, что длина ключа DES составляет всего 56 значащих бит. Известно, что любой криптостойкий алгоритм можно взломать, перебрав все возможные варианты ключей шифрования (так называемый метод грубой силы - brute force attack). Легко подсчитать, что кластер из 1 млн процессоров, каждый из которых вычисляет 1 млн ключей в секунду, проверит 256 вариантов ключей DES почти за 20 ч. А поскольку по нынешним меркам такие вычислительные мощности вполне реальны, ясно, что 56-бит ключ слишком короток и алгоритм DES необходимо заменить на более "сильный".

Сегодня все шире используются два современных криптостойких алгоритма шифрования: отечественный стандарт ГОСТ 28147-89 и новый криптостандарт США - AES (Advanced Encryption Standard).

Стандарт ГОСТ 28147-89

Алгоритм, определяемый ГОСТ 28147-89 (рис. 1), имеет длину ключа шифрования 256 бит. Он шифрует информацию блоками по 64 бит (такие алгоритмы называются блочными), которые затем разбиваются на два субблока по 32 бит (N1 и N2). Субблок N1 обрабатывается определенным образом, после чего его значение складывается со значением субблока N2 (сложение выполняется по модулю 2, т. е. применяется логическая операция XOR - "исключающее или"), а затем субблоки меняются местами. Данное преобразование выполняется определенное число раз ("раундов"): 16 или 32 в зависимости от режима работы алгоритма. В каждом раунде выполняются две операции.

Первая - наложение ключа. Содержимое субблока N1 складывается по модулю 2 с 32-бит частью ключа Kx. Полный ключ шифрования представляется в виде конкатенации 32-бит подключей: K0, K1, K2, K3, K4, K5, K6, K7. В процессе шифрования используется один из этих подключей - в зависимости от номера раунда и режима работы алгоритма.

Вторая операция - табличная замена. После наложения ключа субблок N1 разбивается на 8 частей по 4 бит, значение каждой из которых заменяется в соответствии с таблицей замены для данной части субблока. Затем выполняется побитовый циклический сдвиг субблока влево на 11 бит.

Табличные замены (Substitution box - S-box) часто используются в современных алгоритмах шифрования, поэтому стоит пояснить, как организуется подобная операция. В таблицу записываются выходные значения блоков. Блок данных определенной размерности (в нашем случае - 4-бит) имеет свое числовое представление, которое определяет номер выходного значения. Например, если S-box имеет вид 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 и на вход пришел 4-бит блок "0100" (значение 4), то, согласно таблице, выходное значение будет равно 15, т. е. "1111" (0 а 4, 1 а 11, 2 а 2 ...).

Алгоритм, определяемый ГОСТ 28147-89, предусматривает четыре режима работы: простой замены, гаммирования, гаммирования с обратной связью и генерации имитоприставок. В них используется одно и то же описанное выше шифрующее преобразование, но, поскольку назначение режимов различно, осуществляется это преобразование в каждом из них по-разному.

В режиме простой замены для зашифрования каждого 64-бит блока информации выполняются 32 описанных выше раунда. При этом 32-бит подключи используются в следующей последовательности:

K0, K1, K2, K3, K4, K5, K6, K7, K0, K1 и т. д. - в раундах с 1-го по 24-й;

K7, K6, K5, K4, K3, K2, K1, K0 - в раундах с 25-го по 32-й.

Расшифрование в данном режиме проводится точно так же, но с несколько другой последовательностью применения подключей:

K0, K1, K2, K3, K4, K5, K6, K7 - в раундах с 1-го по 8-й;

K7, K6, K5, K4, K3, K2, K1, K0, K7, K6 и т. д. - в раундах с 9-го по 32-й.

Все блоки шифруются независимо друг от друга, т. е. результат зашифрования каждого блока зависит только от его содержимого (соответствующего блока исходного текста). При наличии нескольких одинаковых блоков исходного (открытого) текста соответствующие им блоки шифртекста тоже будут одинаковы, что дает дополнительную полезную информацию для пытающегося вскрыть шифр криптоаналитика. Поэтому данный режим применяется в основном для шифрования самих ключей шифрования (очень часто реализуются многоключевые схемы, в которых по ряду соображений ключи шифруются друг на друге). Для шифрования собственно информации предназначены два других режима работы - гаммирования и гаммирования с обратной связью.

В режиме гаммирования каждый блок открытого текста побитно складывается по модулю 2 с блоком гаммы шифра размером 64 бит. Гамма шифра - это специальная последовательность, которая получается в результате определенных операций с регистрами N1 и N2 (см. рис. 1).

1. В регистры N1 и N2 записывается их начальное заполнение - 64-бит величина, называемая синхропосылкой.

2. Выполняется зашифрование содержимого регистров N1 и N2 (в данном случае - синхропосылки) в режиме простой замены.

3. Содержимое регистра N1 складывается по модулю (232 - 1) с константой C1 = 224 + 216 + 28 + 24, а результат сложения записывается в регистр N1.

4. Содержимое регистра N2 складывается по модулю 232 с константой C2 = 224 + 216 + 28 + 1, а результат сложения записывается в регистр N2.

5. Содержимое регистров N1 и N2 подается на выход в качестве 64-бит блока гаммы шифра (в данном случае N1 и N2 образуют первый блок гаммы).

Если необходим следующий блок гаммы (т. е. необходимо продолжить зашифрование или расшифрование), выполняется возврат к операции 2.

Для расшифрования гамма вырабатывается аналогичным образом, а затем к битам зашифрованного текста и гаммы снова применяется операция XOR. Поскольку эта операция обратима, в случае правильно выработанной гаммы получается исходный текст (таблица).

Зашифрование и расшифрование в режиме гаммирования

Для выработки нужной для расшифровки гаммы шифра у пользователя, расшифровывающего криптограмму, должен быть тот же ключ и то же значение синхропосылки, которые применялись при зашифровании информации. В противном случае получить исходный текст из зашифрованного не удастся.

В большинстве реализаций алгоритма ГОСТ 28147-89 синхропосылка не секретна, однако есть системы, где синхропосылка - такой же секретный элемент, как и ключ шифрования. Для таких систем эффективная длина ключа алгоритма (256 бит) увеличивается еще на 64 бит секретной синхропосылки, которую также можно рассматривать как ключевой элемент.

В режиме гаммирования с обратной связью для заполнения регистров N1 и N2, начиная со 2-го блока, используется не предыдущий блок гаммы, а результат зашифрования предыдущего блока открытого текста (рис. 2). Первый же блок в данном режиме генерируется полностью аналогично предыдущему.

Рис. 2. Выработка гаммы шифра в режиме гаммирования с обратной связью.

Рассматривая режим генерации имитоприставок , следует определить понятие предмета генерации. Имитоприставка - это криптографическая контрольная сумма, вычисляемая с использованием ключа шифрования и предназначенная для проверки целостности сообщений. При генерации имитоприставки выполняются следующие операции: первый 64-бит блок массива информации, для которого вычисляется имитоприставка, записывается в регистры N1 и N2 и зашифровывается в сокращенном режиме простой замены (выполняются первые 16 раундов из 32). Полученный результат суммируется по модулю 2 со следующим блоком информации с сохранением результата в N1 и N2.

Цикл повторяется до последнего блока информации. Получившееся в результате этих преобразований 64-бит содержимое регистров N1 и N2 или его часть и называется имитоприставкой. Размер имитоприставки выбирается, исходя из требуемой достоверности сообщений: при длине имитоприставки r бит вероятность, что изменение сообщения останется незамеченным, равна 2-r.Чаще всего используется 32-бит имитоприставка, т. е. половина содержимого регистров. Этого достаточно, поскольку, как любая контрольная сумма, имитоприставка предназначена прежде всего для защиты от случайных искажений информации. Для защиты же от преднамеренной модификации данных применяются другие криптографические методы - в первую очередь электронная цифровая подпись.

При обмене информацией имитоприставка служит своего рода дополнительным средством контроля. Она вычисляется для открытого текста при зашифровании какой-либо информации и посылается вместе с шифртекстом. После расшифрования вычисляется новое значение имитоприставки, которое сравнивается с присланной. Если значения не совпадают - значит, шифртекст был искажен при передаче или при расшифровании использовались неверные ключи. Особенно полезна имитоприставка для проверки правильности расшифрования ключевой информации при использовании многоключевых схем.

Алгоритм ГОСТ 28147-89 считается очень сильным алгоритмом - в настоящее время для его раскрытия не предложено более эффективных методов, чем упомянутый выше метод "грубой силы". Его высокая стойкость достигается в первую очередь за счет большой длины ключа - 256 бит. При использовании секретной синхропосылки эффективная длина ключа увеличивается до 320 бит, а засекречивание таблицы замен прибавляет дополнительные биты. Кроме того, криптостойкость зависит от количества раундов преобразований, которых по ГОСТ 28147-89 должно быть 32 (полный эффект рассеивания входных данных достигается уже после 8 раундов).

Стандарт AES

В отличие от алгоритма ГОСТ 28147-89, который долгое время оставался секретным, американский стандарт шифрования AES, призванный заменить DES, выбирался на открытом конкурсе, где все заинтересованные организации и частные лица могли изучать и комментировать алгоритмы-претенденты.

Конкурс на замену DES был объявлен в 1997 г. Национальным институтом стандартов и технологий США (NIST - National Institute of Standards and Technology). На конкурс было представлено 15 алгоритмов-претендентов, разработанных как известными в области криптографии организациями (RSA Security, Counterpane и т. д.), так и частными лицами. Итоги конкурса были подведены в октябре 2000 г.: победителем был объявлен алгоритм Rijndael, разработанный двумя криптографами из Бельгии, Винсентом Риджменом (Vincent Rijmen) и Джоан Даймен (Joan Daemen).

Алгоритм Rijndael не похож на большинство известных алгоритмов симметричного шифрования, структура которых носит название "сеть Фейстеля" и аналогична российскому ГОСТ 28147-89. Особенность сети Фейстеля состоит в том, что входное значение разбивается на два и более субблоков, часть из которых в каждом раунде обрабатывается по определенному закону, после чего накладывается на необрабатываемые субблоки (см. рис. 1).

В отличие от отечественного стандарта шифрования, алгоритм Rijndael представляет блок данных в виде двухмерного байтового массива размером 4X4, 4X6 или 4X8 (допускается использование нескольких фиксированных размеров шифруемого блока информации). Все операции выполняются с отдельными байтами массива, а также с независимыми столбцами и строками.

Алгоритм Rijndael выполняет четыре преобразования: BS (ByteSub) - табличная замена каждого байта массива (рис. 3); SR (ShiftRow) - сдвиг строк массива (рис. 4). При этой операции первая строка остается без изменений, а остальные циклически побайтно сдвигаются влево на фиксированное число байт, зависящее от размера массива. Например, для массива размером 4X4 строки 2, 3 и 4 сдвигаются соответственно на 1, 2 и 3 байта. Далее идет MC (MixColumn) - операция над независимыми столбцами массива (рис. 5), когда каждый столбец по определенному правилу умножается на фиксированную матрицу c(x). И, наконец, AK (AddRoundKey) - добавление ключа. Каждый бит массива складывается по модулю 2 с соответствующим битом ключа раунда, который, в свою очередь, определенным образом вычисляется из ключа шифрования (рис. 6).


Рис. 3. Операция BS.

Рис. 4. Операция SR.

Рис. 5. Операция MC.

Количество раундов шифрования (R) в алгоритме Rijndael переменное (10, 12 или 14 раундов) и зависит от размеров блока и ключа шифрования (для ключа также предусмотрено несколько фиксированных размеров).

Расшифрование выполняется с помощью следующих обратных операций. Выполняется обращение таблицы и табличная замена на инверсной таблице (относительно применяемой при зашифровании). Обратная операция к SR - это циклический сдвиг строк вправо, а не влево. Обратная операция для MC - умножение по тем же правилам на другую матрицу d(x), удовлетворяющую условию: c(x) * d(x) = 1. Добавление ключа AK является обратным самому себе, поскольку в нем используется только операция XOR. Эти обратные операции применяются при расшифровании в последовательности, обратной той, что использовалась при зашифровании.

Rijndael стал новым стандартом шифрования данных благодаря целому ряду преимуществ перед другими алгоритмами. Прежде всего он обеспечивает высокую скорость шифрования на всех платформах: как при программной, так и при аппаратной реализации. Его отличают несравнимо лучшие возможности распараллеливания вычислений по сравнению с другими алгоритмами, представленными на конкурс. Кроме того, требования к ресурсам для его работы минимальны, что важно при его использовании в устройствах, обладающих ограниченными вычислительными возможностями.

Недостатком же алгоритма можно считать лишь свойственную ему нетрадиционную схему. Дело в том, что свойства алгоритмов, основанных на сети Фейстеля, хорошо исследованы, а Rijndael, в отличие от них, может содержать скрытые уязвимости, которые могут обнаружиться только по прошествии какого-то времени с момента начала его широкого распространения.

Асимметричное шифрование

Алгоритмы асимметричного шифрования, как уже отмечалось, используют два ключа: k1 - ключ зашифрования, или открытый, и k2 - ключ расшифрования, или секретный. Открытый ключ вычисляется из секретного: k1 = f(k2).

Асимметричные алгоритмы шифрования основаны на применении однонаправленных функций. Согласно определению, функция y = f(x) является однонаправленной, если: ее легко вычислить для всех возможных вариантов x и для большинства возможных значений y достаточно сложно вычислить такое значение x, при котором y = f(x).

Примером однонаправленной функции может служить умножение двух больших чисел: N = P*Q. Само по себе такое умножение - простая операция. Однако обратная функция (разложение N на два больших множителя), называемая факторизацией, по современным временным оценкам представляет собой достаточно сложную математическую задачу. Например, разложение на множители N размерностью 664 бит при P ? Q потребует выполнения примерно 1023 операций, а для обратного вычисления х для модульной экспоненты y = ax mod p при известных a, p и y (при такой же размерности a и p) нужно выполнить примерно 1026 операций. Последний из приведенных примеров носит название - "Проблема дискретного логарифма" (DLP - Discrete Logarithm Problem), и такого рода функции часто используются в алгоритмах асимметричного шифрования, а также в алгоритмах, используемых для создания электронной цифровой подписи.

Еще один важный класс функций, используемых в асимметричном шифровании, - однонаправленные функции с потайным ходом. Их определение гласит, что функция является однонаправленной с потайным ходом, если она является однонаправленной и существует возможность эффективного вычисления обратной функции x = f-1(y), т. е. если известен "потайной ход" (некое секретное число, в применении к алгоритмам асимметричного шифрования - значение секретного ключа).

Однонаправленные функции с потайным ходом используются в широко распространенном алгоритме асимметричного шифрования RSA.

Алгоритм RSA

Разработанный в 1978 г. тремя авторами (Rivest, Shamir, Adleman), он получил свое название по первым буквам фамилий разработчиков. Надежность алгоритма основывается на сложности факторизации больших чисел и вычисления дискретных логарифмов. Основной параметр алгоритма RSA - модуль системы N, по которому проводятся все вычисления в системе, а N = P*Q (P и Q - секретные случайные простые большие числа, обычно одинаковой размерности).

Секретный ключ k2 выбирается случайным образом и должен соответствовать следующим условиям:

1

где НОД - наибольший общий делитель, т. е. k1 должен быть взаимно простым со значением функции Эйлера F(N), причем последнее равно количеству положительных целых чисел в диапазоне от 1 до N, взаимно простых с N, и вычисляется как F(N) = (P - 1)*(Q - 1) .

Открытый ключ k1 вычисляется из соотношения (k2*k1) = 1 mod F(N) , и для этого используется обобщенный алгоритм Евклида (алгоритм вычисления наибольшего общего делителя). Зашифрование блока данных M по алгоритму RSA выполняется следующим образом: C = M[в степени k1] mod N . Заметим, что, поскольку в реальной криптосистеме с использованием RSA число k1 весьма велико (в настоящее время его размерность может доходить до 2048 бит), прямое вычисление M[в степени k1] нереально. Для его получения применяется комбинация многократного возведения M в квадрат с перемножением результатов.

Обращение данной функции при больших размерностях неосуществимо; иными словами, невозможно найти M по известным C, N и k1. Однако, имея секретный ключ k2, при помощи несложных преобразований можно вычислить M = Ck2 mod N. Очевидно, что, помимо собственно секретного ключа, необходимо обеспечивать секретность параметров P и Q. Если злоумышленник добудет их значения, то сможет вычислить и секретный ключ k2.

Какое шифрование лучше?

Основной недостаток симметричного шифрования - необходимость передачи ключей "из рук в руки". Недостаток этот весьма серьезен, поскольку делает невозможным использование симметричного шифрования в системах с неограниченным числом участников. Однако в остальном симметричное шифрование имеет одни достоинства, которые хорошо видны на фоне серьезных недостатков шифрования асимметричного.

Первый из них - низкая скорость выполнения операций зашифрования и расшифрования, обусловленная наличием ресурсоемких операций. Другой недостаток "теоретический" - математически криптостойкость алгоритмов асимметричного шифрования не доказана. Это связано прежде всего с задачей дискретного логарифма - пока не удалось доказать, что ее решение за приемлемое время невозможно. Излишние трудности создает и необходимость защиты открытых ключей от подмены - подменив открытый ключ легального пользователя, злоумышленник сможет обеспечить зашифрование важного сообщения на своем открытом ключе и впоследствии легко расшифровать его своим секретным ключом.

Тем не менее эти недостатки не препятствуют широкому применению алгоритмов асимметричного шифрования. Сегодня существуют криптосистемы, поддерживающие сертификацию открытых ключей, а также сочетающие алгоритмы симметричного и асимметричного шифрования. Но это уже тема для отдельной статьи.

Дополнительные источники информации

Тем читателям, которые непраздно интересуются шифрованием, автор рекомендует расширить свой кругозор с помощью следующих книг.

  1. Брассар Ж. "Современная криптология".
  2. Петров А. А. "Компьютерная безопасность: криптографические методы защиты".
  3. Романец Ю. В., Тимофеев П. А., Шаньгин В. Ф. "Защита информации в современных компьютерных системах".
  4. Соколов А. В., Шаньгин В. Ф. "Защита информации в распределенных корпоративных сетях и системах".

Полное описание алгоритмов шифрования можно найти в следующих документах:

  1. ГОСТ 28147-89. Система обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. - М.: Госстандарт СССР, 1989.
  2. Алгоритм AES: http://www.nist.gov/ae .
  3. Алгоритм RSA: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1 .

Шифрование данных чрезвычайно важно для защиты конфиденциальности. В этой статье я расскажу о различных типах и методах шифрования, которые используются для защиты данных сегодня.

Знаете ли вы?
Еще во времена Римской империи, шифрование использовалось Юлием Цезарем для того, чтобы сделать письма и сообщения нечитаемыми для врага. Это играло важную роль как военная тактика, особенно во время войн.

Так как возможности Интернета продолжают расти, все больше и больше наших предприятий проводятся на работу онлайн. Среди этого наиболее важными являются, интернет банк, онлайн оплата, электронные письма, обмен частными и служебными сообщениями и др., которые предусматривают обмен конфиденциальными данными и информацией. Если эти данные попадут в чужие руки, это может нанести вред не только отдельному пользователю, но и всей онлайн системе бизнеса.

Чтобы этого не происходило, были приняты некоторые сетевые меры безопасности для защиты передачи личных данных. Главными среди них являются процессы шифрования и дешифрования данных, которые известны как криптография. Существуют три основные методы шифрования, используемых в большинстве систем сегодня: хеширование, симметричное и асимметричное шифрование. В следующих строках, я расскажу о каждом из этих типов шифрования более подробно.

Типы шифрования

Симметричное шифрование

При симметричном шифровании, нормальные читабельные данные, известные как обычный текст, кодируется (шифруется), так, что он становится нечитаемым. Это скремблирование данных производится с помощью ключа. Как только данные будут зашифрованы, их можно безопасно передавать на ресивер. У получателя, зашифрованные данные декодируются с помощью того же ключа, который использовался для кодирования.

Таким образом ясно что ключ является наиболее важной частью симметричного шифрования. Он должен быть скрыт от посторонних, так как каждый у кого есть к нему доступ сможет расшифровать приватные данные. Вот почему этот тип шифрования также известен как "секретный ключ".

В современных системах, ключ обычно представляет собой строку данных, которые получены из надежного пароля, или из совершенно случайного источника. Он подается в симметричное шифрование программного обеспечения, которое использует его, чтобы засекретить входные данные. Скремблирование данных достигается с помощью симметричного алгоритма шифрования, такие как Стандарт шифрования данных (DES), расширенный стандарт шифрования (AES), или международный алгоритм шифрования данных (IDEA).

Ограничения

Самым слабым звеном в этом типе шифрования является безопасность ключа, как в плане хранения, так и при передаче аутентифицированного пользователя. Если хакер способен достать этот ключ, он может легко расшифровать зашифрованные данные, уничтожая весь смысл шифрования.

Еще один недостаток объясняется тем, что программное обеспечение, которое обрабатывает данные не может работать с зашифрованными данными. Следовательно, для возможности использовать этого программного обеспечение, данные сначала должны быть декодированы. Если само программное обеспечение скомпрометировано, то злоумышленник сможет легко получить данные.

Асимметричное шифрование

Асимметричный ключ шифрования работает аналогично симметричному ключу, в том, что он использует ключ для кодирования передаваемых сообщений. Однако, вместо того, чтобы использовать тот же ключ, для расшифровки этого сообщения он использует совершенно другой.

Ключ, используемый для кодирования доступен любому и всем пользователям сети. Как таковой он известен как «общественный» ключ. С другой стороны, ключ, используемый для расшифровки, хранится в тайне, и предназначен для использования в частном порядке самим пользователем. Следовательно, он известен как «частный» ключ. Асимметричное шифрование также известно, как шифрование с открытым ключом.

Поскольку, при таком способе, секретный ключ, необходимый для расшифровки сообщения не должен передаваться каждый раз, и он обычно известен только пользователю (приемнику), вероятность того, что хакер сможет расшифровать сообщение значительно ниже.

Diffie-Hellman и RSA являются примерами алгоритмов, использующих шифрование с открытым ключом.

Ограничения

Многие хакеры используют «человека в середине» как форму атаки, чтобы обойти этот тип шифрования. В асимметричном шифровании, вам выдается открытый ключ, который используется для безопасного обмена данными с другим человеком или услугой. Однако, хакеры используют сети обман, чтобы заставить вас общаться с ними, в то время как вас заставили поверить, что вы находитесь на безопасной линии.

Чтобы лучше понять этот тип взлома, рассмотрим две взаимодействующие стороны Сашу и Наташу, и хакера Сергея с умыслом на перехват их разговора. Во-первых, Саша отправляет сообщение по сети, предназначенное для Наташи, прося ее открытый ключ. Сергей перехватывает это сообщение и получает открытый ключ, связанный с ней, и использует его для шифрования и передачи ложного сообщения, Наташе, содержащего его открытый ключ вместо Сашиного.

Наташа, думая, что это сообщение пришло от Саши, теперь шифрует ее с помощью открытого ключа Сергея, и отправляет его обратно. Это сообщение снова перехватил Сергей, расшифровал, изменил (при желании), зашифровал еще раз с помощью открытого ключа, который Саша первоначально отправил, и отправил обратно к Саше.

Таким образом, когда Саша получает это сообщение, его заставили поверить, что оно пришло от Наташи, и продолжает не подозревать о нечестной игре.

Хеширование

Методика хеширования использует алгоритм, известный как хэш-функция для генерации специальной строки из приведенных данных, известных как хэш. Этот хэш имеет следующие свойства:

  • одни и те же данные всегда производит тот же самый хэш.
  • невозможно, генерировать исходные данные из хэша в одиночку.
  • Нецелесообразно пробовать разные комбинации входных данных, чтобы попытаться генерировать тот же самый хэш.

Таким образом, основное различие между хэшированием и двумя другими формами шифрования данных заключается в том, что, как только данные зашифрованы (хешированы), они не могут быть получены обратно в первозданном виде (расшифрованы). Этот факт гарантирует, что даже если хакер получает на руки хэш, это будет бесполезно для него, так как он не сможет расшифровать содержимое сообщения.

Message Digest 5 (MD5) и Secure Hashing Algorithm (SHA) являются двумя широко используемыми алгоритмами хеширования.

Ограничения

Как уже упоминалось ранее, почти невозможно расшифровать данные из заданного хеша. Впрочем, это справедливо, только если реализовано сильное хэширование. В случае слабой реализации техники хеширования, используя достаточное количество ресурсов и атаки грубой силой, настойчивый хакер может найти данные, которые совпадают с хэшем.

Сочетание методов шифрования

Как обсуждалось выше, каждый из этих трех методов шифрования страдает от некоторых недостатков. Однако, когда используется сочетание этих методов, они образуют надежную и высоко эффективную систему шифрования.

Чаще всего, методики секретного и открытого ключа комбинируются и используются вместе. Метод секретного ключа дает возможность быстрой расшифровки, в то время как метод открытого ключа предлагает более безопасный и более удобный способ для передачи секретного ключа. Эта комбинация методов известна как "цифровой конверт". Программа шифрования электронной почты PGP основана на технике "цифровой конверт".

Хеширования находит применение как средство проверки надежности пароля. Если система хранит хэш пароля, вместо самого пароля, он будет более безопасным, так как даже если хакеру попадет в руки этот хеш, он не сможет понять (прочитать) его. В ходе проверки, система проверит хэш входящего пароля, и увидит, если результат совпадает с тем, что хранится. Таким образом, фактический пароль будет виден только в краткие моменты, когда он должен быть изменен или проверен, что позволит существенно снизить вероятность его попадания в чужие руки.

Хеширование также используется для проверки подлинности данных с помощью секретного ключа. Хэш генерируется с использованием данных и этого ключа. Следовательно, видны только данные и хэш, а сам ключ не передается. Таким образом, если изменения будут сделаны либо с данными, либо с хэшем, они будут легко обнаружены.

В заключение можно сказать, что эти методы могут быть использованы для эффективного кодирования данных в нечитаемый формат, который может гарантировать, что они останутся безопасными. Большинство современных систем обычно используют комбинацию этих методов шифрования наряду с сильной реализацией алгоритмов для повышения безопасности. В дополнение к безопасности, эти системы также предоставляют множество дополнительных преимуществ, таких как проверка удостоверения пользователя, и обеспечение того, что полученные данные не могут быть подделаны.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ЮЖНОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА В г. ТАГАНРОГЕ Факультет информационной безопасности Кафедра БИТ Реферат на тему

«Криптография и виды шифрования»

ст. гр. И-21

Выполнил: В. И. Мищенко Проверил: Е. А. Маро Таганрог — 2012

Введение

1. История криптографии

1.1 Появление шифров

1.2 Эволюция криптографии

2. Криптоанализ

2.1 Характеристики сообщений

2.2 Свойства естественного текста

2.3 Критерии определения естественности

3. Симметричное шифрование

4. Ассиметричное шифрование

Заключение

Введение В рамках проведения учебной практики мной была выбрана тема «Криптография и виды шифрования». В ходе выполнения работы были рассмотрены такие вопросы, как история возникновения криптографии, её эволюция, виды шифрования. Мной был проведен обзор существующих алгоритмов шифрования, в результате чего можно отметить, что человечество не стоит на месте и постоянно придумывает различные способы хранения и защиты информации.

Вопрос защиты ценной информации путем ее видоизменения, исключающего ее прочтение незнакомым лицом тревожила лучшие человеческие умы еще с самых древних времён. История шифрования — почти что ровесница истории человеческой речи. Кроме того, изначально письмо само по себе было криптографической системой, поскольку в древних обществах подобным знанием обладали лишь избранные. Священные манускрипты различных древних государств тому примеры.

С тех пор как письменность стала широко распространенной, криптография стала становиться вполне самостоятельной наукой. Первые криптографические системы можно встретить уже в начале нашей эпохи. Например, Юлий Цезарь в своей личной переписке пользовался систематическим шифром, который впоследствии был назван его именем.
Серьезное развитие шифровальные системы получили в эпоху первой и второй мировых войн. Начиная с ранней послевоенной поры и по сей момент, появление современных вычислительных аппаратов убыстрило создание и усовершенствование шифровальных методов.
Почему вопрос использования шифровальных методов в вычислительных системах (ВС) стал в наше время особенно актуальным?
Во-первых, расширилась сфера применения компьютерных сетей, таких как World Wide Web, с помощью которых передаются огромные объемы информации госудаpственного, военного, коммерческого и личного характера, не дающего возможности доступа к ней стоpонних лиц.
Во-вторых, появление современных сверхмощных компьютеpов, продвинутых технологий сетевых и нейpонных вычислений делает возможным дискpедитацию шифровальных систем еще вчера считавшихся совершенно безопасными.

1. История криптографии С самим появлением человеческой цивилизации появилась надобность передачи информации нужным людям так, чтобы она не делалась известной посторонним. Поначалу люди употребляли для трансляции сообщений только голос и жесты.

С появлением письменности вопрос обеспечения засекреченности и подлинности транслируемых сообщений стала особенно важным. Вследствие этого именно после изобретения письма возникло искусство криптографии, способ «тайно писать» — набор методик, предназначенных для тайной передачи записанных сообщений от одного посвященного человека другому.

Человечество придумало немалое количество технологий секретного письма, в частности, симпатические чернила, исчезающие вскоре после написания ими текста или невидимые с изначально, «растворение» ценной информации в тексте большой величины с совершенно «чужим» смыслом, подготовка сообщений при помощи странных непонятных символов.

Шифрование возникло именно как практический предмет, изучающий и разрабатывающий методы шифрования информации, то есть при трансфере сообщений — не скрывающий сам факт передачи, а делающий текст сообщения недоступным для прочтения непосвященными людьми. Ради этого текст сообщения должен быть записанным таким образом, чтобы с его содержанием не мог ознакомиться ни один человек за исключением самих адресатов.

Возникновение в середине 20 столетия первых компьютеров сильно поменяло ситуацию — практическое шифрование сделало в своем развитии громадный скачок и такой термин как «криптография» значительно ушел от своего изначального значения — «тайнопись», «тайное письмо». В наши дни этот предмет объединяет способы защиты информации абсолютно разнородного характера, основывающиеся на преобразовании данных по тайным алгоритмам, включая алгоритмы, которые используют различные секретные параметры.

1.1 Появление шифров Некоторые из криптографических систем дошли до нас из дремучей древности. Вероятнее всего они родились одновременно с письменностью в IV тысячелетии до нашей эры. Способы тайной переписки были придуманы независимо во многих древних государствах, таких как Египет, Греция и Япония, но детальный состав криптологии в них сейчас неизвестен. Криптограммы находятся даже в древнее время, хотя из-за применявшейся в древнем мире идеографической письменности в виде стилизованных пиктограмм они были довольно примитивны. Шумеры, судя по всему, пользовались искусством тайнописи.

Археологами был найден ряд глиняных клинописных табличек, в которых первая запись часто замазывалась толстым слоем глины, на котором и производилась вторая запись. Появление подобных странных табличек вполне могло быть обосновано и тайнописью, и утилизацией. Поскольку количество знаков идеографического письма насчитывало более тысячи, их запоминание представляло собой довольно таки трудную задачу — тут становилось не до шифрования. Однако, коды, появившиеся в одно время со словарями, были очень хорошо знакомы в Вавилоне и Ассирийском государстве, а древние египтяне полльзовались по крайней мере тремя системами шифрования. С происхождеием фонетического письма письменность сразу же упростилась. В древнесемитском алфавите во II тысячелетии до нашей эры существовало всего лишь около 30 знаков. Ими обозначались согласные, а также некоторые гласные звуки и слоги. Упрощение письменности вызвало развитие криптографии и шифрования.

Даже в книгах Библии мы можем найти примеры шифровок, хотя почти никто их не замечает. В книге пророка Иеремии (22,23) мы читаем: «…а царь Сессаха выпьет после них.» Этого царя и такого царства не существовало — неужели ошибка автора? Нет, просто иногда священные иудейские манускрипты шифровались обычной заменой. Вместо первой буквы алфавита писали последнюю, вместо второй — предпоследнюю и так далее. Этот старый способ криптографии называется атбаш. Читая с его помощью слово СЕССАХ, на языке оригинала мы имеем слово ВАВИЛОН, и весь смысл библейского манускрипта может быть понят даже теми, кто не верит слепо в истинность писания.

1.2 Эволюция криптографии Развитие шифрования в двадцатом веке было очень стремительным, но совершенно неравномерным. Взглянув на историю его развития как специфической области человеческой жизнедеятельности, можно выделить три основополагающих периода.

Начальный. Имел дело только с ручными шифрами. Начался в дремучей древности и закончился только в самом конце тридцатых годов двадцатого века. Тайнопись за это время преодолела длительный путь от магического искусства доисторических жрецов до повседневной прикладной профессии работников секретных агентств.

Дальнейший период можно отметить созданием и повсеместным внедрением в практику механических, затем электромеханических и, в самом конце, электронных приборов криптографии, созданием целых сетей зашифрованной связи.

Рождением третьего периода развития шифрования обычно принято считать 1976 год, в котором американские математики Диффи и Хеллман изобрели принципиально новый способ организации шифрованной связи, не требующий предварительного обеспечения абонентов тайными ключами — так называемое кодирование с использованием открытого ключа. В результате этого начали возникать шифровальные системы, основанные на базе способа, изобретенного еще в 40-х годах Шенноном. Он предложил создавать шифр таким образом, чтобы его расшифровка была эквивалентна решению сложной математической задачи, требующей выполнения вычислений, которые превосходили бы возможности современных компьютерных систем. Этот период развития шифрования характеризуется возникновением абсолютно автоматизированных систем кодированной связи, в которых любой пользователь владеет своим персональным паролем для верификации, хранит его, например, на магнитной карте или где-либо еще, и предъявляет при авторизации в системе, а все остальное происходит автоматически.

2. Криптоанализ Существует громадная пропасть между ручными и компьютерными способами шифрации. Ручные шифры являются очень разнообразными и могут быть самыми удивительными. помимо этого, шифруемые ими сообщения довольно таки лаконичны и коротки. Поэтому их взлом гораздо более эффективно производится людьми нежели машинами. Компьютерные шифры более стереотипичны, математически очень сложны и предназначаются для шифрации сообщений довольно таки значительной длины. Разумеется вручную их разгадать даже и не стоит пробовать. Тем не менее и в этой области криптоаналитики играют ведущую роль, являясь полководцами криптографического нападения, не смотря на то, что само сражение ведется лишь аппаратными и программными средствами. Недооценка этого феномена обусловила фиаско шифров шифровальной машины Энигмы в период Второй мировой войны.

Практически всегда являются известными тип шифрации и язык сообщения. Их вполне могут подсказать алфавит и статистические особенности криптографии. Тем не менее, зачастую информация о языке и разновидности шифра узнается из агентурных источников. Подобная ситуация немного напоминает взлом сейфа: если «взломщик» и не знает заранее конструкции взламываемого сейфа, что выглядит довольно таки маловероятным, он все равно быстро определяет ее по внешнему виду, фирменному логотипу. В связи с этим неизвестным является лишь ключ, который необходимо разгадать. Сложность заключается в том, что абсолютно так же, как и не все заболевания излечиваются одним и тем же лекарством, а для любого из них существуют свои специфические средства, так и специфические разновидности шифров взламываются только своими методами.

2.1 Характеристики сообщений Сообщения, насколько бы сложными они ни были, вполне возможно представить себе в виде каком-либо порядке символов. Эти символы нужно взять из заранее фиксированного набора, к примеру, из русского алфавита или из палитры цветов (красный, желтый, зеленый). Различные символы могут встречаться в сообщениях с различной периодичностью. В связи с этим объем информации, транслируемый различными символами может быть разным. В том понимании, которое предложил Шеннон, объем информации определяется усредненным значением чисел возможных вопросов с вариантами ответов ДА и НЕТ для того, чтобы предугадать последующий знак в сообщении. Если символы в тексте расположены в последовательности, не зависящей друг от друга, то усредненное количество информации в таком сообщении приходящееся на один символ, равно:

где Pi — частота проявления знака i, a Ld- двоичный логарифм. Следует отметить три феномена такого распределения информации.

Оно совершенно не зависит от семантики, смысла сообщения, и им можно воспользоваться, даже в ситуации когда точный смысл не вполне ясен. В нем подразумевается отсутствие зависимости вероятности проявления символов от их предварительной истории.

Загодя известна символьная система, в которой транслируется сообщение, то есть язык, метод шифрации.

В каких единицах измеряется значение объема информации по Шеннону? Вернее всего ответ на такой вопрос может дать теорема шифрации, утверждающая, что любое сообщение возможно зашифровать символами 0 и 1 таким образом, что полученный объем информации будет сколь угодно близким сверху к Н. Такая теорема позволяет нам указать и единицу информации — это бит.

2.2 Свойства естественного текста Теперь давайте наглядно рассмотрим один способ приложения знаний особенностей естественного текста для нужд шифрования. Необходимо по куску текста определить, что он из себя представляет — сообщение, несущее смысловую нагрузку или просто последовательность из случайных символов. Ряд методов криптографии приходится на компьютере взламывать банальным перебором ключей, а вручную перепробовать свыше тысячи кусков текста в день просто невозможно, да и скорость перебора очень мала. в связи с этим необходимо такую задачу реализовать с помощью компьютера.

Допустим нам предстоит перебрать приблизительно один миллиард ключей на компьютере со скоростью одна тысяча ключей в секунду. На это у нас уйдет приблизительно десять дней. В таком случае мы вполне рискуем попасть в две крайности. В случае если мы будем слишком осторожны в своих оценках, часть неосмысленных фрагментов текста будет определена как сообщения и возвращена человеку. Такая ошибка чаще всего называется «ложной тревогой» или ошибкой первого рода.

При объеме подобных ошибок больше чем одна тысяча в день человек, сидящий за компьютером, устанет и может в дальнейшем проверять фрагменты текста невнимательно. Это означает, что возможно допустить не более одной ошибки подобного рода на 100 000 проверок. В другой крайности, если подойти к проверке невнимательно, то вполне возможно пропустить осмысленный текст и в конце полного перебора его придется снова повторять. Для того, чтобы не рисковать необходимостью повторения всего объема работ, ошибки второго рода, также называемые «пропусками фрагмента», возможно допустить лишь в одном случае из 100 или 1000.

2.3 Критерии определения естественности Самым простым на первый взгляд критерием, который может прийти в голову, является использованием алфавита фрагмента сообщения. Учитывая то, что в нем теоретически могут встречаться только знаки препинания, числа, заглавные и строчные русские буквы, в тексте фрагмента сообщения может встретится не больше половины комплекта кодовой таблицы ASCII.

Это означает, что встретив в фрагменте текста недопустимый знак компьютеру можно определенно заявить о том, что он не является осмысленным — ошибки второго рода при этом практически исключены при хорошо функционирующем канале связи.

Для того, чтобы уменьшить теоретическую возможность «ложных тревог» до обозначенной в предыдущей статье величины, нам необходимо, чтобы фрагмент сообщения состоял не меньше чем из двадцати трех знаков. Вопрос усложняется, в том случае, если используемый код букв не является избыточным, как представление в ASCII русского текста, а содержит в себе ровно столько знаков, сколько их существует в алфавите.

В таком случае нам придется ввести оценку по теоретическим возможностям попадания символов в тексте. Для того, чтобы обеспечить принятые нами возможности ошибок первого и второго рода, при оценивании максимально возможной правдоподобности, нужно проанализировать уже около 100 знаков, а анализ возможности встречи биграмм всего лишь немного уменьшает эту величину.

Поэтому, короткие фрагменты сообщений при большой величине ключа вообще практически невозможно раскодировать однозначно, поскольку проявляющиеся случайные фрагменты текста вполне могут совпасть с имеющими смысл фразами. Такую же задачу необходимо решать и при контроле качества криптографии. В данном случае, правда, возможность ложной тревоги вполне можно увеличить, сделав ее не свыше одной тысячной, при такой же самой возможности игнорирования фрагмента сообщения. Что позволит нам ограничиваться для проверки текстов лишь двадцатью-тридцатью знаками.

3. Симметричное шифрование Симметримчные криптосистеммы (также симметричное шифрование, симметричные шифры) -- способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование. Ключ алгоритма должен сохраняться в секрете обеими сторонами. Алгоритм шифрования выбирается сторонами до начала обмена сообщениями.

В настоящее время симметричные шифры -- это:

Блочные шифры. Обрабатывают информацию блоками определённой длины (обычно 64, 128 бит), применяя к блоку ключ в установленном порядке, как правило, несколькими циклами перемешивания и подстановки, называемыми раундами. Результатом повторения раундов является лавинный эффект -- нарастающая потеря соответствия битов между блоками открытых и зашифрованных данных.

Поточные шифры, в которых шифрование проводится над каждым битом либо байтом исходного (открытого) текста с использованием гаммирования. Поточный шифр может быть легко создан на основе блочного (например, ГОСТ 28 147-89 в режиме гаммирования), запущенного в специальном режиме.

Большинство симметричных шифров используют сложную комбинацию большого количества подстановок и перестановок. Многие такие шифры исполняются в несколько (иногда до 80) проходов, используя на каждом проходе «ключ прохода». Множество «ключей прохода» для всех проходов называется «расписанием ключей» (key schedule). Как правило, оно создается из ключа выполнением над ним неких операций, в том числе перестановок и подстановок.

Типичным способом построения алгоритмов симметричного шифрования является сеть Фейстеля. Алгоритм строит схему шифрования на основе функции F (D, K), где D -- порция данных, размером вдвое меньше блока шифрования, а K -- «ключ прохода» для данного прохода. От функции не требуется обратимость -- обратная ей функция может быть неизвестна. Достоинства сети Фейстеля -- почти полное совпадение дешифровки с шифрованием (единственное отличие -- обратный порядок «ключей прохода» в расписании), что сильно облегчает аппаратную реализацию.

Операция перестановки перемешивает биты сообщения по некоему закону. В аппаратных реализациях она тривиально реализуется как перепутывание проводников. Именно операции перестановки дают возможность достижения «эффекта лавины». Операция перестановки линейна -- f (a) xor f (b) == f (a xor b)

Операции подстановки выполняются как замена значения некоей части сообщения (часто в 4, 6 или 8 бит) на стандартное, жестко встроенное в алгоритм иное число путем обращения к константному массиву. Операция подстановки привносит в алгоритм нелинейность.

Зачастую стойкость алгоритма, особенно к дифференциальному криптоанализу, зависит от выбора значений в таблицах подстановки (S-блоках). Как минимум считается нежелательным наличие неподвижных элементов S (x) = x, а также отсутствие влияния какого-то бита входного байта на какой-то бит результата -- то есть случаи, когда бит результата одинаков для всех пар входных слов, отличающихся только в данном бите.

Рисунок 1. Виды ключей

4. Ассиметричное шифрование Криптографическая система с открытым ключом (или асимметричное шифрование, асимметричный шифр) -- система шифрования и/или электронной цифровой подписи, при которой открытый ключ передаётся по открытому (то есть незащищённому, доступному для наблюдения) каналу и используется для проверки ЭЦП и для шифрования сообщения. Для генерации ЭЦП и для расшифровки сообщения используется секретный ключ. Криптографические системы с открытым ключом в настоящее время широко применяются в различных сетевых протоколах, в частности, в протоколах TLS и его предшественнике SSL (лежащих в основе HTTPS), в SSH.

Идея криптографии с открытым ключом очень тесно связана с идеей односторонних функций, то есть таких функций, что по известному довольно просто найти значение, тогда как определение из невозможно за разумный срок.

Но сама односторонняя функция бесполезна в применении: ею можно зашифровать сообщение, но расшифровать нельзя. Поэтому криптография с открытым ключом использует односторонние функции с лазейкой. Лазейка -- это некий секрет, который помогает расшифровать. То есть существует такой, что зная и, можно вычислить. К примеру, если разобрать часы на множество составных частей, то очень сложно собрать вновь работающие часы..

Понять идеи и методы криптографии с открытым ключом помогает следующий пример -- хранение паролей в компьютере. Каждый пользователь в сети имеет свой пароль. При входе он указывает имя и вводит секретный пароль. Но если хранить пароль на диске компьютера, то кто-нибудь его может считать (особенно легко это сделать администратору этого компьютера) и получить доступ к секретной информации. Для решения задачи используется односторонняя функция. При создании секретного пароля в компьютере сохраняется не сам пароль, а результат вычисления функции от этого пароля и имени пользователя. Например, пользователь Алиса придумала пароль «Гладиолус». При сохранении этих данных вычисляется результат функции (ГЛАДИОЛУС), пусть результатом будет строка РОМАШКА, которая и будет сохранена в системе. В результате файл паролей примет следующий вид:

Вход в систему теперь выглядит так:

Когда Алиса вводит «секретный» пароль, компьютер проверяет, даёт или нет функция, применяемая к ГЛАДИОЛУС, правильный результат РОМАШКА, хранящийся на диске компьютера. Стоит изменить хотя бы одну букву в имени или в пароле, и результат функции будет совершенно другим. «Секретный» пароль не хранится в компьютере ни в каком виде. Файл паролей может быть теперь просмотрен другими пользователями без потери секретности, так как функция практически необратимая.

В предыдущем примере используется односторонняя функция без лазейки, поскольку не требуется по зашифрованному сообщению получить исходное. В следующем примере рассматривается схема с возможностью восстановить исходное сообщение с помощью «лазейки», то есть труднодоступной информации. Для шифрования текста можно взять большой абонентский справочник, состоящий из нескольких толстых томов (по нему очень легко найти номер любого жителя города, но почти невозможно по известному номеру найти абонента). Для каждой буквы из шифруемого сообщения выбирается имя, начинающееся на ту же букву. Таким образом букве ставится в соответствие номер телефона абонента. Отправляемое сообщение, например «КОРОБКА», будет зашифровано следующим образом:

Сообщение

Выбранное имя

Криптотекст

Кирсанова

Арсеньева

Криптотекстом будет являться цепочка номеров, записанных в порядке их в ыбора в справочнике. Чтобы затруднить расшифровку, следует выбирать случайные имена, начинающиеся на нужную букву. Таким образом исходное сообщение может быть зашифровано множеством различных списков номеров (криптотекстов).

Примеры таких криптотекстов:

Криптотекст 1

Криптотекст 2

Криптотекст 3

Чтобы расшифровать текст, надо иметь справочник, составленный согласно возрастанию номеров. Этот справочник является лазейкой (секрет, который помогает получить начальный текст), известной только легальным пользователям. Не имея на руках копии справочника, криптоаналитик затратит очень много времени на расшифровку.

Схема шифрования с открытым ключом Пусть -- пространство ключей, а и -- ключи шифрования и расшифрования соответственно. -- функция шифрования для произвольного ключа, такая что:

Здесь, где -- пространство шифротекстов, а, где -- пространство сообщений.

Функция расшифрования, с помощью которой можно найти исходное сообщение, зная шифротекст:

{: } -- набор шифрования, а {: } -- соответствующий набор для расшифрования. Каждая пара имеет свойство: зная, невозможно решить уравнение, то есть для данного произвольного шифротекста, невозможно найти сообщение. Это значит, что по данному невозможно определить соответствующий ключ расшифрования. является односторонней функцией, а -- лазейкой.

Ниже показана схема передачи информации лицом, А лицу В. Они могут быть как физическими лицами, так и организациями и так далее. Но для более лёгкого восприятия принято участников передачи отождествлять с людьми, чаще всего именуемыми Алиса и Боб. Участника, который стремится перехватить и расшифровать сообщения Алисы и Боба, чаще всего называют Евой.

Рисунок 2. Ассиметричное шифрование Боб выбирает пару и шлёт ключ шифрования (открытый ключ) Алисе по открытому каналу, а ключ расшифрования (закрытый ключ) защищён и секретен (он не должен передаваться по открытому каналу).

Чтобы послать сообщение Бобу, Алиса применяет функцию шифрования, определённую открытым ключом:, -- полученный шифротекст.

Боб расшифровывает шифротекст, применяя обратное преобразование, однозначно определённое значением.

Научная основа Начало асимметричным шифрам было положено в работе «Новые направления в современной криптографии» Уитфилда Диффи и Мартина Хеллмана, опубликованной в 1976 году. Находясь под влиянием работы Ральфа Меркле о распространении открытого ключа, они предложили метод получения секретных ключей, используя открытый канал. Этот метод экспоненциального обмена ключей, который стал известен как обмен ключами Диффи -- Хеллмана, был первым опубликованным практичным методом для установления разделения секретного ключа между заверенными пользователями канала. В 2002 году Хеллман предложил называть данный алгоритм «Диффи -- Хеллмана -- Меркле», признавая вклад Меркле в изобретение криптографии с открытым ключом. Эта же схема была разработана Малькольмом Вильямсоном в 1970-х, но держалась в секрете до 1997 года. Метод Меркле по распространению открытого ключа был изобретён в 1974 и опубликован в 1978 году, его также называют загадкой Меркле.

В 1977 году учёными Рональдом Ривестом, Ади Шамиром и Леонардом Адлеманом из Массачусетского технологического института был разработан алгоритм шифрования, основанный на проблеме о разложении на множители. Система была названа по первым буквам их фамилий (RSA -- Rivest, Shamir, Adleman). Эта же система была изобретена в 1973 году Клиффордом Коксом, работавшим в центре правительственной связи (GCHQ), но эта работа хранилась лишь во внутренних документах центра, поэтому о её существовании было не известно до 1977 года. RSA стал первым алгоритмом, пригодным и для шифрования, и для цифровой подписи.

Вообще, в основу известных асимметричных криптосистем кладётся одна из сложных математических проблем, которая позволяет строить односторонние функции и функции-лазейки. Например, криптосистемы Меркля -- Хеллмана и Хора -- Ривеста опираются на так называемую задачу об укладке рюкзака.

Основные принципы построения криптосистем с открытым ключом Начинаем с трудной задачи. Она должна решаться сложно в смысле теории: не должно быть алгоритма, с помощью которого можно было бы перебрать все варианты решения задачи за полиномиальное время относительно размера задачи. Более правильно сказать: не должно быть известного полиномиального алгоритма, решающего данную задачу -- так как ни для одной задачи ещё пока не доказано, что для неё подходящего алгоритма нет в принципе.

Можно выделить легкую подзадачу из. Она должна решаться за полиномиальное время и лучше, если за линейное.

«Перетасовываем и взбалтываем», чтобы получить задачу, совершенно не похожую на первоначальную. Задача должна по крайней мере выглядеть как оригинальная труднорешаемая задача.

открывается с описанием, как она может быть использована в роли ключа зашифрования. Как из получить, держится в секрете как секретная лазейка.

Криптосистема организована так, что алгоритмы расшифрования для легального пользователя и криптоаналитика существенно различны. В то время как второй решает -задачу, первый использует секретную лазейку и решает -задачу.

Криптография с несколькими открытыми ключами В следующем примере показана схема, в которой Алиса шифрует сообщение так, что только Боб может прочитать его, и наоборот, Боб шифрует сообщение так, что только Алиса может расшифровать его.

Пусть есть 3 ключа, распределенные так, как показано в таблице.

криптография шифрование ключ симметричный

Тогда Алиса может зашифровать сообщение ключом, а Эллен расшифровать ключами, Кэрол -- зашифровать ключом, а Дэйв расшифровать ключами,. Если Дэйв зашифрует сообщение ключом, то сообщение сможет прочитать Эллен, если ключом, то его сможет прочитать Франк, если же обоими ключами и, то сообщение прочитает Кэрол. По аналогии действуют и другие участники. Таким образом, если используется одно подмножество ключей для шифрования, то для расшифрования требуются оставшиеся ключи множества. Такую схему можно использовать для n ключей.

Теперь можно посылать сообщения группам агентов, не зная заранее состав группы.

Рассмотрим для начала множество, состоящее из трех агентов: Алисы, Боба и Кэрол. Алисе выдаются ключи и, Бобу -- и, Кэрол -- и. Теперь, если отправляемое сообщение зашифровано ключом, то его сможет прочитать только Алиса, последовательно применяя ключи и. Если нужно отправить сообщение Бобу, сообщение шифруется ключом, Кэрол -- ключом. Если нужно отправить сообщение и Алисе и Кэрол, то для шифрования используются ключи и.

Преимущество этой схемы заключается в том, что для её реализации нужно только одно сообщение и n ключей (в схеме с n агентами). Если передаются индивидуальные сообщения, то есть используются отдельные ключи для каждого агента (всего n ключей) и каждого сообщения, то для передачи сообщений всем различным подмножествам требуется ключей.

Недостатком такой схемы является то, что необходимо также широковещательно передавать подмножество агентов (список имён может быть внушительным), которым нужно передать сообщение. Иначе каждому из них придется перебирать все комбинации ключей в поисках подходящей. Также агентам придется хранить немалый объём информации о ключах.

Криптоанализ алгоритмов с открытым ключом Казалось бы, что криптосистема с открытым ключом -- идеальная система, не требующая безопасного канала для передачи ключа шифрования. Это подразумевало бы, что два легальных пользователя могли бы общаться по открытому каналу, не встречаясь, чтобы обменяться ключами. К сожалению, это не так. Рисунок иллюстрирует, как Ева, выполняющая роль активного перехватчика, может захватить систему (расшифровать сообщение, предназначенное Бобу) без взламывания системы шифрования.

Рисунок 3. Криптосистема с открытым ключом и активным перехватчиком В этой модели Ева перехватывает открытый ключ, посланный Бобом Алисе. Затем создает пару ключей и, «маскируется» под Боба, посылая Алисе открытый ключ, который, как думает Алиса, открытый ключ, посланный ей Бобом. Ева перехватывает зашифрованные сообщения от Алисы к Бобу, расшифровывает их с помощью секретного ключа, заново зашифровывает открытым ключом Боба и отправляет сообщение Бобу. Таким образом, никто из участников не догадывается, что есть третье лицо, которое может как просто перехватить сообщение, так и подменить его на ложное сообщение. Это подчеркивает необходимость аутентификации открытых ключей. Для этого обычно используют сертификаты. Распределённое управление ключами в PGP решает возникшую проблему с помощью поручителей.

Ещё одна форма атаки -- вычисление закрытого ключа, зная открытый (рисунок ниже). Криптоаналитик знает алгоритм шифрования, анализируя его, пытается найти. Этот процесс упрощается, если криптоаналитик перехватил несколько криптотекстов, посланных лицом A лицу B.

Рисунок 4. Ассиметричная криптосистема с пассивным перехватчиком.

Большинство криптосистем с открытым ключом основаны на проблеме факторизации больших чисел. К примеру, RSA использует в качестве открытого ключа n произведение двух больших чисел. Сложность взлома такого алгоритма состоит в трудности разложения числа n на множители. Но эту задачу решить реально. И с каждым годом процесс разложения становится все быстрее. Ниже приведены данные разложения на множители с помощью алгоритма «Квадратичное решето».

Также задачу разложения потенциально можно решить с помощью Алгоритма Шора при использовании достаточно мощного квантового компьютера.

Для многих методов несимметричного шифрования криптостойкость, полученная в результате криптоанализа, существенно отличается от величин, заявляемых разработчиками алгоритмов на основании теоретических оценок. Поэтому во многих странах вопрос применения алгоритмов шифрования данных находится в поле законодательного регулирования. В частности, в России к использованию в государственных и коммерческих организациях разрешены только те программные средства шифрования данных, которые прошли государственную сертификацию в административных органах, в частности, в ФСБ.

Заключение В ходе выполнения работы над выбранной темой в рамках учебной практики мною были проведены: обзор истории развития криптографии и криптоанализа; аналитический обзор существующих типов криптографических алгоритмов (рассмотрены симметричные и асимметричные шифры) и методы оценки их стойкости. Надеюсь, что развитие криптографии пойдет человечеству только на пользу.

Список литературы Гатчин Ю. А. , Коробейников А. Г. Основы криптографических алгоритмов. Учебное пособие. — СПб.: СПбГИТМО (ТУ), 2002.

Кон П. Универсальная алгебра. — М.: Мир. — 1968

Коробейников А. Г. Математические основы криптографии. Учебное пособие. СПб: СПб ГИТМО (ТУ), 2002.

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си = Applied Cryptography. Protocols, Algorithms and Source Code in C. -- М.: Триумф, 2002.



Рекомендуем почитать

Наверх