Основные тенденции развития цифровых устройств. Тенденции развития вычислительной техники

Авто 21.10.2019
Авто

Цифровые технологии дали возможность создать ряд современных аппаратных средств, которые оказывают существенную помощь работе правоохранительных органов. К ним относятся мобильная сотовая связь, цифровые диктофоны, цифровые фото- и видеокамеры.

Связь называют мобильной, если источник информации или ее получатель (или оба) перемещаются в пространстве. Сущность сотовой связи заключается в разделении пространства на небольшие участки - соты (или ячейки радиусом 1-5 км) и отделении радиосвязи в пределах одной ячейки от связи между ячейками. Это позволяет использовать в разных сотах одни и те же частоты. В центре каждой ячейки располагается базовая (приемно-передающая) радиостанция для обеспечения радиосвязи в пределах ячейки со всеми абонентами. У каждого абонента своя микрорадиостанция - мобильный телефон - комбинация телефона, приемопередатчика и мини-компьютера. Абоненты связываются между собой через базовые станции, соединенные друг с другом и с городской телефонной сетью. Каждая ячейка сотов обслуживается базовым радиопередатчиком с ограниченным радиусом действия и фиксированной частотой. Это дает возможность повторно использовать ту же частоту в других сотах. Во время разговора сотовый радиотелефон соединен с базовой станцией радиоканалом, по которому передается телефонный разговор. Размеры ячейки сотов определяются максимальной дальностью связи радиотелефонного аппарата с базовой станцией. Эта максимальная дальность является радиусом соты.

Идея мобильной сотовой связи состоит в том, что, еще не выйдя из зоны действия одной базовой станции, мобильный телефон попадает в зону действия любой соседней вплоть до наружной границы всей зоны сети.

Для этого созданы системы антенн-ретрансляторов, перекрывающих свою соту - область поверхности Земли. Для обеспечения надежности связи расстояние между двумя соседними антеннами должно быть меньше радиуса их действия. В городах оно составляет около 500 м, а в сельской местности около 2-3 км. Мобильный телефон может принимать сигналы сразу от нескольких антенн- ретрансляторов, но настраивается он всегда на самый мощный сигнал.

Идея мобильной сотовой связи заключается еще и в применении компьютерного контроля за телефонным сигналом от абонента, когда он переходит от одной сотовой ячейки к другой. Именно компьютерный контроль позволил в течение всего лишь тысячной доли секунды переключать мобильный телефон с одного промежуточного передатчика на другой. Все происходит так быстро, что абонент просто этого не замечает.

Центральной частью системы сотовой мобильной связи являются компьютеры. Они отыскивают абонента, находящегося в любой из сот и подключают его к телефонной сети. Когда абонент перемещается из одной ячейки в другую, они передают абонента с одной базовой станции на другую.

Важным преимуществом мобильной сотовой связи является возможность пользоваться ею вне общей зоны своего оператора - роуминг. Для этого различные операторы договариваются между собой о взаимной возможности пользования своими зонами для пользователей. При этом пользователь, покидая общую зону своего оператора, автоматически переключается на зоны других операторов даже при перемещении из одной страны в другую, например из России в Германию или во Францию. Либо, находясь в России, пользователь может звонить по сотовой связи в любую страну. Таким образом, сотовая связь обеспечивает пользователю возможность связываться по телефону с любой страной, где бы он ни находился. Ведущие компании-производители сотовых телефонов ориентируются на единый европейский стандарт - GSM.

Диктофон (от лат. dido - говорю, диктую) - это разновидность магнитофона для записи речи в целях, например, последующего печатания ее текста. Диктофоны делятся на механические, в которых в качестве накопителя информации используются стандартные кассеты или микрокассеты с магнитной пленкой, и цифровые.

Цифровые диктофоны отличаются от механических полным отсутствием подвижных деталей. В них в качестве накопителя информации вместо магнитной пленки используется твердотельная флэш-память.

Цифровая фотография позволяет оперативно и без использования дорогостоящих, длительных и вредных для здоровья химических процессов получать в цифровой форме качественные фотографии.

Принцип работы цифровой фотокамеры заключается в том, что ее оптическая система (объектив) проецирует уменьшенное изображение фотографируемого объекта на миниатюрную полупроводниковую матрицу из светочувствительных элементов, так называемый прибор с зарядовой связью ПЗС (CCD). ПЗС-матрица - это аналоговое устройство: электрический ток возникает в пикселе изображения в прямом соотношении с интенсивностью падающего света. Чем выше плотность пикселей в ПЗС-матрице, тем более высокое разрешение будет давать фотокамера. Далее полученный аналоговый сигнал с помощью цифрового процессора преобразуется в оцифрованное изображение, которое сжимается в формат JPEG (или аналогичный ему) и затем записывается в память камеры. Емкостью этой памяти определяется число снимков. В качестве памяти цифровых фотокамер используются различные накопители - дискеты, карточки флэш-памяти, оптические диски CD-RW и др. Запомненные электрические сигналы в виде картинки можно вывести на экран компьютера, телевизора, напечатать на бумаге с помощью принтера или передать по электронной почте в любую страну. Чем больше пикселей содержит ПЗС-матрица, тем больше четкость цифрового фотоизображения. В матрицах современных цифровых фотоаппаратов число пикселей - от 2 млн до 6 млн и более.

Цифровой фотоаппарат снабжен миниатюрным жидкокристаллическим дисплеем, на котором сделанный снимок появляется сразу же после нажатия кнопки. Никакого проявления и закрепления изображения (как в традиционной фотографии) при этом не требуется. Если снимок не понравился, его можно «стереть» и на его место поместить новый. Единственное, что в цифровом фотоаппарате осталось от традиционной фотографии, - это объектив.

В цифровой фотографии полностью исключено использование светочувствительных материалов с солями дефицитного серебра. По сравнению с традиционными, цифровые фотокамеры содержат значительно меньшее количество механических подвижных деталей, что обеспечивает их высокую надежность и долговечность.

Во многих цифровых фотокамерах используются вариообъективы с переменным фокусным расстоянием - трансфокаторы или zoom-объективы), обеспечивающие оптическое (чаще всего трехкратное) увеличение. Это означает, что при фотосъемке можно, не сходя с места, зрительно приблизить или отдалить снимаемый объект, причем это можно делать постепенно. Кроме того, применяется и цифровое увеличение, при котором фрагмент изображения растягивается на весь экран.

Еще одно преимущество цифровых фотокамер - возможность не только делать фотографии, но и снимать короткие видеосюжеты длительностью до нескольких минут. В наиболее совершенных цифровых фотокамерах имеется встроенный микрофон, позволяющий снимать видеосюжеты со звуком.

Введенные в компьютер цифровые фотографии могут быть подвергнуты обработке, например кадрированию (выделению отдельных участков с увеличением), изменению яркости и контрастности, цветового баланса, ретуши и т.д. В компьютере можно создавать альбомы цифровых фотографий, которые можно просматривать либо последовательно, либо в режиме слайд-фильма.

Качество цифровых фотоснимков уже сегодня не уступает качеству обычных. Можно предположить, что в ближайшие годы цифровая фотография полностью вытеснит традиционную.

Видеокамеры позволяют записывать движущееся изображение со звуком. В современных видеокамерах оптическое изображение, так же как в цифровых фотокамерах, преобразуется в электрическое с помощью ПЗС-матрицы. В них также не нужна кинопленка, не требуется проявление и закрепление. Изображение в них записывается на магнитную видеопленку. Однако для записи вдоль магнитной ленты (как это осуществляется при записи звука) потребовалась бы очень высокая скорость ее движения - более 200 км/ч (приблизительно в 10 000 раз большая, чем при записи звука): человек слышит звуки в диапазоне частот от 20 до 20 000 Гц. Качественная запись звука осуществляется в этом диапазоне. Для записи видеоизображения требуются гораздо более высокие частоты - свыше 6 МГц.

Вместо того чтобы увеличивать скорость движения магнитной ленты при записи и воспроизведении изображения, магнитные головки в видеокамере и видеомагнитофоне закреплены на вращающемся с высокой скоростью барабане, а сигналы записываются не вдоль, а поперек ленты. Ось вращения барабана наклонена к ленте, а его магнитная головка при каждом обороте записывает на ленте наклонную строчку. При этом плотность записи значительно увеличивается, а магнитная лента должна двигаться сравнительно медленно - со скоростью всего 2 мм/с. Они записывают цветное изображение и звук (с помощью встроенного микрофона), обладают высочайшей чувствительностью. Измерение яркости изображения, установка диафрагмы и наводка на резкость полностью автоматизированы. Результат видеосъемки можно просмотреть сразу же, ведь никакой проявки пленки (как при киносъемке) не требуется.

Видеокамеры снабжаются высококачественными объективами. В наиболее дорогих видеокамерах используются вариообъективы с переменным фокусным расстоянием, обеспечивающие оптическое 10-кратное увеличение. Это означает, что при видеосъемке можно, не сходя с места, приблизить или отдалить снимаемый объект, причем это можно делать постепенно. Кроме того, применяется и цифровое увеличение до 400 раз и более, при котором фрагмент изображения растягивается на весь экран. Применяется также система стабилизации изображения, которая корректирует дрожание камеры с большой точностью и в широких пределах.

Применение ПЗС-матриц обеспечивает видеокамерам высочайшую чувствительность, дающую возможность снимать почти в полной темноте (при свете костра или свечи).

В видеофильме, как и в звуковом кинофильме, движущееся изображение и звук записываются на один и тот же носитель информации - магнитную видеопленку. Наиболее распространенный бытовой стандарт видеозаписи - домашнее видео (video home system, VHS). Ширина магнитной пленки в этом стандарте - 12,5 мм. Для портативных видеокамер применяется уменьшенная кассета с пленкой той же ширины - VHS Compact.

Фирма Sony разработала и выпускает миниатюрные видеокассеты стандарта Video-S (Ш8). Ширина пленки в них равна 8 мм. Это позволило уменьшить габариты портативных бытовых видеокамер. Наиболее совершенные из них для контроля изображения во время видеосъемки помимо видоискателя снабжены миниатюрным цветным жидкокристаллическим дисплеем. С их помощью можно просмотреть только что отснятый видеофильм прямо на съемочной видеокамере. Другой способ просмотра - на экране телевизора. Для этого выход видеокамеры соединяют со входом телевизора.

Переход на цифровой метод записи позволяет избежать потери качества даже при многократной перезаписи. В 1995 г. консорциум 55 ведущих производителей электроники, в том числе Sony, Philips, Hitachi, Panasonic и JVC, приняли цифровой формат видеозаписи на магнитную пленку DVC (digital video cassette ) или DV (digital video). Уже в конце 1995 г. Sony представила первую DV-видеокамеру. Теперь цифровой видеофильм можно перенести с видеокамеры на винчестер компьютера и обратно непосредственно, без всяких сложных преобразований.

Каждому кадру на магнитной ленте соответствуют 12 наклонных строк-дорожек шириной 10 мкм. На каждой из них, кроме записи аудио- и видеоинформации, часа, минуты, секунды и порядкового номера кадра, есть возможность записать дополнительную информацию о видеосъемке. Все DV-камеры могут работать в режиме фотосъемки и фиксировать отдельные изображения со звуковым сопровождением в течение 6-7 с. Они превращаются в цифровые фотоаппараты с емкостью 500-600 кадров. Создан уже и D V-видеомагнитофон.

Наряду с цифровым форматом DV фирма Sony разработала новую цифровую технологию Digital 8, которая призвана стереть границу между аналоговыми и цифровыми форматами. Она позволяет использовать цифровую запись DV на обычной кассете Ш8, применявшейся для аналоговой записи.

Выпускаются цифровые видеокамеры без видеокассеты. Изображение в них записывается на жесткий съемный диск (винчестер). Записанный в цифровом формате видеофильм можно просмотреть на персональнрм компьютере или преобразовать его в аналоговый сигнал и посмотреть по телевизору. Запись ведется со сжатием информации в формате МРЕв/ЗРЕв, стандартном для компьютеров, поэтому ее можно просматривать и даже редактировать на мониторе персонального компьютера.

В новейших видеокамерах вместо магнитной ленты для записи видеоизображения применены перезаписываемые оптические ЭУО- ИЛУ-диски. Записанный на них диск можно сразу же вставить в БУО-плеер для просмотра. Благодаря малому диаметру диска (8 см) габариты видеокамеры такие же, как и у обычных - с использованием кассет с магнитной пленкой. Время записи на ОУО-диске составляет 30 мин, а в «режиме экономии» - 60 мин с некоторым понижением качества видеоизображения.

Цифровым видеокамерам, фотокамерам, диктофонам без подвижных узлов и деталей принадлежит будущее. Они более надежны, долговечны, легки и миниатюрны, не боятся встрясок при ходьбе, ударов.

Контрольные вопросы

1. Что понимается под аппаратным и программным обеспечениемкомпьютера? 2. Назовите отличительные особенности ПК типа 1ВМ РС. 3. Рассмотрите историю клона 1ВМ РС по типу используемогомикропроцессора. 4. Каковы основные устройства входят в аппаратное обеспечениеПК? 5. Каково назначение системной шины и разъемов расширения ПК? 6. Как связаны быстродействие микропроцессора и быстродействие ПК? 7. Как влияют характеристики МП и памяти на производительность ПК? 8. Объясните назначение адаптеров и контроллеров. 9. Что такое аналого-цифровой (АЦП) и цифроаналоговый (ЦАП)преобразователи? 10. В чем различие между носителями и накопителями информации?}}

  • Назовите основные виды носителей и накопителей информациив компьютере. 12. В чем заключается различие между оперативной и долговременной памятью компьютера? 13. Назовите основные типы оптических компакт-дисков. 14. Что такое флэш-память? 15. В чем заключается разница между принтером и плоттером?

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Современные тенденции развития радиопередающей техники

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

Радиопередатчики, в которых используются цифровые способы формирования, обработки и преобразования колебаний и сигналов, будем далее называть цифровыми радиопередающими устройствами (ЦРПдУ).

Рассмотрим современные требования к РПдУ, которые ставят проблемы, не решаемые в принципе методами аналоговой схемотехники, что вызывает необходимость применения цифровых технологий в РПдУ.

В области телекоммуникаций и вещания можно выделить следующие основные непрерывно возрастающие требования к системам передачи информации, элементами которых являются РПдУ:

Обеспечение помехоустойчивости в перегруженном радиоэфире;

Повышение пропускной способности каналов;

Экономичность использования частотного ресурса при многоканальной связи;

Улучшение качества сигналов и электромагнитной совместимости.

Стремление удовлетворить этим требованиям приводит к появлению новых стандартов связи и вещания. Среди уже известных GSM, DECT, SmarTrunk II, TETRA, DRM и др.

Основным направлением развития систем связи является обеспечение множественного доступа, при котором частотный ресурс совместно и одновременно используется несколькими абонентами. К технологиям множественного доступа относятся TDMA, FDMA, CDMA и их комбинации. При этом повышают требования и к качеству связи, т.е. помехоустойчивости, объему передаваемой информации, защищенности информации и идентификации пользователя и пр. Это приводит к необходимости использования сложных видов модуляции, кодирования информации, непрерывной и быстрой перестройки рабочей частоты, синхронизации циклов работы передатчика, приемника и базовой станции, а также обеспечению высокой стабильности частоты и высокой точности амплитудной и фазовой модуляции при рабочих частотах, измеряемых гигагерцами. Что касается систем вещания , здесь основным требованием является повышение качества сигнала на стороне абонента, что опять же приводит к повышению объема передаваемой информации в связи с переходом на цифровые стандарты вещания. Крайне важна также стабильность во времени параметров таких радиопередатчиков - частоты, модуляции. Очевидно, что аналоговая схемотехника с такими задачами справиться не в состоянии, и формирование сигналов передатчиков необходимо осуществлять цифровыми методами.

Современную радиопередающую технику невозможно представить без встроенных средств программного управления режимами работы каскадов, самодиагностики, автокалибровки, авторегулирования и защиты от аварийных ситуаций, в том числе автоматического резервирования. Такие функции в передатчиках осуществляют специализированные микроконтроллеры, иногда совмещающие функции цифрового формирования передаваемых сигналов. Часто используется дистанционное управление режимами работы при помощи удаленного компьютера через специальный цифровой интерфейс. Любой современный передатчик или трансивер обеспечивает определенный уровень сервиса для пользователя , включающий цифровое управление передатчиком (например, с клавиатуры) и индикацию режимов работы в графической и текстовой форме на экране дисплея. Очевидно, что здесь не обойтись без микропроцессорных систем управления передатчиком, определяющих его важнейшие параметры.

Производство передатчиков такого уровня сложности было бы экономически невыгодно в случае их аналогового исполнения. Именно средства цифровой микросхемотехники, позволяющие заменить целые блоки обычных передатчиков, дают возможность существенно улучшить массогабаритные показатели передатчиков (вспомните сотовые телефоны), достичь повторяемости параметров, высокой технологичности и простоты в их изготовлении и настройке.

Очевидно, что появление и развитие цифровых радиопередающих устройств явилось неизбежным и необходимым этапом истории радиотехники и телекоммуникаций, позволив решить многие насущные задачи, недоступные аналоговой схемотехнике.

В качестве примера рассмотрим вещательный цифровой радиопередатчик HARRIS PLATINUM Z (рис.1.1), обладающий следующими основными особенностями (информация на www.pirs.ru):

А) Полностью цифровой FM-возбудитель HARRIS DIGITTM с встроенным стереогенератором с цифровой обработкой сигнала. Будучи первым в мире полностью цифровым FМ-возбудителем, HARRIS DIGITTM принимает звуковые частоты в стандарте AES/EBU в цифровом виде и генерирует максимально модулированную несущую радиочастоту полностью в цифровом режиме, благодаря чему уровень помех и искажений ниже, чем в любом другом FM-передатчике (16-битовое цифровое качество ЗЧ).

Б) Система быстрого пуска обеспечивает достижение полной мощности по всем показателям в течение 5 секунд после включения.

В) Контроллер на микропроцессорах позволяет осуществлять полный контроль, диагностику и вывод на дисплей. Включает в себя встроенную логику и команды для переключения между основными/дополнительными HARRIS DIGITTM возбудителями и предварительным усилителем мощности (ПУМ).

Г) Широкополосная схема позволяет отказаться от настройки в диапазоне от 87 до 108 МГц (при варианте N+1). Изменение частоты можно произвести вручную переключателями менее чем за 5 минут, и менее чем за 0,5 сек с помощью дополнительного внешнего контроллера.

Рис.1.1

Еще одним примером цифрового радиопередатчика может послужить устройство для беспроводной передачи данных BLUETOOTH (информация www.webmarket.ru), который будет подробнее рассмотрен в п.3.1 (рис.1.2 и табл.1.1).

Рис.1.2.

Табл.1.1. Краткие спецификации Bluetooth

Итак, выделим основные области применения цифровых технологий формирования и обработки сигналов в радиопередающих устройствах.

1. Формирование и преобразование аналоговых и цифровых информационных НЧ сигналов, в т.ч. сопряжение компьютера с радиопередатчиком (групповые сигналы, кодирование, преобразование аналоговых сигналов в цифровые или наоборот).

2. Цифровые методы модуляции ВЧ сигналов.

3. Синтез частот и управление частотой.

4. Цифровой перенос спектра сигналов.

5. Цифровые методы усиления мощности ВЧ сигналов.

6. Цифровые системы автоматического регулирования и управления передатчиками, индикации и контроля.

Следующие разделы содержат более подробную информацию о каждой из названных областей применения цифровой техники в радиопередатчиках.

Список литературы

1. Цифровые радиоприемные системы / Под ред. М.И. Жодзишского. М.: Радио и связь, 1990. 208 с.

2. Повышение эффективности мощных радиопередающих устройств / Под ред. А.Д.Артыма. М.: Радио и связь, 1987. 175 с.

3. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов: Учеб. пособие для вузов. М.: Радио и связь, 1990. 256 с.

4. Семенов Б.Ю. Современный тюнер своими руками. М.: СОЛОН_Р. 2001. 352 с.

Подобные документы

    История развития и становления радиопередающих устройств, основные проблемы в их работе. Обобщенная структурная схема современного радиопередатчика. Классификация радиопередатчиков по разным признакам, диапазон частот как одна из характеристик приборов.

    реферат , добавлен 29.04.2011

    Общие сведения о Bluetooth’е, что это такое. Типы соединения, передача данных, структура пакета. Особенности работы Bluetooth, описание его протоколов, уровня безопасности. Конфигурация профиля, описание основных конкурентов. Спецификации Bluetooth.

    контрольная работа , добавлен 01.12.2010

    Характеристики радиопередающих устройств, их основные функции: генерация электромагнитных колебаний и их модуляции в соответствии с передаваемым сообщением. Проектирование функциональной схемы радиопередатчика и определение его некоторых параметров.

    реферат , добавлен 26.04.2012

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

    курсовая работа , добавлен 24.12.2006

    Задачи применения аналого-цифровых преобразователей в радиопередатчиках. Особенности цифро-аналоговых преобразователей (ЦАП) для работы в низкочастотных трактах, системах управления и специализированных быстродействующих ЦАП с высоким разрешением.

    курсовая работа , добавлен 15.01.2011

    Основные характеристики видео. Видеостандарты. Форматы записи. Методы сжатия. Современные мобильные видеоформаты. Программы, необходимые для воспроизведения видео. Современные видеокамеры. Носители цифрового видео. Спутниковое телевидение.

    реферат , добавлен 25.01.2007

    Что такое Bluetooth? Существующие методы решения отдельных задач. "Частотный конфликт". Конкуренты. Практический пример решения. Bluetooth для мобильной связи. Bluetooth-устройства. Декабрьский бум. Кто делает Bluetooth-чипы? Харольд Голубой Зуб.

    реферат , добавлен 28.11.2005

    Расчёт передатчика и цепи согласования. Расчёт структурной схемы и каскада радиопередатчика, величин элементов и энергетических показателей кварцевого автогенератора. Нестабильность кварцевого автогенератора и проектирование радиопередающих устройств.

    курсовая работа , добавлен 03.12.2010

    Современные виды электросвязи. Описание систем для передачи непрерывных сообщений, звукового вещания, телеграфной связи. Особенности использования витой пары, кабельных линий, оптического волокна. Назначение технологии Bluetooth и транковой связи.

    реферат , добавлен 23.10.2014

    Основные тенденции развития рынка данных дистанционного зондирования Земли в последнее десятилетие. Современные космические ДДЗ высокого разрешения. Спутники сверхвысокого разрешения. Перспективные картографические комплексы Cartosat-1 и Cartosat-2.

В современной технике радиоприема достигнут серьезный прогресс, обусловленный интенсивным внедрением цифровой микросхемотехники. Имеющиеся микросхемы дают возможность разрабатывать приемники с высокой чувствительностью, лучшей избирательностью по зеркальному каналу, меньшими частотными и нелинейными искажениями, а также позволяют решить ряд проблем новыми путями. В частности, сигнальные микропроцессоры обеспечивают оптимальное качество приема в условиях помех, управление автопоиском, электронную память десятков радиостанций, коммутацию программ, работу таймера, включающего и выключающего приемник по заданной программе. Используются цифровая и обзорная настройки.

Для дистанционного управления приемниками в пределах одного помещения применяют ультразвуковые и инфракрасные линии связи. Сигналы управления с пульта дистанционного управления поступают на кодирующее устройство, в котором генерируется последовательность импульсов, поступающая на фотодиод, где осуществляется ИКМ инфракрасного излучения. Промодулированное излучение поступает на приемник (фототранзистор), затем на усилитель и декодирующее устройство и, наконец, на устройство управления.

Несомненные достоинства сулит использование систем цифрового радиовещания. Цифровая система передачи звука уже давно работает в каналах спутниковой связи и спутникового радиовещания, а также используется для цифровой звукозаписи музыкальных композиций.

Цифровое вещание обеспечивает неискаженное воспроизведение звука: полосу воспроизводимых частот 5-20 000 Гц, коэффициент нелинейных искажений менее 90 дБ, практически полное отсутствие внешних помех, а также позволяет осуществить стереофоническое вещание. Недостатком цифрового вещания является широкая полоса частот порядка 8 МГц, занимаемая одной радиостанцией, что определяет диапазоны несущих частот цифрового вещания. Цифровое вещание позволяет просто реализовать вывод информации на дисплей, режим повтора, запоминание сообщений и т.д.

Упрощенная структурная схема современного цифрового приемника показана на рис. 7.20. В этой схеме усилительный тракт (УТ) выполнен на аналоговых элементах и производит предварительную частотную фильтрацию принятого сигнала, усиление и преобразование его частоты.

Рис. 7.20.

АЦП преобразует аналоговый сигнал в цифровой код, который подается на собственно цифровой приемник. Последний представляет собой сигнальный процессор (СП), осуществляющий цифровую обработку принятого сигнала по заданному алгоритму. Такой алгоритм включает задачу поиска сигнала по диапазону, дополнительного преобразования частоты, фильтрацию, детектирование и т.д. Если необходим сигнал в аналоговой форме, то на выходе приемника вводится ЦАП. Перестройка приемника по каналам производится с помощью синтезатора частоты (СЧ).

Сейчас все большее внимание уделяется использованию в бытовой радиоаппаратуре систем управления и оповещения человеческим голосом. Команды оператора подтверждаются синтезированным человеческим голосом. Сигнал управления превращается в цифровую форму и поступает в микропроцессор управления.

Системы распознавания голоса станут частью приемников, которые будут выполнять команды определенного человека. После исполнения команды микропроцессор вырабатывает сигнал ответа, который поступает в синтезатор человеческой речи, и громкоговоритель воспроизводит ответ.

Внедрение автоматизированных систем управления подстанциями представляет собой сложную задачу, плохо поддающуюся унификации. Появление новых международных стандартов и информационных технологий открывает возможности современных подходов к решению этой проблемы, позволяя создать подстанцию нового типа — цифровую. Широкие перспективы в этом направлении открывают группы стандартов МЭК 61850 (сети и системы связи на подстанциях).

Основной особенностью и отличием стандарта МЭК 61850 является то, что в нем регламентируются не только вопросы передачи информации между отдельными устройствами, но и вопросы формализации описания схем подстанции и защиты, автоматики и измерений, конфигурации устройств. В стандарте предусматриваются возможности использования новых цифровых измерительных устройств вместо традиционных аналоговых измерителей (трансформаторов тока и напряжения). Информационные технологии позволяют перейти к автоматизированному проектированию цифровых подстанций, управляемых цифровыми интегрированными системами. Все информационные связи на таких подстанциях выполняются цифровыми, образующими единую шину процесса. Это дает возможность быстрого прямого обмена информацией между устройствами, что дает возможность сокращения количества кабельных связей, сокращения числа микропроцессорных устройств и более компактного их расположения.

Цифровые технологии более экономичны на всех стадиях внедрения: при проектировании, монтаже, наладке и в эксплуатации. Они обеспечивают возможность расширения и модернизации системы в процессе эксплуатации.

Сегодня во всем мире выполнено уже много проектов, связанных с применением стандарта МЭК 61850, показавших преимущества данной технологии. Вместе с тем ряд вопросов еще требует дополнительных проверок и решений. Это относится к надежности цифровых систем, к вопросам конфигурирования устройств на уровне подстанции и энергообъединения, к созданию общедоступных инструментальных средств проектирования, ориентированных на разных производителей микропроцессорного и основного оборудования.

В таблице приводится сравнение традиционных и цифровых подстанций, а также соображения о преимуществах использования цифровых источников информации.

Первым крупным пилотным проектом по внедрению стандарта МЭК 61850 стала подстанция TVA Bradley 500 кВ США, введенная в эксплуатацию в 2008 г. Цель проекта заключалась в проверке совместимости реализации стандарта МЭК 61850 в устройствах различных производителей. Внедрение проекта позволило улучшить совместимость между устройствами различных производителей, повысить квалификацию персонала сетевой компании в части стандарта МЭК 61850, а также выявить проблемы, возникающие при его внедрении.

В 2009 г. в Испании была завершена работа над пилотным проектом подстанции Alcala de Henares 132 кВ (г. Мадрид). В реализации проекта также использовались устройства различных производителей. Особенностью данного проекта являлось экспериментальное внедрение «Шины процесса» в части передачи дискретной информации. Системы РЗА и АСУ ТП на подстанции можно условно разделить на 4 уровня: верхний, станционный, уровень присоединения, (устройства МПРЗА и контроллеры присоединения) и полевой, включающий приборы, установленные на распределительном устройстве.

В непосредственной близости с коммутационными аппаратами на распределительном устройстве были установлены выносные модули УСО (MicroRTU), которые с помощью оптических кабелей подключались к коммутаторам, установленным в ОПУ. Все информация о состоянии коммутационных аппаратов, а также команды управления ими передавались по цифровым каналам связи (с помощью GOOSE-сообщений). На MicroRTU была реализована лишь простейшая логика с целью повышения надежности этих устройств. Функции оперативной блокировки были реализованы в устройствах уровня присоединения. Таким образом, на подстанции были внедрены следующие виды информационных потоков:
. вертикальный GOOSE для обмена информацией между MicroRTU и устройствами уровня присоединения;
. диагональный GOOSE для обмена информацией между MicroRTU одного присоединения и устройствами защиты и управления другого (например, для быстрого информирования этих устройств об отказе выключателя);
. горизонтальный GOOSE для обмена информацией между устройствами уровня присоединения (для целей организации оперативных блокировок, пуска осциллографа и т.д.);
. передача динамической информации по протоколу MMS от устройств уровня присоединения на станционный уровень;
. команды управления со станционного уровня на уровень присоединения по протоколу MMS.

Команды управления проходили через контроллеры присоединения, которые транслировали эти команды в GOOSE-сообщения для MicroRTU, что позволяло на уровне контроллеров присоединения осуществить функции оперативной блокировки.

На подстанции Alcala de Henares не были внедрены цифровые трансформаторы тока и напряжения. Однако проект является крайне интересным с точки зрения использования «Шины процесса» для передачи дискретной информации.

Тестирование цифровых трансформаторов тока и напряжения в реальных условиях работы происходило на подстанции Osbaldwick 400 кВ, которая принадлежит национальной сети NGT U.K. Проводились эксперименты, цель которых заключалась в сравнении временных характеристик МПРЗА на базе традиционных трансформаторов тока и МПРЗА на базе цифровых трансформаторов тока с использованием Mergin Units (устройств, передающих информацию о мгновенных значениях токов и напряжений по протоколу МЭК 61850-9 SMV). Результаты показали хорошие эксплуатационные характеристики цифровых трансформаторов и МПРЗА, построенных на цифровых технологиях.

Большое развитие цифровые подстанции получили в Китае. В 2006 г. была введена в эксплуатацию первая цифровая подстанция 110 кВ Qujing, Yunnan. К 2009 г. Китай занял лидирующее место в мире по цифровым подстанциям, введя в эксплуатацию 70 подстанций. Ожидается, что рынок цифровых подстанций в Китае вырастет до 4—4,5 млрд юаней в год за ближайшие 10 лет.

ОАО «НИИПТ» активно проводит исследования в области цифровых подстанций. В 2008—2010 гг. был создан испытательный стенд для проверки работы АСУ ТП с устройствами различных производителей по различным протоколам и интерфейсам. Большая часть устройств в комплексе работает по стандарту МЭК 61850: Satec SA330, Siemens Siportec 4 (7SJ64, 7UT63), Siemens TM1703, AK1703, BC1703, Areva Micom, General Electric (F60), SEL-451, Mikronika, ZIV 7IRV, МКПА Прософт, МПРЗА ЭКРА.

Для автоматизации процесса подключения устройств был создан конфигуратор МЭК 61850, позволяющий экспортировать конфигурацию из устройства в базу данных АСУ ТП. Таким образом, удалось значительно упростить интеграцию устройств различных производителей в АСУ ТП.

Создание стенда позволило оценить сложность интеграции устройств, работающих по различным протоколам в АСУ ТП. Результаты испытаний показали, что интеграция устройств, работающих по стандарту МЭК 61850, требует значительно меньше времени за счет автоматизации процесса подключения.

В рамках испытаний также проводилась проверка совместимости устройств по протоколу GOOSE. Стендовые испытания показали, что не всегда удается обеспечить совместную работу устройств различных производителей по протоколу GOOSE.

С внедрением стандарта МЭК 61850 появилась возможность производить тестирование компонентов и всего комплекса АСУ ТП без наличия необходимого количества устройств нижнего уровня. Для решения указанной задачи устройства замещаются необходимым количеством серверов МЭК 61850 (эмуляторов). Модель данных устройств загружается на серверы в виде ICD-файлов. Для осуществления таких испытаний в ОАО «НИИПТ» был разработан сервер МЭК 61850, позволяющий тестировать взаимодействие интеллектуальных электронных устройств на цифровой подстанции без наличия необходимого количества устройств нижнего уровня.

В ОАО «НИИПТ» активно ведутся работы по созданию автоматизированной системы проектирования для цифровых подстанций, которая позволит использовать преимущества МЭК 61850-6 (SCL) и CIM-моделирования в процессе проектирования подстанций.

Зарубежный и отечественный опыт внедрения систем на базе стандарта МЭК 61850 показывает, что на современном этапе необходимо уделять повышенное внимание вопросам надежности всего цифрового комплекса устройств подстанции. Для этого все устройства должны проходить вначале тестирование на функциональное соответствие стандарту. Поскольку это тестирование представляет само по себе достаточно сложную задачу, для ее решения необходимо создание специального сертификационного центра, который мог бы осуществлять в полном объеме тестирование на соответствие стандарту любых устройств.

Помимо разовых сертификационных испытаний должны быть организованы длительные испытания на надежность, которые наиболее целесообразно проводить в полной схеме действующей подстанции в реальных эксплуатационных условиях. Испытаниям должны подвергаться в первую очередь цифровые источники информации. Для решения этих задач целесообразно, по опыту США, создать пилотную цифровую подстанцию, оборудованную полным комплектом цифровых измерительных устройств и микропроцессорных устройств защиты, регулирования и измерений.

Создание пилотной цифровой подстанции должно обеспечить решение следующих целей и задач:
. проверку открытости архитектуры цифровой подстанции для защиты, управления и сбора данных;
. тестирование новых цифровых измерительных устройств вместо традиционных аналоговых измерителей (трансформаторов тока и напряжения);
. проверку совместимости интеллектуальных Электронных устройств (ИЭУ) разных производителей, реализующих функции управления и защиты. Проверку настройки системы средствами, предоставленными производителями устройств без необходимости постоянной поддержки со стороны самих производителей;
. оценку сопоставимой функциональности и производительности по сравнению с традиционным принципом исполнения подстанций при значительном уменьшении площадей, занимаемых оборудованием контроля и управления;
. оценку уровня безопасной и надежной работы системы в целом, основанной на своевременной и надежной передаче данных;
. оценку экономической эффективности проекта; опыт, полученный в рамках проекта, должен быть повторно использован для других подстанций;
. упрощение эксплуатации: мониторинг и диагностика сети для уменьшения времени обслуживания, мониторинг работоспособности системы;
. тестирование эффективного высокоскоростного управления передачей данных; проверка обмена данными между ИЭУ;
. разработку методологии тестирования и проверки системы, в том числе возможность проверки любого ИЭУ с сохранением работоспособности других ИЭУ в одной сети;
. разработку и тестирование инструментов и методологии автоматизированного проектирования системы, соответствующих новым функциям и принципам работы системы; разработку русифицированных и адаптированных под российские стандарты инструментов;
. разработку специального нормативного документа на базовые алгоритмы логики для ИЭУ.

12.5. ТЕНДЕНЦИИ РАЗВИТИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ

Использование достижений микроэлектроники и вычислительной техники в электроизмерительной технике определяют в настоящее время одну из основных тенденций ее развития, для которой характерна компьютеризация средств измерений. Рассмотрим характерные формы проявления этой тенденции.

Прежде всего, она проявляется в постепенной замене аналоговых средств измерений цифровыми, которые, в свою очередь, становятся все более универсальными и «интеллектуальными».

В качестве примера рассмотрим этапы развития производства осциллографов на фирме «Хьюлет-Пакард» - одной из ведущих в этой области. Свои первые ламповые осциллографы НР130А и НР150А фирма выпустила еще в 1956 г., а первый полупроводниковый (НР180А) - в 1966 г. К 80-м годам этой и другими фирмами было выпущено огромное количество аналоговых осциллографов различного назначения, причем многие из них обладали прекрасными техническими характеристиками. Однако уже в 1980 г. фирма «Хьюлет-Пакард» пришла к выводу, что цифровая техника может предложить лучшее и более дешевое решение задачи регистрации, отображения и обработки аналоговых сигналов, а с 1986 г. вообще прекратила выпуск аналоговых осциллографов, заменив их цифровыми. В 1992 г. фирма выпускала уже целую серию цифровых осциллографов; в эту модульную серию 54700 входит, в частности, сменный блок 54721 А с полосой 1 ГГц и частотой дискретизации 4 Готсчет/с.

Аналогичный процесс прошел на фирме «Голд» (Gould, США). Свой первый цифровой осциллограф фирма выпустила в 1975 г., а в 1988 г. прекратила выпуск аналоговых. В 1992 г. фирма выпускала 15 моделей цифровых осциллографов с полосой от 7 до 200 МГц и частотой дискретизации от 0,02 до 1,6 Готсчет/с.

Если для визуального наблюдения исследуемых процессов достаточно разрешения 8 бит, то для более сложного и точного анализа этого часто недостаточно. Поэтому постоянно ведется работа по повышению точности цифровых осциллографов. Например, фирма «Николь Инструмент корп.» (Nicolet Instrument Corp., США) предлагает осциллографы серии 400 с разрешением по вертикали 14 бит, что, конечно, недостижимо для аналоговых осциллографов.

Цифровые осциллографы не просто заменяли аналоговые, но и предоставляли потребителям новые возможности, связанные со способностью новых приборов хранить, выводить, обрабатывать и сравнивать параметры наблюдаемых сигналов. Современные цифровые осциллографы выполняют множество функций анализа сигналов, включая анализ спектра с использованием алгоритмов быстрого преобразования Фурье. В них может быть встроен принтер или плоттер, позволяющие получать твердую копию протокола или графика. Наличие узлов стандартных интерфейсов позволяет подключать цифровой осциллограф к персональному компьютеру и вычислительной сети; более того, он сам обладает возможностями небольшого компьютера. Подобные осциллографы одними из первых начали выпускать японские фирмы «Хиоки» (Hioki, модель 8850) и «Иокогава» (Yokogawa, модели 3655 и 3656).

На примере цифровых осциллографов можно проследить одно из направлений компьютеризации электроизмерительной техники. Создаются новые средства измерений с цифровой обработкой сигналов измерительной информации и возможностью построения на их основе измерительно-вычислительных систем различного назначения. В эти измерительные приборы и системы встраиваются элементы компьютерной техники, обеспечивающие цифровую обработку сигналов, самодиагностику, коррекцию погрешностей, связь с внешними устройствами и т.д.

Другое направление связано с появлением в начале 80-х годов и широким распространением персональных компьютеров (IBM PC и других). Если у потребителя есть такой компьютер, то у него фактически есть многие узлы компьютерного средства измерений: вычислительное устройство, дисплей, устройство управления, корпус, источники питания и др. Недостает лишь устройств ввода измерительной информации в компьютер (аналоговых измерительных преобразователей, устройств гальванического разделения, масштабирования, нормализации и линеаризации, АЦП и др.), ее предварительной обработки (если желательно освободить от этой работы компьютер) и специального программного обеспечения.

Поэтому в 80-х годах устройства ввода аналоговой измерительной информации в персональные компьютеры (ПК) начали серийно выпускаться в виде плат, встраиваемых в кросс ПК, в виде наборов модулей, встраиваемых в общий корпус (крейт) расширяемых шасси ПК, или в виде автономных функциональных модулей, подключаемых к ПК через внешние разъемы.

Эффективная предварительная обработка информации в такого рода устройствах стала возможной с появлением специализированных больших интегральных схем - цифровых процессоров сигналов (ЦПС). Первые однокристалльные ЦПС выпустила в 1980 г. японская фирма «НИСи корп.» (NEC Corp.), с 1983 г. аналогичную продукцию начали выпускать фирмы «Фуджицу» (Fujitsu, Япония) и «Техас Инструменте» (Texas Instruments, (США)); позднее к ним присоединились «Аналог Дивайсис» (США), «Моторола» (Motorola, США) и др.

Нужно отметить по меньшей мере две особенности компьютерных средств измерений. Во-первых, они могут быть весьма просто приспособлены для измерений различных величин; поэтому на их основе строятся универсальные средства измерений. Во-вторых, все большую долю в их себестоимости занимает стоимость программного обеспечения, освобождающего потребителя от выполнения многих рутинных операций и создающего ему максимум удобств при решении основных задач измерений.

Примером могут служить так называемые виртуальные средства измерений. В них программным путем на дисплее ПК формируется изображение лицевой панели измерительного прибора. Этой панели на самом деле физически не существует, а сам прибор состоит, например, из ПК и встроенной в него измерительной платы. Тем не менее у потребителя создается полная иллюзия работы с обычным прибором: он может нажимать на клавиши управления, выбирая диапазон измерения, режим работы и т.д., получая, в конце концов, результат измерения.

Дальнейшая микроминиатюризация электронных компонентов привела, начиная с 80-х годов, к развитию еще одного направления компьютеризации средств измерений - к созданию не только «интеллектуальных» приборов и систем, но и «интеллектуальных» датчиков.

Такой датчик содержит не только чувствительный элемент, но и сложное электронное устройство, состоящее из аналоговых и аналого-цифровых преобразователей, а также микропроцессорных устройств с соответствующим программным обеспечением. Конструкция «интеллектуального» датчика позволяет устанавливать его в непосредственной близости от объекта исследований и производить ту или иную обработку измерительной информации. При этом в центр сбора данных, который может находиться на значительном расстоянии от объекта, информация передается с помощью сигналов, обладающих высокой помехоустойчивостью, что повышает точность измерений.

В качестве примера рассмотрим технические возможности «интеллектуального» датчика абсолютного давления, выпускаемого японской фирмой «Фуджи» (FUJI, модель FKA), который обеспечивает измерение давления жидкости, газа или пара в диапазоне от 0,16 до 30 бар с погрешностью не более 0,2% в диапазоне рабочих температур от -40 до + 85°С. Он состоит из емкостного чувствительного элемента и электронного устройства, смонтированного в стальном корпусе объемом со спичечный коробок. Его питание осуществляется от внешнего источника постоянного тока с напряжением от 11 до 45 В, который может располагаться в нескольких километрах от датчика в центре сбора данных. Измерительная информация передается по проводам источника питания (двухпроводный датчик) в аналоговой форме - постоянным током от 4 до 20 мА, а также цифровым сигналом, наложенным на аналоговый.

Датчик может быть легко превращен в измерительный прибор путем установки на нем четырехразрядного цифрового жидкокристаллического индикатора или аналогового милливольтметра. Такими датчиками можно управлять с помощью специальных пультов и объединять их в измерительную систему. Каждый датчик осуществляет операции самодиагностики, линеаризации функции преобразования, масштабирования, установки диапазона измерений, температурной компенсации и т.д.

Наряду с компьютеризацией электроизмерительной техники интенсивно развивается ее метрологическое обеспечение, причем эталоны высокой точности становятся доступными промышленности. Например, еще в 1982 г. фирма «Флюк» (Fluke, США) выпустила калибратор напряжения для поверки 6,5- и 7,5-разрядных мультиметров. Этот прибор (модель 5440А), построенный на базе ЦАП с широтно-импульсной модуляцией, обеспечивает относительную погрешность не более 0,0004% при работе непосредственно в цехе.

Для построения современных средств измерений с наиболее высокими метрологическими характеристиками, включая эталоны вольта и ампера, решающее значение имеет использование квантовых эффектов Б. Джозефсона и Холла.

Эффект Б. Джозефсона был предсказан в 1962 г. английским физиком Б. Джозефсоном и экспериментально обнаружен в 1963 г. американскими физиками П. Андерсоном и Дж. Роуэллом. Одно из проявлений данного эффекта состоит в следующем. При облучении контакта Б. Джозефсона - тонкого слоя диэлектрика между двумя сверхпроводниками - высокочастотным электромагнитным полем, на вольт-амперной характеристике такого контакта возникают скачки напряжения, пропорциональные частоте. Высокая точность воспроизведения скачков напряжения на контактах Б. Джозефсона позволила в 80-х годах построить эталоны вольта с погрешностями не более 0,0001%.

Использование эффекта Б. Джозефсона и явления квантования магнитного поля в односвязных сверхпроводниках привело к созданию чрезвычайно чувствительных сверхпроводящих квантовых интерференционных приборов - СКВИДов, измеряющих магнитные потоки. Применение измерительных преобразователей различных физических величин в магнитные потоки позволило создать на основе СКВИДов измерительные приборы и устройства различного назначения, обладающие рекордно высокой чувствительностью: гальванометры, компараторы, термометры, магнитометры, градиентометры, усилители. На основе эффекта Б. Джозефсона строятся и другие устройства, служащие для обработки измерительной информации, например, АЦП и цифровые процессоры сигналов с тактовыми частотами свыше 10 ГГц.

Квантовый эффект Холла был открыт в 1980 г. К. фон Клитцингом (ФРГ). Эффект наблюдается при низких температурах (около 1 К) и проявляется в виде горизонтального участка на графике зависимости холловского сопротивления полупроводниковых датчиков Холла от магнитной индукции. Погрешность сопротивления, соответствующего этому участку, не превышает 0,00001%. Это позволило использовать квантовый эффект Холла для создания эталонов электрического сопротивления.

Использование квантовых эффектов Б. Джозефсона и Холла позволило разработать эталоны постоянного электрического тока, превышающие по точности эталоны на основе токовых весов, применявшихся почти всю вторую половину XX в. В нашей стране новый государственный первичный эталон введен с 1992 г. Он воспроизводит ампер с погрешностью не более 0,00002% (токовые весы обеспечивали погрешность не более 0,0008%).

Рассмотренные эффекты проявляются при низких температурах, что служит главным препятствием для их широкого использования. Однако открытие в 1986 г. высокотемпературных сверхпроводников позволяет ожидать создания средств измерений, построенных на интегральных схемах и работающих при температурах около 100 К. Это был бы новый качественный скачок в развитии электроизмерительной техники.

СПИСОК ЛИТЕРАТУРЫ

12.1. Депре М. О гальванометре, показания которого пропорциональны силе тока // Электричество. 1884. № 24.

12.2. Шателен М. Счетчики электрической энергии // Электричество. 1893. № 20.

12.3. Жерар Эрик. Курс электричества. Т. 1. Санкт-Петербург, 1896.

12.4. Чернышев А. Методы измерений высоких напряжений и новый абсолютный высоковольтный вольтметр // Электричество. 1910. №15.

12.5. Ферингер А.Б. Новейшие измерительные приборы (обзор) // Электричество. 1912. №1.

12.6. Маликов М.Ф. Основные электрические единицы в их современном состоянии // Электричество. 1924. № 3.

12.7. Грун К. Электротехнические измерительные приборы. М.: Гостехиздат, 1927.

12.8. Банденбургер В.И. Электрические телеизмерения // Электричество. 1931. № 17.

12.9. Шумиловский Н.Н. Электрические счетчики: теория, расчет, конструирование. Л.: Кубуч, 1932.

12.10. Стекольников И.С. Катодный осциллограф для контактного фотографирования // Электричество. 1933. № 12.

12.11. Городецкий С.С. Измерения на высоком напряжении. М.-Л.: Энергоиздат, 1934.

12.12. Конструкции электроизмерительных приборов / Под ред. Н.Н. Пономарева. Л. - М.: Энергоиздат, 1935.

12.13. Кейнат Г. Электроизмерительная техника. Т. 1. Л.: Ленинградский индустриальный институт, 1935.

12.14. Кейкат Г. Электроизмерительная техника. Т.2. Л.: Ленинградский индустриальный институт, 1937.

12.15. Кузнецов Б.Г. История энергетической техники. М.: Гостехиздат, 1937.

12.16. Электрические и магнитные измерения / Под ред. Е.Г. Шрамкова. М.-Л.: ОНТИ, 1937.

12.17. Темников Ф.Е., Харченко P.P. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1948.

12.18. Шкурин Г.П. Электроизмерительные приборы: Справочник-каталог М.: Машгиз, 1948.

12.19.Туричин A.M. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1951.

12.20. Карандеев К.Б. Методы электрических измерений. М.-Л.: Госэнергоиздат, 1952.

12.21. Белькинд Л.Д., Конфедератов И.Я., ШнейбергЯ.А. История техники. М.: Госэнергоиздат, 1956.

12.22. История энергетической техники СССР. Т.2. Электротехника. М.: Госэнергоиздат, 1957.

12.23.Веселовский О.Н. Михаил Осипович Доливо-Добровольский. М.: Госэнергоиздат, 1958.

12.24. История энергетической техники / Л.Д. Белькинд, О.Н. Веселовский, И.Я. Конфедератов, Я.А. Шнейберг. М.: Госэнергоиздат, 1960.

12.25. Темников Ф.Е. Теория развертывающих систем. М.-Л.: Госэнергоиздат, 1963.

12.26.Веселовский О.Н., ШнейбергЯ.А. Энергетическая техника и ее развитие. М.: Высшая школа, 1976.

12.27.Стил Р. Принципы дельта-модуляции. М.: Связь, 1979.

12.28. Арутюнов В.О. Избранные труды в области электрических измерений, теории и прикладных вопросов метрологии. М.: Изд-во стандартов, 1979.

12.29. Бароне А., Патерно Д. Эффект Джозефсона: физика и применения. М.: Мир, 1984.

12.30. Сиберт У.М. Цепи, сигналы, системы. Ч. 1.М.:Мир, 1988.

12.31. Электроника: Энциклопедический словарь / Гл. ред. В.Г Колесников. М.: Сов. энциклопедия, 1991.

12.32. Волшебство аналоговой схемотехники // Электроника (русский перевод). 1993. № 11/12.

12.33. Уилер Р. Испытания и измерения за 40 лет // Электроника (русский перевод). 1993. № 11/12.

12.34. Веселовский О.Н., Шнейберг Я.А. Очерки по истории электротехники. М.: Изд-во МЭИ, 1993.

12.35.Герасимов В.Г., Орлов И.Н., Филиппов Л.И. От знаний - к творчеству. М.: Изд-во МЭИ, 1995.

Из книги Высокочастотный автомобиль автора Бабат Георгий

ПОБЕДА СОВЕТСКОЙ ТЕХНИКИ В старые времена одиночка-изобретатель мог создать нечто новое. Паровую машину изобрел и построил Ползунов. На далеком руднике Черепанов изобрел и построил паровоз. Изобретатель капитан Можайский создал аэроплан.И Можайский, и Ползунов, и

Из книги Приборостроение автора Бабаев М А

56. Предпосылки успешного развития современного отечественного приборостроения. Основные тенденции в развитии приборостроения Всего 20 лет назад о современном уровне компьютеризации страны можно было только мечтать, сегодня все это реальность. В связи со всеми этими

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Техники декоративной обработки металлов В этой части книги представлены основные техники декоративной обработки металлов. В древности многие кузнецы владели богатым набором методов и создавали замечательные произведения искусства, достойные царского двора. Поэтому

Из книги Сертификация сложных технических систем автора Смирнов Владимир

4.3. Сертификация качества авиационной техники 4.3.1. Нормы летной годности Международная организация гражданской авиации (ИКАО), одной из главных задач которой является обеспечение безопасности полетов, установила, что страны-члены ИКАО должны выдавать

Из книги АвтоНАШЕСТВИЕ на СССР. Трофейные и лендлизовские автомобили автора Соколов Михаил Владимирович

На выставке трофейной техники Для наилучшего представления об атмосфере этих показов приведем выдержки из статьи известного отечественного автоконструктора Ю. А. Долматовского, посетившего в то время столичное собрание:«Эта выставка не похожа на международный

Из книги Роботы сегодня и завтра автора Геттнер Рейнгард

Тенденции развития Поскольку разработка, выпуск, применение промышленных роботов быстро и динамично прогрессируют, обобщение результатов международной, соответственно национальной, научно-технической работы в перспективе на будущее становится сложным. Динамика этих

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

Чудеса военной техники Все знают, что драться – плохо. А воевать – тем более. Тем не менее всю свою историю люди только и делают, что воюют между собой, а самые лучшие идеи, изобретения применяют прежде всего в ратном

Из книги Совершенство техники автора Юнгер Фридрих Георг

КНИГА ПЕРВАЯ СОВЕРШЕНСТВО ТЕХНИКИ Девиз: Всему есть место, но для каждой вещи свое. Надпись на складе инструментов 1 Сочинения в жанре технической утопии, как показывает наблюдение, отнюдь не редкость в литературе и даже напротив: их так много и читательский спрос на них

Из книги Искусство ручного ткачества автора Цветкова Наталья Николаевна

ЕСТЬ ЛИ ПРЕДЕЛЫ «СОВЕРШЕНСТВУ ТЕХНИКИ»? Настоящее издание включает в себя две работы Фридриха Георга Юнгера (1898–1977) - «Совершенство техники» и «Машина и собственность». Их объединяет одна тема - техника. Поэтому, повинуясь гипнозу установившейся академической

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

1.4 Традиционные техники ткачества Эволюция ткацких станков способствовала развитию различных техник ручного ткачества. К одному из древнейших способов получения орнаментированной ткани относится так называемое «закладное» ткачество. Оно было известно в Древнем

Из книги История электротехники автора Коллектив авторов

16.2. Тенденции развития методов доставки препаратов Нанотехнологии играют важную роль в развитии методов введения и доставки препаратов внутри организма, особенно в отношении малых и белковых молекул. В настоящее время ведутся очень интересные разработки методик ввода

Из книги Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г. автора Коллектив авторов

4.14. ВЛИЯНИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ НА РАЗВИТИЕ ТЭ Для создания новых устройств при помощи их математических моделей важное значение имеет возможность представления количественных характеристик, определяющих исследуемые процессы нового устройства, в виде

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

11.4.4. РАЗВИТИЕ ПОЛУПРОВОДНИКОВОЙ ИНФОРМАЦИОННОЙ ТЕХНИКИ Создание транзисторов в 50-х годах положило начало развитию полупроводниковой информационной техники.Первый отечественный точечный транзистор обладал усилительными свойствами, однако большой технологический

Из книги Микроволновые печи нового поколения [Устройство, диагностика неисправностей, ремонт] автора Кашкаров Андрей Петрович

Из книги автора

Эталоны для физики и техники Эталон длины Сначала эталоны были естественные, например, эталоном длины был, возможно, пояс короля Карла такого-то. Потом король слегка разъелся и экономика сошла с ума. Поэтому взяли длину маятника с определенным периодом (привязав тем

Из книги автора

3.7. Тенденции развития и новые технологии Производство микроволновых печей сопряжено с непрерывным развитием творческой мысли, с применением новых технологий, среди которых в первую очередь стоит отметить изобретение и использование биокерамического покрытия, системы



Рекомендуем почитать

Наверх