Основные типы моделей данных. Понятие модели данных, базы данных

Авто 13.08.2019
Авто
Иерархические базы данных имеют форму деревьев с дугами-связями и узлами-элементами данных. Иерархическая структура предполагала неравноправие между данными - одни жестко подчинены другим. Подобные структуры, безусловно, четко удовлетворяют требованиям многих, но далеко не всех реальных задач.

2. Сетевая модель данных. В сетевых БД наряду с вертикальными реализованы и горизонтальные связи. Однако унаследованы многие недостатки иерархической и главный из них, необходимость четко определять на физическом уровне связи данных и столь же четко следовать этой структуре связей при запросах к базе.

3. Реляционная модель. Реляционная модель появилась вследствие стремления сделать базу данных как можно более гибкой. Данная модель предоставила простой и эффективный механизм поддержания связей данных.

Во-первых , все данные в модели представляются в виде таблиц и только таблиц. Реляционная модель - единственная из всех обеспечивает единообразие представления данных. И сущности, и связи этих самых сущностей представляются в модели совершенно одинаково - таблицами . Правда, такой подход усложняет понимание смысла хранящейся в базе данных информации, и, как следствие, манипулирование этой информацией.

Избежать трудностей манипулирования позволяет второй элемент модели - реляционно-полный язык (отметим, что язык является неотъемлемой частью любой модели данных, без него модель не существует). Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры или реляционного исчисления ( полнота последних доказана математически Э.Ф. Коддом). Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL .

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности . Одно из таких ограничений утверждает, что каждая строка в таблице должна иметь некий уникальный идентификатор , называемый первичным ключом. Второе ограничение накладывается на целостность ссылок между таблицами. Оно утверждает, что атрибуты таблицы, ссылающиеся на первичные ключи других таблиц, должны иметь одно из значений этих первичных ключей.

4. Объектно-ориентированная модель. Новые области использования вычислительной техники, такие как научные исследования, автоматизированное проектирование и автоматизация учреждений, потребовали от баз данных способности хранить и обрабатывать новые объекты - текст, аудио- и видеоинформацию, а также документы. Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая , не существует. В большой степени, поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности. Несмотря на преимущества объектно-ориентированных систем - реализация сложных типов данных , связь с языками программирования и т.п. - на ближайшее время превосходство реляционных СУБД гарантировано.

Рассмотрим более подробно эти модели данных далее.

Иерархическая модель базы данных

Иерархические базы данных - самая ранняя модель представления сложной структуры данных. Информация в иерархической базе организована по принципу древовидной структуры, в виде отношений "предок- потомок ". Каждая запись может иметь не более одной родительской записи и несколько подчиненных. Связи записей реализуются в виде физических указателей с одной записи на другую. Основной недостаток иерархической структуры базы данных - невозможность реализовать отношения " многие-ко-многим ", а также ситуации, когда запись имеет несколько предков.

Иерархические базы данных . Иерархические базы данных графически могут быть представлены как перевернутое дерево , состоящее из объектов различных уровней. Верхний уровень ( корень дерева ) занимает один объект , второй - объекты второго уровня и так далее.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка ( объект , более близкий к корню) к потомку ( объект более низкого уровня), при этом объект -предок может не иметь потомков или иметь их несколько, тогда как объект - потомок обязательно имеет только одного предка. Объекты, имеющие общего предка, называются близнецами.

Иерархической базой данных является Каталог папок Windows , с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол . На втором уровне находятся папки Мой компьютер , Мои документы, Сетевое окружение и Корзина , которые являются потомками папки Рабочий стол , а между собой является близнецами. В свою очередь , папка Мой компьютер является предком по отношению к папкам третьего уровня -папкам дисков ( Диск 3,5(А:), (С:), (D:), (Е:), (F:)) и системным папкам ( сканер , bluetooth и.т.д.) - на рис. 4.1 .


Рис. 4.1.

Организация данных в СУБД иерархического типа определяется в терминах: элемент, агрегат, запись ( группа ), групповое отношение , база данных .

Атрибут (элемент данных) - наименьшая единица структуры данных. Обычно каждому элементу при описании базы данных присваивается уникальное имя. По этому имени к нему обращаются при обработке. Элемент данных также часто называют полем.
Запись - именованная совокупность атрибутов. Использование записей позволяет за одно обращение к базе получить некоторую логически связанную совокупность данных. Именно записи изменяются, добавляются и удаляются. Тип записи определяется составом ее атрибутов. Экземпляр записи - конкретная запись с конкретным значением элементов.
Групповое отношение - иерархическое отношение между записями двух типов. Родительская запись (владелец группового отношения) называется исходной записью, а дочерние записи (члены группового отношения) - подчиненными. Иерархическая база данных может хранить только такие древовидные структуры.

Корневая запись каждого дерева обязательно должна содержать ключ с уникальным значением. Ключи некорневых записей должны иметь уникальное значение только в рамках группового отношения. Каждая запись идентифицируется полным сцепленным ключом, под которым понимается совокупность ключей всех записей от корневой, по иерархическому пути.

При графическом изображении групповые отношения изображают дугами ориентированного графа, а типы записей - вершинами ( диаграмма Бахмана).

Для групповых отношений в иерархической модели обеспечивается автоматический режим включения и фиксированное членство. Это означает, что для запоминания любой некорневой записи в БД должна существовать ее родительская запись .

Пример

Рассмотрим следующую модель данных предприятия (см. рис. 4.2): предприятие состоит из отделов, в которых работают сотрудники. В каждом отделе может работать несколько сотрудников, но сотрудник не может работать более чем в одном отделе.

Поэтому, для информационной системы управления персоналом необходимо создать групповое отношение, состоящее из родительской записи ОТДЕЛ (НАИМЕНОВАНИЕ_ОТДЕЛА, ЧИСЛО_РАБОТНИКОВ) и дочерней записи СОТРУДНИК (ФАМИЛИЯ, ДОЛЖНОСТЬ, ОКЛАД). Это отношение показано на рис. 4.2 (а) (Для простоты полагается, что имеются только две дочерние записи).

Для автоматизации учета контрактов с заказчиками необходимо создание еще одной иерархической структуры: заказчик - контракты с ним - сотрудники, задействованные в работе над контрактом. Это дерево будет включать записи ЗАКАЗЧИК (НАИМЕНОВАНИЕ_ЗАКАЗЧИКА, АДРЕС), КОНТРАКТ(НОМЕР, ДАТА,СУММА), ИСПОЛНИТЕЛЬ (ФАМИЛИЯ, ДОЛЖНОСТЬ, НАИМЕНОВАНИЕ_ОТДЕЛА) (

Для логического представления взаимосвязей объектов базы данных используется информационно-логическая (инфологическая) модель.

Известны три разновидности инфологических моделей баз данных:

· иерархическая;

· сетевая;

· реляционная.

Иерархическая модель данных представляет собой древовидную структуру, где каждому элементу (объекту) соответствует только одна связь с элементом (объектом) более высокого уровня. Примером иерархической модели может служить реестр Windows, демонстрирующий размещение файлов и папок разного уровня вложенности на дисках компьютера, а также генеалогическое дерево.

Достоинствами иерархической модели являются простота и быст­родействие. Запрос к такой базе обрабатывается быстро, поскольку поиск данных происходит по одной из ветвей дерева, опускаясь от родительских объектов к дочерним или наоборот (поиск вверх по дереву обрабатывается дольше).

Если структура данных предполагает более сложные взаимосвязи, чем обычная иерархия, то для организации информации применяют иные модели.

Сетевая модель данных позволяет, в целях объединения родственной информации, обеспечивать связи одних элементов с любыми другими, не обязательно родительскими. Эта модель подобна иерархической и является улучшенным её вариантом.

В сетевой модели данных каждый элемент может иметь более одного порождающего его элемента, а графическое представление модели напоминает сеть. Она допускает усложнение «дерева» без ограничения количества связей, входящих в его вершину.

Особенностью иерархических и сетевых баз данных является задаваемая заранее, ещё на стадии проектирования, жесткая структура записей и наборы отношений, а изменение структуры базы данных требует перестройки всей базы. Кроме того, поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель является зависимой от приложения. Иными словами, если необходимо изменить структуру данных, то может потребоваться и изменение приложения.

Сетевые базы считаются инструментами программистов. Так, например, чтобы получить ответ на запрос: «Какой товар наиболее часто заказывает компания X?», нужно написать некоторый программный код для навигации по базе данных. Реализация пользовательских запросов может затянуться, и к моменту появления запрошенной информации она перестанет быть актуальной.

Реляционная модель достаточно универсальна, она значительно упрощает структуру базы данных и облегчает работу с ней. В реляционной базе данных все данные, доступные пользователю, организованы в виде таблиц. У каждой таблицы имеется свое уникальное имя, соответствующее характеру ее содержимого. Столбцы таблицы, называемые полями , описывают определённые атрибуты информации, например: фамилию, имя, пол, возраст, номер телефона, социальное положение респондентов. Строки реляционной таблицы содержат записи и хранят информацию об одном экземпляре объекта данных, представленного в таблице, например данные об одном человеке. Одинаковых записей в таблице быть не должно.



Основное требование к реляционной базе данных состоит в том, чтобы значения полей (столбцов таблицы) были элементарными и неделимыми информационными единицами (то есть для записи адреса потребуется не одно, а несколько полей, содержащих неделимую информацию – улица, номер дома, номер квартиры). Это позволяет применять для обработки информации математический аппарат реляционной алгебры. Наиболее популярны реляционные СУБД - Access, FoxPro, dBase, Oracle, и др.

В реляционной БД содержится, как правило, несколько таблиц с различными сведениями. Разработчик БД устанавливает связи между отдельными таблицами . При создании связей используют ключевые поля .

После установления связей появляется возможность создания запросов, форм и отчетов, в которые помещаются данные из нескольких связанных между собой таблиц.

Все данные, доступные пользователю в реляционной БД, организованы в виде таблиц-отношений, представляющих собой двумерный массив, где каждая таблица имеет свое уникальное имя, соответствующее характеру ее содержимого.

В настоящее время большинство СУБД использует табличную (реляционную) модель данных.

Достоинства реляционной модели:

· Простота и доступность для понимания конечным пользователем, так как единственной информационной конструкцией является наглядная таблица.

· Полная независимость данных. При изменении структуры БД не требуется значительных изменений в прикладной программе.

Недостатки реляционной модели:

· Предметную область не всегда можно представить в виде совокупности таблиц.

· Низкая скорость обработки запросов по сравнению с другими моделями, а также требование большего объема внешней памяти.

Примером простой реляционной базы данных может служить таблица «Респонденты», где одна строка (запись) - сведения об одном из участников телефонного опроса.


Аспект структуры определяет, что из себя логически представляет база данных, аспект манипуляции определяет способы перехода между состояниями базы данных (то есть способы модификации данных) и способы извлечения данных из базы данных, аспект целостности определяет средства описаний корректных состояний базы данных.

Модель данных - это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы - поведение данных .

В литературе, статьях и в обиходной речи иногда встречается использование термина «модель данных» в смысле «схема базы данных » («модель базы данных»). Такое использование является неверным, на что указывают многие авторитетные специалисты, в том числе К. Дж. Дейт , М. Р. Когаловский, С. Д. Кузнецов. Модель данных есть теория , или инструмент моделирования , в то время как модель базы данных (схема базы данных) есть результат моделирования . По выражению К. Дейта соотношение между этими понятиями аналогично соотношению между языком программирования и конкретной программой на этом языке .

М. Р. Когаловский поясняет эволюцию смысла термина следующим образом. Первоначально понятие модели данных употреблялось как синоним структуры данных в конкретной базе данных . В процессе развития теории систем баз данных термин «модель данных» приобрел новое содержание. Возникла потребность в термине, который обозначал бы инструмент, а не результат моделирования, и воплощал бы, таким образом, множество всевозможных баз данных некоторого класса. Во второй половине 1970-х годов во многих публикациях, посвященных указанным проблемам, для этих целей стал использоваться все тот же термин «модель данных». В настоящее время в научной литературе термин «модель данных» трактуется в подавляющем большинстве случаев в инструментальном смысле (как инструмент моделирования) .

Тем не менее, длительное время термин «модель данных» использовался без формального определения. Одним из первых специалистов, который достаточно формально определил это понятие, был Э. Кодд . В статье «Модели данных в управлении базами данных» он определил модель данных как комбинацию трех компонентов:

См. также

  • Метамоделирование
  • Статья Метамоделирование в Викиучебнике

Примечания

Литература

  • Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. - 8-е изд. - М .: «Вильямс», 2006. - 1328 с. - ISBN 0-321-19784-4
  • Когаловский М. Р. Перспективные технологии информационных систем. - М .: ДМК Пресс; Компания АйТи, 2003. - 288 с. - ISBN 5-279-02276-4
  • Когаловский М. Р. Энциклопедия технологий баз данных. - М .: Финансы и статистика, 2002. - 800 с. - ISBN 5-279-02276-4
  • Цикритзис Д., Лоховски Ф. Модели данных = D. Tsichritzis, F. Lochovsky. Data Models. Prentice Hall, 1982. - М .: Финансы и статистика, 1985. - 344 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Модель данных" в других словарях:

    модель данных - Совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения. Примечание Для задания модели данных используется… …

    Модель данных - – способ представления данных информационной модели в вычислительной среде. [ГОСТ 2.053 2006] Рубрика термина: Технологии Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

    модель данных - 3.1.7 модель данных (Data Model; DM): Графическое и/или лексическое представление данных, устанавливающее их свойства, структуры и взаимосвязи. [ИСО/МЭК ТО 11404 3:1996, определение 3.2.11] Источник …

    МОДЕЛЬ ДАННЫХ - согласно ГОСТ 2.053–2006 ЕСКД «Электронная структура изделия», – способ представления данных информационной модели в вычислительной среде … Делопроизводство и архивное дело в терминах и определениях

    модель данных многомерная - Модель данных, оперирующая многомерными представлениями данных в виде кубов данных. Такие модели данных стали широко использоваться в середине 90 х годов в связи с развитием технологий OLAP. Операционные возможности многомерных моделей данных… … Справочник технического переводчика

    модель данных Всемирной таможенной организации - Модель данных и набор данных, разработанные во Всемирной таможенной организации на основе Справочника элементов внешнеторговых данных ООН (СЭВД ООН) [Упрощение процедур торговли: англо русский глоссарий терминов (пересмотренное второе издание)… … Справочник технического переводчика

    Иерархическая модель данных представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов… … Википедия

    - (РМД) логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка. На реляционной модели данных строятся… … Википедия

    У этого термина существуют и другие значения, см. ER. Модель сущность связь (ER модель) (англ. entity relationship model, ERM) модель данных, позволяющая описывать концептуальные схемы предметной области. ER модель используется при… … Википедия

    ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства - Терминология ГОСТ Р ИСО/МЭК 19778 1 2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа: 5.4.9 AE CE ID … Словарь-справочник терминов нормативно-технической документации

Книги

  • Модель электронного газа и теория обобщенных зарядов для описания межатомных сил и адсорбции , А. М. Долгоносов. В предлагаемой книге рассмотрены четыре ключевые темы атомной и молекулярной физики, квантовой и физической химии: описание атомного электронного газа и следующий из этого вывод основных…

Каждая система БД реализует ту или иную модель данных, которая определяет правила порождения допустимых для системы видов структур данных, возможные операции над такими структурами, классы представимых средствами системы ограничений целостности данных. Таким образом, модель данных задает границы множества всех конкретных БД, которые могут быть созданы средствами этой системы.

Описание выбранной предметной области в терминах модели данных позволяет получить модель БД. Обычно выделяют три уровня моделей БД .

Мифологическая модель отражает информацию о предметной области без ориентации на конкретную СУБД (или даже на тип предполагаемой к использованию СУБД). В связи с этим некоторые авторы говорят о существовании инфологической модели предметной области, а не БД.

Даталогическая модель БД – модель логического уровня, представляющая собой отображение логических связей между элементами данных независимо от их содержания и среды хранения. Эта модель строится в терминах информационных единиц, допустимых в той СУБД, в среде которой будет создаваться БД. Этап создания данной модели называется даталогическим или логическим проектированием.

Физическая модель БД строится с учетом возможностей по организации и хранению данных, предоставляемых СУБД и используемой программноаппаратной платформой. Она, в частности, определяет используемые запоминающие устройства и способы организации данных в среде хранения.

При проектировании БД первой строится инфологическая модель, после чего – даталогическая, и только после нее – физическая. Более подробно эти этапы будут рассмотрены в следующих главах.

Однако вернемся к рассмотрению моделей данных. Разные авторы приводят несколько различающиеся перечни существующих моделей данных. Например, в предлагается такой список моделей данных и периодов времени, когда в их разработке были получены основные результаты:

  • иерархическая (англ. hierarchical), конец 1960-х и 1970-е гг.;
  • сетевая (англ. network), 1970-е гг.;
  • реляционная (англ. relational), 1970-е и начало 1980-х гг.;
  • "сущность – связь" (англ. entity – relationship), 1970-е гг.;
  • расширенная реляционная (англ. extended relational), 1980-е гг.;
  • семантическая (англ. semantic), конец 1970-х и 1980-е гг.;
  • объектно-ориентированная (англ. object-oriented), конец 1980-х – начало 1990-х гг.;
  • объектно-реляционная (англ. object-relational), конец 1980-х – начало 1990-х гг.;
  • полуструктурированная (англ. semi-structured), с конца 1990-х гг. до настоящего времени.

Первыми появились модели данных, основанные на теории графов, – иерархическая и сетевая. Более подробно они рассмотрены ниже. Следующей появилась разработанная Э. Коддом (Edgar Codd) реляционная модель данных, основанная на математической теории множеств. На сегодняшний день она является самой распространенной, поэтому будет рассматриваться наиболее подробно. Вопросам, связанным с реляционной моделью и логическим проектированием реляционных баз данных, посвящены главы 4 и 5.

Модель "сущность – связь" была предложена П. Ченом (Peter Chen) в 1976 г. в качестве унифицированного способа описания предметной области. Как самостоятельная модель данных (в соответствии с приведенным выше определением) она развития не получила, но стала основой для создания инфологических моделей БД. Этап инфологического проектирования рассмотрен в главе 6.

Семантическая модель, так же как и модель "сущность – связь", используется для построения инфологических моделей. Только в этом случае пользовательские данные представляются в виде набора семантических объектов. Семантический объект – это именованная совокупность атрибутов, которая в достаточной степени описывает отдельный феномен (объект, явление и т.п.).

Объектно-ориентированная и объектно-реляционная модели данных появились в результате распространения объектно-ориентированного подхода в программировании. Объектная модель данных предлагает рассматривать БД как множество объектов, обладающих свойствами инкапсуляции, наследования и т.д. В 1989 г. был опубликован "Манифест систем объектно-ориентированных баз данных", а в 1991 г. образован консорциум ODMG (от англ. Object Data Management Group), который занялся разработкой стандартов. В 2000 г. была опубликована версия стандарта The Object Data Standard: ODMG 3.0, а в 2001 г. группа прекратила свою деятельность. Примерно в то же время велась активная работа по адаптации реляционной модели к требованиям объектно-ориентированного подхода к разработке ПО, что привело к появлению объектно-реляционной модели данных. Позднее объектные расширения были введены в стандарт языка SQL.

К полуструктурированным относят данные, в которых можно выделить некоторую структуру, но она недостаточно строгая по сравнению с реляционными структурами данных (или структурами других традиционных моделей данных) . Наиболее ярким примером полуструктурированных данных являются XML-документы (от англ. extensible Markup Language – расширяемый язык разметки). Действительный (англ. valid) XML-до- кумент должен соответствовать определенному формату описания (схеме), где заданы структура документа, допустимые названия элементов, атрибутов и т.д. Формат XML широко используется для обмена данными между приложениями, и его поддержка обеспечивается многими СУБД.

Лекция 5

Базы данных информационных систем

База данных. Классификация и характеристика СУБД.

Основные модели баз данных.

Базы данных в экономических системах

База данных определяется как совокупность взаимосвязанных данных, характеризующихся: возможностью использования для большого количества приложений; возможностью быстрого получения и модификации необходимой информации; минимальной избыточностью информации; независимостью от прикладных программ; общим управляемым способом поиска.

СУБД – это программа, с помощью которой реализуется централизованное управление данными, хранимыми в базе, а также доступ к ним, поддержка их в актуальном режиме.

Задачами СУБД являются:

Хранение информации в структурированном виде;

Обновление информации по мере необходимости;

Поиск нужной информации по определенным критериям;

Выдача информации пользователю в удобном для него виде;

Устранение избыточности данных;

Поддержка языков БД.

Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В современных СУБД обычно поддерживается единый интегрированный язык, содержащий все необходимые средства для работы с БД, начиная от ее создания, и обеспечивающий базовый пользовательский интерфейс с базами данных.



По технологии работы с базами данных существуют:

Централизованные СУБД;

Распределенные СУБД.

Централизованная СУБД - система управления базой данных, которая хранится в памяти одной вычислительной системы.

Системы централизованных баз данных с сетевым доступа предполагают две основные архитектуры:

¾ архитектура файл-сервер предполагает выделение одной из машин сети в качестве центральной (главный сервер файлов), где хранится совместно используемая централизованная база данных. Все другие машины сети исполняют роль рабочих станций. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном и производится их обработка. При большой интенсивности доступа к одним и тем же данным производительность информационной системы падает;

¾ архитектура клиент-сервер . Каждый из подключенных к сети и составляющих эту архитектуру компьютеров играет свою роль: сервер владеет и распоряжается информационными ресурсами системы, клиент имеет возможность пользоваться ими.

Сервер базы данных представляет собой СУБД, параллельно обрабатывающую запросы, поступившие со всех рабочих станций. Как правило, клиент и сервер территориально отдалены друг от друга, и в этом случае они образуют систему распределенной обработки данных.

В распределенной СУБД значительная часть программно-аппаратных средств централизована и находится на одном достаточно мощном компьютере (сервере), в то время как компьютеры пользователей несут относительно небольшую часть СУБД, которую называют клиентом.

Распределенная база данных состоит из нескольких, возможно, пересекающихся или даже дублирующих друг друга частей, хранимых в различных ЭВМ вычислительной сети. Однако пользователь распределенной базы данных не обязан знать, каким образом ее компоненты размещены в узлах сети, и представляет себе эту базу данных как единое целое. Работа с такой базой данных осуществляется с помощью системы управления распределенной базой данных (СУРБД).

Безопасность данных в базе данных достигается:

¾ шифрованием прикладных программ;

¾ шифрованием данных;

¾ защитой данных паролем;

¾ ограничением доступа к базе данных.

Основные модели баз данных

Основное различие между моделями баз данных состоит в характере описания взаимосвязи и взаимодействия между объектами и атрибутами базы данных. Связи объектов могут быть следующих типов:

¾ "один к одному";

¾ "один ко многим";

¾ "многие ко многим".

"Один к одному" - это взаимно однозначное соответствие, которое устанавливается между одним объектом и одним атрибутом. Связь "один-к-одному" определяет такое отношение между таблицами, когда каждой записи в подчиненной таблице соответствует только одна запись в главной таблице. Наличие связей между таблицами "один-к-одному" обычно не говорит о хорошей структуре базе данных, поскольку свидетельствует о том, что две таблицы имеют полностью совпадающие поля, а это ведет к нерациональному расходу дискового пространства.

Связь "один-ко-многим" в структурах баз данных является наиболее общепринятой. При этом типе связи каждой записи главной таблицы соответствует одна или несколько записей в подчиненной таблице. Структура связей типа "один-ко-многим" позволяет избежать избыточности данных и дублирования записей.

Связь типа "многие-ко-многим" выражает такое отношение между таблицами, когда многие записи одной таблицы могут быть связаны со многими записями другой таблицы.

Иерархическая модель баз данных (ИМД) основана на графическом способе и предусматривает поиск данных по одной из ветвей «дерева», в котором каждая вершина имеет только одну связь с вершиной более высокого уровня. Для осуществления поиска необходимо указать полный путь к данным, начиная с корневого элемента.

Рис. 1 – Иерархическая модель баз данных

Сетевая модель баз данных (СМД) также основана на графическом способе, но допускает усложнение «дерева» без ограничения количества связей, входящих в вершину. Это позволяет строить сложные поисковые структуры.

Рис. 2 – Сетевая модель баз данных

Реляционная модель баз данных (РМД) реализует табличный способ.

В реляционной модели базы данных взаимосвязи между элементами данных представляются в виде двумерных таблиц, называемых отношениями .

Отношения обладают следующими свойствами :

¾ каждый элемент таблицы представляет собой один элемент данных (повторяющиеся группы отсутствуют);

¾ элементы столбца имеют одинаковую природу, и столбцам однозначно присвоены имена;

¾ в таблице нет двух одинаковых строк;

¾ строки и столбцы могут просматриваться в любом порядке вне зависимости от их информационного содержания.

Реляционная модель БД имеет дело с тремя аспектами данных: со структурой данных, с целостностью данных и с манипулированием данными. Под структурой понимается логическая организация данных в БД, под целостностью данных понимают безошибочность и точность информации, хранящейся в БД, под манипулированием данными - действия, совершаемые над данными в БД.

Достоинства реляционной модели :

¾ простота построения;

¾ доступность понимания;

¾ возможность эксплуатации базы данных без знания методов и способов ее построения;

¾ независимость данных;

¾ гибкость структуры и др.

Недостатки реляционной модели :

¾ низкая производительность по сравнению с иерархической и сетевой модели;

¾ сложность программного обеспечения;

¾ избыточность элементов.

В последние годы все большее признание и развитие получают объектные базы данных (ОБД), появление которых обусловлено развитием объектно-ориентированного программирования.

Объектом называют почти все, что представляет интерес для решения поставленной задачи на компьютере. Это может быть экранное окно, кнопка в окне поле для ввода данных, пользователь программы, сама программа и т.д. Тогда любые действия можно привязать к такому объекту, а также описать, что произойдет с объектом при выполнении опреде6ленных действий (например, при „нажатии“ кнопки). Многократно используемый объект можно сохранить и применять его в различных программах.

Объектом называется программно связанный набор методов (функций) и свойств, выполняющих одну функциональную задачу.

Свойство - это характеристика, с помощью которой описывается внешний вид и работа объекта.

Событие - это действие, которое связанно с объектом. Событие может быть вызвано пользователем (щелчок мышью), инициировано прикладной программой или операционной системой.

Метод - это функция или процедура, управляющая работой объекта при его реакции на событие.

Объекты могут быть как визуальными, т.е. которые можно увидеть на экране дисплея (окно, пиктограмма, текст и т.д.), так и невизуальные (например, программа решения какой-либо функциональной задачи).



Рекомендуем почитать

Наверх