Построение реляционной структуры из ER-модели. Er-модель данных

Инструмент 15.07.2019
Инструмент

ER-модель базы данных

Модель сущность-связь (англ. entity-relationship model, ERM, ER-модель) позволяет описывать концептуальные схемы предметной области.

ER-модель используется при высокоуровневом проектировании баз данных. С её помощью можно выделить ключевые сущности и обозначить связи, которые могут устанавливаться между этими сущностями. ER-модель это формальная конструкция, не определяющая графических средств её представления. В качестве стандартного графического представления ER-модели, была разработана диаграмма сущность-связь ER-диаграмма (Entity Relationship Diagram - ER - диаграмма). При проектирования баз данных происходит преобразование ER-модели в конкретную схему базы данных.

Как известно, базовым понятием реляционных БД является таблица (отношение). Таблица используется для структуризации и хранения информации. В реляционных БД каждая ячейка таблицы содержит одно значение. Кроме того, внутри одной БД существуют взаимосвязи между таблицами, каждая из которых задает совместное пользование данными таблицы.

ER-диаграмма графически представляет структуру данных проектируемой БД. Сущности отображаются при помощи прямоугольников, таблиц, содержащих имя сущности - таблицы БД. Взаимосвязи сущностей отображаются в виде линий, соединяющих отдельные сущности.

Взаимосвязь показывает, что данные одной сущности ссылаются или связаны с данными другой.

Степень конца связи указывается графически, множественность связи изображается в виде "вилки" на конце связи. Модальность связи так же изображается графически - необязательность связи помечается кружком на конце связи. Именование связи выражается одним глаголом (рис.13).

Рис.13.

Атрибуты сущности записываются внутри прямоугольника, изображающего сущность, и выражаются существительным в единственном числе.

Среди атрибутов выделяется ключ сущности. При создании сущности необходимо выделить группу атрибутов, которые могут быть первичным ключом, затем произвести отбор атрибутов для включения в состав первичного ключа:

· Первичный ключ должен быть подобран таким образом, чтобы по значениям атрибутов, в него включенных, можно было точно идентифицировать экземпляр сущности.

· Никакой из атрибутов первичного ключа не должен иметь нулевое значение.

· Значения атрибутов первичного ключа не должны меняться. Если значение изменилось, значит, это уже другой экземпляр сущности.

При выборе первичного ключа, как правило, в сущность вводится дополнительный атрибут, который становиться ключом.

Так, для определения первичного ключа часто используют уникальные номера, которые могут автоматически генерироваться системой при добавлении экземпляра сущности в БД. Применение уникальных номеров облегчает процесс индексации и поиска в БД.

Первым шагом при создании логической модели БД является построение ER-диаграммы, состоящей из трех частей: сущностей, атрибутов и взаимосвязей.

Разработано множество инструментов визуального создания ER - диаграмм для различны платформ. В настоящем проекте использовалась разработка MySQL Workbench .

Этот инструмент упрощает проектирование баз данных и обслуживание, автоматизирует, отнимающие много времени и подверженные ошибкам задачи и улучшает связь среди команд разработчиков и архитекторами БД. Он позволяет архитекторам данных визуализировать требования, общаться с заинтересованными лицами по вопросам проектирования прежде, чем будут сделаны инвестиции в проект. Это обеспечивает управляемое моделью проектирование баз данных, которое является самой эффективной методологией для того, чтобы создать реальные и хорошо продуманные базы данных. ER - диаграмма базы данных системы дистанционного тестирования (control_tests ) изображена на рисунке (рис.14). Две вертикальные черточки с одной стороны и "трезубец" с другой обозначают соответственно "связь один ко многим".

Рис. 14. ER - диаграмма базы данных control_test системы дистанционного тестирования


Нормализация базы данных

В реляционной теории БД нет универсальных предписаний, законов для проектирования надежной, спроектированной раз и навсегда базы данных. Разработчики выбирают свои решения по проекту базы данных, полагаясь во многом на опыт, интуицию, различные инструменты и методы проектирования.

Тем не менее, некоторые каноны, правила все-таки существуют. К таким правилам относятся правила нормализации, т.е. приведения отношений к нормальной форме.

[править]

Материал из Википедии - свободной энциклопедии

У этого термина существуют и другие значения, см. ER .

Модель сущность-связь (ER-модель) (англ. entity-relationship model , ERM) - модель данных, позволяющая описыватьконцептуальные схемы предметной области.

ER-модель используется при высокоуровневом (концептуальном) проектировании баз данных. С её помощью можно выделить ключевые сущности и обозначить связи, которые могут устанавливаться между этими сущностями.

Во время проектирования баз данных происходит преобразование ER-модели в конкретную схему базы данных на основе выбранной модели данных (реляционной, объектной, сетевой или др.).

ER-модель представляет собой формальную конструкцию, которая сама по себе не предписывает никаких графических средств её визуализации. В качестве стандартной графической нотации, с помощью которой можно визуализировать ER-модель, была предложена диаграмма сущность-связь (ER-диаграмма) (англ. entity-relationship diagram , ERD).

Понятия ER-модель и ER-диаграмма часто ошибочно не различают, хотя для визуализации ER-моделей предложены и другие графические нотации (см. ниже).

  • История создания[править]

  • Модель «сущность-связь» была предложена в 1976 году Питером Пин-Шен Ченом (англ. Peter Pin-Shen Chen ) , американским профессором компьютерных наук в университете штата Луизиана .

  • Нотации[править]

  • Нотация Питера Чена[править]

  • Простая ER-модель MMORPG с использованием нотации Питера Чена

    Множества сущностей изображаются в виде прямоугольников, множества отношений изображаются в виде ромбов. Если сущность участвует в отношении, они связаны линией. Если отношение не является обязательным, то линия пунктирная. Атрибуты изображаются в виде овалов и связываются линией с одним отношением или с одной сущностью.

  • Crow"s Foot[править]

  • Пример отношения между сущностями согласно нотации Crow"s Foot

    Данная нотация была предложена Гордоном Эверестом (англ. Gordon Everest ) под названием Inverted Arrow («перевёрнутая стрелка»), однако сейчас чаще называемая Crow"s Foot («воронья лапка») или Fork («вилка»).

    Согласно данной нотации, сущность изображается в виде прямоугольника, содержащем её имя, выражаемое существительным. Имя сущности должно быть уникальным в рамках одной модели. При этом, имя сущности - это имя типа, а не конкретного экземпляра данного типа. Экземпляром сущности называется конкретный представитель данной сущности.

    Связь изображается линией, которая связывает две сущности, участвующие в отношении. Степень конца связи указывается графически, множественность связи изображается в виде «вилки» на конце связи. Модальность связи так же изображается графически - необязательность связи помечается кружком на конце связи. Именование обычно выражается одним глаголом в изъявительном наклонении настоящего времени: «Имеет», «Принадлежит» и т. д.; или глаголом с поясняющими словами: «Включает в себя», и т.п. Наименование может быть одно для всей связи или два для каждого из концов связи. Во втором случае, название левого конца связи указывается над линией связи, а правого – под линией. Каждое из названий располагаются рядом с сущностью, к которой оно относится.

    Атрибуты сущности записываются внутри прямоугольника, изображающего сущность и выражаются существительным в единственном числе (возможно, с уточняющими словами). Среди атрибутов выделяется ключ сущности - неизбыточный набор атрибутов, значения которых в совокупности являются уникальными для каждого экземпляра сущности.

  • 6.2.2. Основные понятия модели Entity-Relationship (Сущность-Связи)

  • На использовании разновидностей ER-модели основано большинство современных подходов к проектированию баз данных (главным образом, реляционных). Модель была предложена Ченом (Chen) в 1976 г. Моделирование предметной области базируется на использовании графических диаграмм, включающих небольшое число разнородных компонентов. В связи с наглядностью представления концептуальных схем баз данных ER-модели получили широкое распространение в системах CASE, поддерживающих автоматизированное проектирование реляционных баз данных. Среди множества разновидностей ER-моделей одна из наиболее развитых применяется в системе CASE фирмы ORACLE. Ее мы и рассмотрим. Более точно, мы сосредоточимся на структурной части этой модели.

    Основными понятиями ER-модели являются сущность, связь и атрибут.

    Сущность - это реальный или представляемый объект, информация о котором должна сохраняться и быть доступна. В диаграммах ER-модели сущность представляется в виде прямоугольника, содержащего имя сущности. При этом имя сущности - это имя типа, а не некоторого конкретного экземпляра этого типа. Для большей выразительности и лучшего понимания имя сущности может сопровождаться примерами конкретных объектов этого типа.

    Ниже изображена сущность АЭРОПОРТ с примерными объектами Шереметьево и Хитроу:

    Каждый экземпляр сущности должен быть отличим от любого другого экземпляра той же сущности (это требование в некотором роде аналогично требованию отсутствия кортежей-дубликатов в реляционных таблицах).

    Связь - это графически изображаемая ассоциация, устанавливаемая между двумя сущностями. Эта ассоциация всегда является бинарной и может существовать между двумя разными сущностями или между сущностью и ей же самой (рекурсивная связь). В любой связи выделяются два конца (в соответствии с существующей парой связываемых сущностей), на каждом из которых указывается имя конца связи, степень конца связи (сколько экземпляров данной сущности связывается), обязательность связи (т.е. любой ли экземпляр данной сущности должен участвовать в данной связи).

    Связь представляется в виде линии, связывающей две сущности или ведущей от сущности к ней же самой. При это в месте "стыковки" связи с сущностью используются трехточечный вход в прямоугольник сущности, если для этой сущности в связи могут использоваться много (many) экземпляров сущности, и одноточечный вход, если в связи может участвовать только один экземпляр сущности. Обязательный конец связи изображается сплошной линией, а необязательный - прерывистой линией.

    Как и сущность, связь - это типовое понятие, все экземпляры обеих пар связываемых сущностей подчиняются правилам связывания.

    В изображенном ниже примере связь между сущностями БИЛЕТ и ПАССАЖИР связывает билеты и пассажиров. При том конец сущности с именем "для" позволяет связывать с одним пассажиром более одного билета, причем каждый билет должен быть связан с каким-либо пассажиром. Конец сущности с именем "имеет" означает, что каждый билет может принадлежать только одному пассажиру, причем пассажир не обязан иметь хотя бы один билет.

  • Лаконичной устной трактовкой изображенной диаграммы является следующая:

      Каждый БИЛЕТ предназначен для одного и только одного ПАССАЖИРА;

      Каждый ПАССАЖИР может иметь один или более БИЛЕТОВ.

      Каждый ЧЕЛОВЕК является сыном одного и только одного ЧЕЛОВЕКА;

      Каждый ЧЕЛОВЕК может являться отцом для одного или более ЛЮДЕЙ ("ЧЕЛОВЕКОВ").

    Концептуальная модель базы данных это

    Концептуальная модель это некая наглядная диаграмма, нарисованная в принятых обозначениях и подробно показывающая связь между объектами и их характеристиками. Создается концептуальная модель для дальнейшего проектирования базы данных и перевод ее, например, в реляционную базу данных. На концептуальной модели в визуально удобном виде прописываются связи между объектами данных и их характеристиками.

    Принятые определения в концептуальной базе данных

    Для единообразия программирования баз данных введены следующие понятия для концептуальных баз данных:

    1. Объект или сущность . Это фактическая вещь или объект (для людей) за которой пользователь (заказчик) хочет наблюдать. Например, Иванов Иван Иванович;
    2. Атрибут это характеристика объекта, соответствующая его сущности. Например. Задаем себе вопрос: Какую информацию нужно хранить об Иванове Иване Ивановиче? Ответы на этот вопрос и будут атрибуты объекта Иванов Иван Иванович;
    3. Третье понятие в проектировании концептуальной базы данных это связь или отношения между объектами.

    Лексически более правильно говорить связь между объектами КБД и отношения между сущностями КБД (концептуальная база данных), но встретить можно самые различные сочетания сущности, объекта, связи и отношения (огрехи переводов).


    Концептуальная модель базы данных условные обозначения

    Концептуальная модель базы данных: принятые графические обозначения

    Диаграмма сущность/отношения (объект/связь) называют ER-диаграммой или EDR (entity-relationship diagram). Сама модель сущность-связь была предложена профессором Peter Pin-Shen Chen (Питер Чен) в 1976 году. Правила написания и условные обозначения ER-диаграммы называют нотацией. Распространены две основные нотации ER-диаграмм:

    • Нотация Питера Чена;
    • Нотация Gordon Everest (Гордона Эверста). Под назаванием Crow’s Foot или Fork (вилка).

    Обозначения ER-диаграммы по Питеру Чену

    Чен предложил и это приняли следующие условные обозначения для ER-диаграмм:

    • Сущность или объект обозначать прямоугольником;
    • Отношения обозначать ромбом;
    • Атрибуты объектов, обозначаются овалом;
    • Если сущность связана с отношением, то их связь обозначается прямой линией со стрелкой. Необязательная связь обозначается пунктирной линией. Мощная связь обозначается двойной линией.

    Каждый атрибут может быть связан с одним объектом (сущностью).

    Нотация Gordon Everest

    Gordon Everest ввел новое обозначение связей, которые получили название вилка или воронья лапа. Также он ввел, что объект должен обозначаться прямоугольником с названием типа объекта в виде имени существительного внутри прямоугольника. Причем, это имя должно быть уникальным в пределах создаваемой базы данных.

    Атрибуты не выделяются в отдельную фигуру, а вписываются в прямоугольник объекта именем существительным с уточняющим словом.

    Связь между объектами обозначается прямой линией. Множественные связи обозначаются вилкой на конце. Сама связь подписывается глаголом, типа «Включает» или «Принадлежит».


    концептуальная модель базы данных ERD Fork

    Дополнения

    Атрибуты в ER диаграмме, могут иметь свои собственные атрибуты (композитный) атрибут.

    Простую ER диаграмму нарисовать достаточно просто. Другое дело насыщенная, объемная ER диаграмма. Ниже приведены некоторые советы, которые помогут вам построить эффективные ER схемы:

    • Определите все объекты в данной системе и определите отношения между этими объектами;
    • Объект должен появиться только один раз в определенном месте схемы;
    • Определите точное и подходящее имя для каждого объекта, атрибута и отношений в диаграмме. Выберите простые и понятные слова. Условия, которые просты и знакомы всегда побеждает смутные, технические звучащие слова. Для объектов имена существительные, для связей глаголы (можно с пояснениями). Не забываем про уникальность имен объектов;
    • Удалите неявные, избыточные или ненужные отношения между объектами;
    • Никогда не подключайте отношения к другим отношениям;
    • Используйте цвета, чтобы классифицировать однотипные объекты или выделить ключевые области в диаграмме.

    Модель данных «сущность-связь»

    Модель данных «сущность-связь» ввел в 1976 г. П. П. Чен. Она имеет много общего с иерархической и сетевой моделями данных и в силу своей ориентации на процесс проектирования может рассматриваться как обобщение и развитие ранее рассмотренных моделей. Описываемая модель допускает непосредственное представле­ние связей типа М: N.

    Основные понятия . Модель «сущность -связь» базируется на представлении о том, что реальный мир состоит из различных сущностей, связанных определенными отношениями. Категории «сущность» и «связь» объявляются основополагающими, и разделение их производится на этапе создания конкретных представлений некоторой предметной области.

    Каждая сущность принадлежит к некоторому классу или ему соответствует некоторый тип. Между сущностями имеются связи, за которыми пользователь закрепляет какой-то класс (тип). Таким образом, класс сущностей и класс связей определяют множества конкретных объектов и связей между ними. Заметим, что некоторая сущность может принадлежать более чем к одному классу (например, поставщик может одновременно быть и потребителем). В каждый момент времени состояние связи S между классами сущностей E 1 , Е 2 ..., Е n определяется отношением между множествами DOM E 1 , DOM E 2 , ..., DOM Е n , где DOM Е i , i = - множество объектов типа Е i .

    Множество связей в модели «сущность - связь» можно представить в виде математического отношения п классов объектов:

    где е i - сущность, принадлежащая множеству сущностей Е i , кортеж <e 1 e 2 ... е п > - связь из множества связей R. Необязательно, чтобы все E i , на которых определено R, были различными. Совокупность сущностей и классов связей образует верхний уровень модели.

    Сущности и связи описываются характерными для них атрибутами. Среди атрибутов какой-нибудь сущности или связи выделяется подсписок, значения атрибутов которой однозначно идентифицируют сущность или связь в пределах типа. Сущности, связи и атрибуты образуют нижний уровень модели.

    Графически модель «cущность - связь» представляется в виде схемы, в которой каждому классу объектов соответствует прямоугольник, а классу связей - шестиугольник (рис. 2.7). Под прямоугольником и шестиугольником указываются имена атрибутов сущностей и связей.

    Рис. 2.7. Графическое представление модели «сущность-связь»:

    а) класс сущностей; б) класс связей;

    При изображении класса сущностей будем придерживаться следующих обозначений: ключевые атрибуты подчеркиваются, два различных класса сущностей не могут иметь одного имени.

    На связи накладываются следующие ограничения:

    типы связей между классами задаются парами (1:1, 1: N, N: 1, М: N). Когда значения М и N уточнены, берется максимальное значение;

    одна связь может относиться ко многим сущностям и одна сущность может иметь много связей. В случае связей типа 1:1, 1: N, N: 1 не всегда нужно указывать имя связи.

    Рассмотрим пример представления концептуальной схемы БД с помощью модели «сущность-связь» (рис. 2.8). Пусть имеются следующие приложения: управление поставками, складом, производством и договорами. Эти приложения могут использовать такие классы сущностей: ПОСТАВЩИК (поставщики), БАЗ-ДЕТ (базовые детали), ИЗД-УЗЕЛ (изделия и узлы), ДОГОВОР (договоры), СЛУЖАЩИЙ (служащие), ОТДЕЛ (отделы).

    Рис. 2.8. Пример схемы модели «сущность-связь»

    Для удовлетворения требований указанных выше приложений используются следующие связи между сущностями:

    ВЫБРАТЬ - позволяет выбрать поставщика базового продукта в зависимости от условий продажи и поставки (эти условия задаются на схеме);

    СБОРКА-БД - указывает базовые детали (материалы), которые непосредственно используются для производства изделия или узла, а также их число;

    СБОРКА-УЗЕЛ - указывает узлы, непосредственно входящие в другие узлы или изделия, а также их число;

    ПОСТ-БАЗ - связывает в договоре поставщиков с базовыми деталями;

    НАЗНАЧИТЬ - характеризует в договоре изделия и узлы;

    ОТВЕЧАЕТ - указывает ответственного за договор;

    УЧАСТВУЕТ - связывает договор и людей, которые участвуют в его реализации;

    РАБОТАЕТ - связывает отдел и людей, которые в нем работают;

    РУКОВОДИТ - указывает руководителя данного отдела.

    Схема модели «сущность-связь» может быть описана в виде, представленном на рис. 2.8.

    Классы сущностей:

    E1/ПОСТАВЩИК [НОМ-ПОСТ, ФАМ-ПОСТ, АДРЕС];

    Е2/БАЗ-ДЕТ [НОМ-БДЗ-ДЕТ, НАИМ-БАЗ-ДЕТ, КОЛИЧ-НА-СКЛАДЕ, МИНИМ-КОЛИЧ];

    Е3/ДОГОВОР [НОМ-ДОГ, ДАТА];

    Классы связей:

    L 1/ПОСТ-БАЗ L2 /ВЫБРАТЬ L3 /СБОРКА-БД

    [ПОСТАВЩИК, БАЗ-ДЕТ, ДОГОВОР];

    [ПОСТАВЩИК, БАЗ-ДЕТ: ЦЕНА, СРОК-ПОСТ];

    [БАЗ-ДЕТ, ИЗД-УЗЕЛ: КОЛИЧ-БД];

    Имена атрибутов связей отделяются двоеточием от имен классов сущностей.

    Модель «сущность-связь» включает различные характеристики предметной области.

    1. Связь может относиться к нескольким классам сущностей, например, связь ПОСТ-БАЗ соединяет классы сущностей ПОСТАВЩИК, БАЗ-ДЕТ, ДОГОВОР.

    2. Связь может многократно относиться к одному классу сущностей, например связь СБОРКА-УЗЕЛ.

    3. Многие связи могут относиться к одному классу сущностей, например связи РАБОТАЕТ и РУКОВОДИТ между сущностями СЛУЖАЩИЙ и ОТДЕЛ.

    4. Модель отображает различные связи типа 1:1, 1: N , М: N.

    5. Наличие двух классов сущностей для деталей БАЗ-ДЕТ и ИЗД-УЗЕЛ позволяет управлять: поставками деталей и находить поставщиков, опираясь на класс БАЗ-ДЕТ; процессом производства изделий, используя класс ИЗД-УЗЕЛ.

    6. Два класса сущностей БАЗ-ДЕТ и ИЗД-УЗЕЛ имеют общие и специфические для них атрибуты. Наличие общих атрибутов приводит к некоторой избыточности данных. Специфические атрибуты требуются областью применения объектов.

    В схеме (рис. 2.8) можно было бы рассматривать только функцию продажи изделий. В этом случае внешняя схема включала бы только сущности: базовые детали, узлы, изделия, которые нужно выделить вместе со связями между ними из концептуальной схемы. Во внешней схеме следует различать изделия и узлы, так как некоторая информация, требуемая для продажи, имеет отношение только к изделиям.

    Для решения задач управления складом и производством изделий необходимо описать номенклатуру изделий и узлов, указывая: состав изделий из узлов и базовых деталей, состав узлов из подузлов и базовых деталей.

    Для указания более конкретных связей между сущностями различают прямую и обратную связи. Каждой такой связи соответствует имя и пара чисел.

    Рис. 2.9. Схема прямой и обратной связей

    Например, в связи между сущностями СЛУЖАЩИЙ и ОТДЕЛ (рис. 2.9) прямая связь РАБОТАЕТ указывает на то, что служащий работает только в одном отделе; обратная связь СОДЕРЖИТ указывает на то, что отдел содержит не менее одного служащего (обычно много служащих). Другими словами, связь L между двумя классами сущностей А и В указывает на то, что сущность А связана, как минимум, с M и, как максимум, с N сущностями В. Иногда N может быть не определено.

    Модель «сущность-связь» появилась в связи с потребностями проектирования БД. Она удовлетворяет двум важным критериям: во-первых, мощность ее средств позволяет представлять структуры и ограничения, свойственные реальному миру, и, во-вторых, разрыв между возможностями модели и промышленными СУБД не является слишком большим. Эти модели помогают проектировщикам контактировать с пользователями в процессе анализа и конструирования БД.

    Реляционная модель

    Основные понятия

    В реляционной модели данных информация хранится в одной или нескольких связанных таблицах. Отдельная таблица обычно представляет совокупность (группу) либо реальных объектов, либо некоторых абстрактных концепций, либо событий одного типа. Каждая запись в таблице идентифицирует один объект группы. Таблица состоит из строк и столбцов, называемых записями и полями соответственно. Таблицы обладают следующими свойствами:

    1. Каждый элемент таблицы представляет собой один элемент данных, т.е. группа значений в одном столбце одной строки недопустима;

    2. Все столбцы в таблице однородные. Это означает, что элементы столбца имеют одинаковую природу. Столбцам присвоены имена;

    3. В таблице нет двух одинаковых строк;

    4. Порядок размещения строк и столбцов в таблице может быть произвольным. В операциях с такой таблицей ее строки и столбцы могут просматриваться в любом порядке безотносительно к их информационному содержанию и смыслу.

    Таблицы, обладающие такими свойствами, являются точным прообразом математического двумерного множества – отношения (relation). Но эти два понятия не эквивалентны. Отношение – это абстрактный математический объект, а таблица – это конкретное изображение этого абстрактного объекта. Различие проявляется в их свойствах. В отношении строки и столбцы могут быть неупорядочены, а в таблице строки упорядочены сверху вниз, а столбцы слева направо. Строки в таблице могут повторяться строки, а в отношении нет.

    В реляционной модели каждая строка таблицы уникальна. Это обеспечивается применением ключей, которые содержат одно или несколько полей таблицы. Ключи хранятся в упорядоченном виде, обеспечивающем прямой доступ к записям таблицы во время поиска. Связь между таблицами осуществляется посредством значений одного или нескольких совпадающих полей (преимущественно ключевых).

    Приведем ряд терминов, применяющихся в реляционной модели:

    · Отношением (relation) называется двумерное множество – таблица, удовлетворяющая вышеперечисленным требованиям;

    · Атрибут – это свойство, характеризующие объект. В структуре таблицы каждый атрибут имеет имя и ему соответствует заголовок некоторого столбца таблицы. Количество атрибутов называется степенью отношения ;

    · Кортежом (tuple) называется строка таблицы. В общем случае кортежи представляют собой набор пар <атрибут>, <значение>. Каждое значение должно быть атомарным, т.е. не может быть многозначным или составным. Следовательно, многозначные и составные атрибуты в реляционной модели не поддерживаются. Количество кортежей называется кардинальным числом ;

    · Домен представляет собой множество всех возможных значений определенного атрибута отношения.

    · Первичным ключом называется атрибут отношения, однозначно идентифицирующий каждый из его кортежей. Ключ может быть составным (сложным), т. е. состоять из нескольких атрибутов.

    · Потенциальный ключ – это подмножество атрибутов отношения, обладающего следующими свойствами:

    Свойством уникальности. Нет одинаковых кортежей с теми же значениями потенциальных ключей;

    Свойством неизбыточности. Никакое из подмножеств потенциального ключа не обладает свойством уникальности.

    Каждое отношение обязательно имеет комбинацию атрибутов, которая может служить ключом. Его существование гарантируется тем, что отношение – это математическое множество, которое не может содержать одинаковых кортежей, т.е. по крайней мере вся совокупность атрибутов обладает свойством однозначной идентификации кортежей отношения. Возможны случаи, когда отношение имеет несколько комбинаций атрибутов, каждая из которых однозначно определяет все кортежи отношения. Все эти комбинации атрибутов являются потенциальными или возможными ключами отношения. Один потенциальный ключ выбирается в качестве первичного, остальные будут называться вторичными (альтернативными). Могут быть даже такие ситуации, когда любой из потенциальных ключей может быть выбран в качестве первичного. Примером может служить таблица Менделеева, содержащая поля Имя , Символ и Атомное число . Потенциальные ключи имеют очень большое значение в реляционной теории. Они служат для адресации кортежей. Указав значение потенциального ключа мы гарантированно получим не более одного кортежа. Для отношений, связанных с другими «базовыми» отношениями, существуют еще внешние ключи, использующиеся для установления связи.

    · Внешний ключ – это такой атрибут подчиненного отношения, который используется для установления связи с базовым отношением. Он содержит значения, всегда совпадающие с некоторыми значениями потенциального ключа базового отношения.

    Исходя их вышеприведенных понятий, математически отношение можно описать следующим образом. Пусть даны n множеств Dl, D2, D3,..., Dn . Тогда отношение R есть множество упорядоченных кортежей<d1 , d2 , d3 ,..., dn >, где dk ÎDk , dk – атрибут, a Dk – домен отношения R.

    В середине 70-х годов инженером IBM Коддом (Codd) была предложена модель данных, основанная на математических операциях исчисления отношений и реляционной алгебре. Основной структурной единицей этой модели являлось отношение (relation). Поэтому такая модель данных получила название реляционной. Коддом был также разработан язык манипулирования данных, представленных в виде отношений. Он предложил два эквивалентных между собой по своим выразительным возможностям варианта языка манипулирования данными:

    5. Реляционная алгебра . Это процедурный язык, так как отношение, являющееся результатом запроса к реляционной БД, вычисляется при выполнении последовательности реляционных операторов, применяемых к отношениям. Операторы состоят из операндов, в роли которых выступают отношения, и реляционных операций. Результатом реляционной операции является отношение. Операции реляционной алгебры можно разделить на две группы. Первую группу составляют операции над множествами, к которым относятся операции объединения, пересечения, разности, деления и декартова произведения. Вторую группу составляют специальные операции над отношениями: проекция, выборка и соединение.

    6. Реляционное исчисление . Это непроцедурный язык описательного или декларативного характера, содержащий лишь информацию о желаемом результате. Процесс получения этого результата скрыт от пользователя. К языкам такого типа относятся SQL и QBE. Первый основан на реляционном исчислении кортежей, второй – на реляционном исчислении доменов.

    С помощью этих языков можно извлекать подмножество столбцов и строк таблицы, создавая таблицы меньшей размерности, а также объединять связанные данные из нескольких таблиц, создавая при этом таблицы большей размерности. Следовательно, различные пользователи могут выделять в реляционной БД различные наборы данных и связей между ними. Этот способ представления данных наиболее естественен и обозрим для конечного пользователя. Реляционная модель данных очень гибка, поскольку любое представление данных с некоторой избыточностью можно свести к двумерным таблицам.

    Отношения

    Теоретическим фундаментом реляционного подхода к БД является математическая теория отношений. Основные понятия и операции над отношениями используются в реляционных БД.

    Основные понятия и способы представления отношений . Всякая система (математическая, информационная) непосредственно связана со множеством каких-то объектов , или элементов . Так, в математике используются множества чисел: натуральных, положительных, вещественных и др. В алгебре рассматриваются элементы, которые можно складывать, вычитать, умножать и т.д., а в геометрии - множества точек: прямые, линии, плоскости и т.д. Информационная система объекта, например, учебного заведения, содержит информацию о преподавателях, студентах, кафедрах, факультетах, лабораториях, расписании занятий и т. п.

    Помимо элементов система включает в себя связи, отношения между ними. Так, числа а и b могут быть равны (а = b ) , не равны (а b ), а больше или равно b (а b ); фигуры А и В могут быть конгруэнтны (А = В ), А может содержать В (A B ); две прямые А и В могут быть параллельны (А || В ), перпендикулярны (). Студент а относится (принадлежит) к множеству А (студенты кафедры).

    Все перечисленные отношения касаются двух объектов и поэтому называются бинарными отношениями или просто отношениями . Отношения между тремя объектами называются тернарными , а между n объектами - n-арными . Так, тернарным является отношение между объектами ЗАКАЗЧИК, ПОСТАВЩИК, ТОВАР.

    Бинарным отношением R между множествами А и В (обозначается R (A , В )) называется любое множество упорядоченных пар (а , b ), где а А , b В . Если (а ,b ) R , то говорят, что а находится в отношении R к b , и записывают aRb , Поскольку множество упорядоченных пар (а , b ), где а A , b В , является декартовым произведением A ×В , то бинарным отношением будет любое подмножество этого произведения.

    Пример 2.1. Возьмем множество поставщиков и множество предлагаемых товаров. Любое подмножество связей ПОСТАВЩИК - ТОВАР является бинарным отношением.

    Пример 2.2. Пусть даны множества A = {1, 2, 3} и В = {2, 3, 4, 5, 6}. Декартово произведение A ×В - это множество пар:

    (1, 2), (1, 3), …, (1, 6),

    (2, 2), (2, 3), …, (2, 6),

    (3, 2), (3, 3), …, (3, 6).

    Построим бинарное отношение R , у которого первый элемент является делителем второго. Получим следующее бинарное отношение: R ={(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3,6)}.

    Пример 2.3. Пусть Ольга (О), Павел (П), Иван (И) - имена детей в семье. Отношением а - брат b будет:

    R = {(П, О), (И, О), (П, И), (И, П)}.

    В отношении R (A , В ) множество А , т.е. совокупность всех первых координат, называют областью определения отношения R , а множество B , т. е. множество всех вторых координат, - областью его значений . Так, для примера 3.3 область определения - множество {П, И}, а область значений- множество {О, П, И}.

    Дополнением к бинарному отношению R будем называть отношение , которое определяет подмножество

    = (A ×B )\R ,

    т.е. a b тогда и только тогда, когда {a , b ) R . Так, для примера 2.2

    = {(2, 3), (2, 5), (3, 2), (3, 4), (3, 5)}.

    Бинарные отношения можно задавать различными способами: матрицами, графами, таблицами (сечениями). Отношение R (A , В ), где А = {а 1, а 2 , ..., a m }; B = {b 1, b 2 , ..., b n }, можно представить матрицей смежностей, строки которой соответствуют элементам A , а столбцы - элементам В ; на пересечении а i -й строки и b j -го столбца записана 1, если a i Rb j , и 0, если a i Rb j . Матрицы смежности для отношений R и для примера 2.2 имеют вид

    R

    Бинарное отношение R (A , В ) можно представить в виде ориентированного графа. Элементы множества А и В - вершины графа, причем ребром соединяются те и только те элементы а А , b В , для которых (a , b ) R. Так, в виде графа на рис. 2.10 представлено отношение для примера:

    Рис. 2.10. Представление отношения R в виде графа

    Пусть даны три множества А , В , С и два отношения R (A , В ) и S (B , С ). Композицией , или умножением , отношений R и S называют бинарное отношение RS (или R *S ) между элементами множеств А и С такое, что aRSc тогда и только тогда, когда существует хотя бы один элемент b В , при котором истинны aRb и bSc .

    Пример 2.4. Рассмотрим множества

    А = {а 1, а 2 , а 3 }, В = {b 1 , b 2 , b 3 }, С = {с 1 , c 2 , c 3 , c 4 }

    и отношения

    R (A , B ) = {(a 1 , b 2), (a 2 , b 1), (a 2 , b 3), (a 3 , b 4)},

    S (B , C ) = {(b 1 , c 2), (b 2 , c 1)}.

    Умножение отношений RS можно представить в виде графа (рис. 2.11.).

    Умножение бинарных отношений ассоциативно, т. е. (RS )T = R (ST ). Пусть даны отношения R (A , В ), S (B , С ) и Т (С , D ). Тогда a (RS )Td = aR (ST )d , т.е. элемент а A тогда и только тогда находится в каждом из отношений (RS )T и R (ST ) к элементу d D , когда существуют такие элементы b В и c С , что aRb , bSc , cTd . Умножение отношений, однако, не является в общем случае коммутативным (перестановочным), т.е. RS SR . Эта операция имеет место только в частных случаях (в этом случае говорят, что R и S перестановочны).

    Пример2.5. Пусть даны множества

    A = {a, b}, B = {a, b, c}, C = {b, c}

    и отношения R (A , В ) = {(а , b ), (b , с )}, S (B , C ) = {(b , с ), (а , b )}. Тогда aRSc = aSRc для любых а А и c С .

    Умножение k отношений R на множестве H , т.е. k -я степень R , обозначаемая R k , рекурсивно определяется следующим образом:

    1) aR l b истинно, когда истинно aRb ;

    2) aR i b для i >0 истинно, когда существует такое с А ,
    что aRc и cR i - l b истинны.

    Пусть имеем aR 3 b . Тогда существует такое с 1, что aRc 1 и c 1 R 2 b . Для c 1 R 2 b найдется такое с 2 , что c 1 Rc 2 и c 2 Rb , т. е. для аR 3 b есть такое с 1, с 2 А , что аRс 1 , c 1 Rc 2 и с 2 Rb .

    Пусть в одном или нескольких множествах даны от­ношения R i (i пробегает множество индексов I ) и S . Тогда

    , (2.1)

    Согласно a [(UR i )S ]с существует такой элемент b , что a (Ri )b и bSc . А это, в свою очередь, равносильно существованию такого индекса i 0 , что a R b и bSc , т.е.

    Рис. 2.11.Представление операции умножения отношений RS в виде графа

    a(R S) c и поэтому a (R i S )c . Заметим, что в равенствах (3.1) объединение нельзя заменить пересечением. Из (3.1) следует, что если даны отношения R , R " и S , причем R R ", то

    RS R "S , SR SR ". (2.2)

    Действительно, так как R R ’ то R R " = R ", что приводит к равенству (R R ’) S = RS R S = R S , которое равносильно включению RS R "S .а, если для функционального отношения R симметричное ему отношение тоже функционально.

    Всякому отношению R (A , В ) можно поставить в соответствие функцию f (x ), если его сечение по каждому х А либо пусто, либо есть элемент множества В . Если f (x ) всюду определена, т. е. область определения функции совпадает с А , то говорят, что отношение R (A , В ) есть отображение множества А в В . Функциональное отношение R (A , В ) вызывается отображением А в В , если для каждого а A существует один и только один элемент

    Рис. 2.12. Представление функционального отношения R(A, В) в виде графа

    b B , удовлетворяющий отношению aRb . Элемент b называется образом элемента а и обозначается aR , а элемент а - прообразом элемента b при отображении R . Совокупность всех прообразов элемента b в А при отображении R называется полным прообразом этого элемента в А .

    Отображение можно задавать таблицей, состоящей из двух строк. В верхней строке записываются элементы а А , а под ними - соответствующие названным элементам прообразы из множества В . Например, таблица

    определяет отображение множества {1, 2, 3, 4} в множество {2, 5, 1, 4}. При этом 1R = 2, 2R = 5, 3R =1, 4R = 4.

    Пусть Р - отображение А в В , Q - отображение В в С . Умножение отображения PQ будет отображением А в С , и для любого x ?А справедливо x (PQ ) = (xP )Q . Действительно, пусть x (PQ )=c . Тогда для некоторого у В имеем хРу и yQc , откуда хР = у и поэтому с = (xP )Q . Обратно, из (xP )Q следует x (PQ ).

    Умножение отображений, заданных таблицами, покажем на примере:

    Отображение R называют сюръективным (сюръекцией ) или отображением множества А на множество В , когда каждый элемент b ?В имеет хотя бы один прообраз из А .

    Пример 2.6. Пусть А и В - множества вещественных чисел. Отображением (сюръективным) А на В может быть функция, определенная формулой х → Зх + 5, т. е. х переходит в y = 3x + 5.

    Функция х у =х 2 определяет отображение множества A в Б , которое не является сюръективным, так как отрицательные числа из В не являются образами элементов из А .

    Отображение R множества А в множество В называется взаимно однозначным, если обратное отношение R - l есть отображение В в А . Для взаимно однозначного отображения, заданного с помощью сечений, необходимо и достаточно, чтобы каждый элемент из В встречался в нижней строке таблицы один и только один раз. Так, три таблицы, приведенные ранее в качестве примера умножения отображений, соответствуют взаимно однозначным отображениям.

    Взаимно однозначное отображение, для которого R всюду определено, называют инъективным (инъекцией ).

    Пример 2.7. Пусть А - множество действительных чисел, В - множество положительных действительных чисел. Отображение х у = е х является взаимно однозначным, так как каждому у соответствует х = ln y . Таким образом, имеем инъективное отображение, обратным для которого будет отображение у х =ln y .

    Взаимно однозначное отображение R между элементами одного множества, для которого R и R - l всюду определены, называется отображением на себя или биективным отображением . Биективное отображение является одновременно сюръективным и ииъективным.

    При отображении некоторого множества самого в себя говорят, что отображение aRb переводит точку а в точку b . При aRa точку а называют неподвижной точкой отображения R . Если все точки множества A при отображении неподвижны, то отображение называют тождественным и обозначают Е А . Очевидно, что Е -1 =Е и для любого отображения R RE =ER = R . При задании отображения в себя с помощью сечений в нижней строке таблицы будут такие же элементы, как и в верхней (возможно, в другом порядке), и каждый из них встречается один и только один раз:

    Матрица смежностей, соответствующая отображению в себя, является квадратной:

    R

    Представление отображения в себя в виде графа состоит из циклов (конечных или бесконечных).

    В реальном проектировании структуры базы данных применяется метод - так называемое, семантическое моделирование . Семантическое моделирование представляет собой моделирование структуры данных, опираясь на смысл этих данных. В качестве инструмента семантического моделирования используются различные варианты диаграмм сущность-связь (ER - Entity-Relationship ).

    Первый вариант модели сущность-связь был предложен в 1976 г. Питером Пин-Шэн Ченом. В дальнейшем многими авторами были разработаны свои варианты подобных моделей (нотация Мартина, нотация IDEF1X, нотация Баркера и др.). Кроме того, различные программные средства, реализующие одну и ту же нотацию, могут отличаться своими возможностями. По сути, все варианты диаграмм сущность-связь исходят из одной идеи - рисунок всегда нагляднее текстового описания. Все такие диаграммы используют графическое изображение сущностей предметной области, их свойств (атрибутов), и взаимосвязей между сущностями.

    Мы опишем работу с ER-диаграммами близко к нотации Баркера, как довольно легкой в понимании основных идей. Данная глава является скорее иллюстрацией методов семантического моделирования, чем полноценным введением в эту область.

    Основные понятия ER-диаграмм

    Определение 1 : Сущность - это класс однотипных объектов, информация о которых должна быть учтена в модели.
    Каждая сущность должна иметь наименование, выраженное существительным в единственном числе. Примерами сущностей могут быть такие классы объектов как "Поставщик", "Сотрудник", "Накладная". Каждая сущность в модели изображается в виде прямоугольника с наименованием:

    Рис. 1

    Определение 2 : Экземпляр сущности - это конкретный представитель данной сущности.
    Например, представителем сущности "Сотрудник" может быть "Сотрудник Иванов". Экземпляры сущностей должны быть различимы, т.е. сущности должны иметь некоторые свойства, уникальные для каждого экземпляра этой сущности.

    Определение 3 : Атрибут сущности - это именованная характеристика, являющаяся некоторым свойством сущности.
    Наименование атрибута должно быть выражено существительным в единственном числе (возможно, с характеризующими прилагательными). Примерами атрибутов сущности "Сотрудник" могут быть такие атрибуты как "Табельный номер", "Фамилия", "Имя", "Отчество", "Должность", "Зарплата" и т.п. Атрибуты изображаются в пределах прямоугольника, определяющего сущность:

    Рис. 2

    Определение 4 : Ключ сущности - это неизбыточный набор атрибутов, значения которых в совокупности являются уникальными для каждого экземпляра сущности. Неизбыточность заключается в том, что удаление любого атрибута из ключа нарушается его уникальность. Сущность может иметь несколько различных ключей. Ключевые атрибуты изображаются на диаграмме подчеркиванием:

    Рис. 3

    Определение 5 : Связь - это некоторая ассоциация между двумя сущностями. Одна сущность может быть связана с другой сущностью или сама с собою.
    Связи позволяют по одной сущности находить другие сущности, связанные с нею. Например, связи между сущностями могут выражаться следующими фразами - "СОТРУДНИК может иметь несколько ДЕТЕЙ", "каждый СОТРУДНИК обязан числиться ровно в одном ОТДЕЛЕ". Графически связь изображается линией, соединяющей две сущности:

    Рис. 4

    Каждая связь имеет два конца и одно или два наименования. Наименование обычно выражается в неопределенной глагольной форме: "иметь", "принадлежать" и т.п. Каждое из наименований относится к своему концу связи. Иногда наименования не пишутся ввиду их очевидности.

    Каждая связь может иметь один из следующих типов связи :

    Рис. 5

    Связь типа один-к-одному означает, что один экземпляр первой сущности (левой) связан с одним экземпляром второй сущности (правой). Связь один-к-одному чаще всего свидетельствует о том, что на самом деле мы имеем всего одну сущность, неправильно разделенную на две.

    Связь типа один-ко-многим означает, что один экземпляр первой сущности (левой) связан с несколькими экземплярами второй сущности (правой). Это наиболее часто используемый тип связи. Левая сущность (со стороны "один") называется родительской , правая (со стороны "много") - дочерней . Характерный пример такой связи приведен на Рис. 4.

    Связь типа много-ко-многим означает, что каждый экземпляр первой сущности может быть связан с несколькими экземплярами второй сущности, и каждый экземпляр второй сущности может быть связан с несколькими экземплярами первой сущности. Тип связи много-ко-многим является временным типом связи, допустимым на ранних этапах разработки модели. В дальнейшем этот тип связи должен быть заменен двумя связями типа один-ко-многим путем создания промежуточной сущности.

    Каждая связь может иметь одну из двух модальностей связи :

    Рис. 6

    Модальность "может " означает, что экземпляр одной сущности может быть связан с одним или несколькими экземплярами другой сущности, а может быть и не связан ни с одним экземпляром.
    Модальность "должен " означает, что экземпляр одной сущности обязан быть связан не менее чем с одним экземпляром другой сущности.
    Связь может иметь разную модальность с разных концов (как на Рис. 4). Описанный графический синтаксис позволяет однозначно читать диаграммы, пользуясь следующей схемой построения фраз:

    <Каждый экземпляр СУЩНОСТИ 1> <МОДАЛЬНОСТЬ СВЯЗИ> <НАИМЕНОВАНИЕ СВЯЗИ> <ТИП СВЯЗИ> <экземпляр СУЩНОСТИ 2>

    Каждая связь может быть прочитана как слева направо, так и справа налево. Связь на Рис. 4 читается так:

    Слева направо: "каждый сотрудник может иметь несколько детей".
    Справа налево: "Каждый ребенок обязан принадлежать ровно одному сотруднику".

    Пример разработки простой ER-модели

    При разработке ER-моделей мы должны получить следующую информацию о предметной области:

    1. Список сущностей предметной области.
    2. Список атрибутов сущностей.
    3. Описание взаимосвязей между сущностями.

    ER-диаграммы удобны тем, что процесс выделения сущностей, атрибутов и связей является итерационным. Разработав первый приближенный вариант диаграмм, мы уточняем их, опрашивая экспертов предметной области. При этом документацией, в которой фиксируются результаты бесед, являются сами ER-диаграммы.

    Предположим, что перед нами стоит задача разработать информационную систему по заказу некоторой оптовой торговой фирмы. В первую очередь мы должны изучить предметную область и процессы, происходящие в ней. Для этого мы опрашиваем сотрудников фирмы, читаем документацию, изучаем формы заказов, накладных и т.п.

    Например, в ходе беседы с менеджером по продажам, выяснилось, что он (менеджер) считает, что проектируемая система должна выполнять следующие действия:

    • Хранить информацию о покупателях.
    • Печатать накладные на отпущенные товары.
    • Следить за наличием товаров на складе.

    Выделим все существительные в этих предложениях - это будут потенциальные кандидаты на сущности и атрибуты, и проанализируем их (непонятные термины будем выделять знаком вопроса):

    • Покупатель - явный кандидат на сущность.
    • Накладная - явный кандидат на сущность.
    • Товар - явный кандидат на сущность
    • (?)Склад - а вообще, сколько складов имеет фирма? Если несколько, то это будет кандидатом на новую сущность.
    • (?)Наличие товара - это, скорее всего, атрибут, но атрибут какой сущности?

    Сразу возникает очевидная связь между сущностями - "покупатели могут покупать много товаров" и "товары могут продаваться многим покупателям". Первый вариант диаграммы выглядит так:

    Рис. 7

    Задав дополнительные вопросы менеджеру, мы выяснили, что фирма имеет несколько складов. Причем, каждый товар может храниться на нескольких складах и быть проданным с любого склада.

    Куда поместить сущности "Накладная" и "Склад" и с чем их связать? Спросим себя, как связаны эти сущности между собой и с сущностями "Покупатель" и "Товар"? Покупатели покупают товары, получая при этом накладные, в которые внесены данные о количестве и цене купленного товара. Каждый покупатель может получить несколько накладных. Каждая накладная обязана выписываться на одного покупателя. Каждая накладная обязана содержать несколько товаров (не бывает пустых накладных). Каждый товар, в свою очередь, может быть продан нескольким покупателям через несколько накладных. Кроме того, каждая накладная должна быть выписана с определенного склада, и с любого склада может быть выписано много накладных. Таким образом, после уточнения, диаграмма будет выглядеть следующим образом:

    Рис. 8

    Пора подумать об атрибутах сущностей. Беседуя с сотрудниками фирмы, мы выяснили следующее:

    • Каждый покупатель является юридическим лицом и имеет наименование, адрес, банковские реквизиты.
    • Каждый товар имеет наименование, цену, а также характеризуется единицами измерения.
    • Каждая накладная имеет уникальный номер, дату выписки, список товаров с количествами и ценами, а также общую сумму накладной. Накладная выписывается с определенного склада и на определенного покупателя.
    • Каждый склад имеет свое наименование.
    • Снова выпишем все существительные, которые будут потенциальными атрибутами, и проанализируем их:
    • Юридическое лицо - термин риторический, мы не работаем с физическими лицами. Не обращаем внимания.
    • Наименование покупателя - явная характеристика покупателя.
    • Адрес - явная характеристика покупателя.
    • Банковские реквизиты - явная характеристика покупателя.
    • Наименование товара - явная характеристика товара.
    • (?)Цена товара - похоже, что это характеристика товара. Отличается ли эта характеристика от цены в накладной?
    • Единица измерения - явная характеристика товара.
    • Номер накладной - явная уникальная характеристика накладной.
    • Дата накладной - явная характеристика накладной.
    • (?)Список товаров в накладной - список не может быть атрибутом. Вероятно, нужно выделить этот список в отдельную сущность.
    • (?)Количество товара в накладной - это явная характеристика, но характеристика чего? Это характеристика не просто "товара", а "товара в накладной".
    • (?)Цена товара в накладной - опять же это должна быть не просто характеристика товара, а характеристика товара в накладной. Но цена товара уже встречалась выше - это одно и то же?
    • Сумма накладной - явная характеристика накладной. Эта характеристика не является независимой. Сумма накладной равна сумме стоимостей всех товаров, входящих в накладную.
    • Наименование склада - явная характеристика склада.

    В ходе дополнительной беседы с менеджером удалось прояснить различные понятия цен. Оказалось, что каждый товар имеет некоторую текущую цену. Эта цена, по которой товар продается в данный момент. Естественно, что эта цена может меняться со временем. Цена одного и того же товара в разных накладных, выписанных в разное время, может быть различной. Таким образом, имеется две цены - цена товара в накладной и текущая цена товара.

    С возникающим понятием "Список товаров в накладной" все довольно ясно. Сущности "Накладная" и "Товар" связаны друг с другом отношением типа много-ко-многим. Такая связь, как мы отмечали ранее, должна быть расщеплена на две связи типа один-ко-многим. Для этого требуется дополнительная сущность. Этой сущностью и будет сущность "Список товаров в накладной". Связь ее с сущностями "Накладная" и "Товар" характеризуется следующими фразами - "каждая накладная обязана иметь несколько записей из списка товаров в накладной", "каждая запись из списка товаров в накладной обязана включаться ровно в одну накладную", "каждый товар может включаться в несколько записей из списка товаров в накладной", " каждая запись из списка товаров в накладной обязана быть связана ровно с одним товаром". Атрибуты "Количество товара в накладной" и "Цена товара в накладной" являются атрибутами сущности " Список товаров в накладной".

    Точно также поступим со связью, соединяющей сущности "Склад" и "Товар". Введем дополнительную сущность "Товар на складе". Атрибутом этой сущности будет "Количество товара на складе". Таким образом, товар будет числиться на любом складе и количество его на каждом складе будет свое.

    Теперь можно внести все это в диаграмму:

    Рис. 9

    Концептуальные и физические ER-модели

    Разработанный выше пример ER-диаграммы является примером концептуальной диаграммы . Это означает, что диаграмма не учитывает особенности конкретной СУБД. По данной концептуальной диаграмме можно построить физическую диаграмму , которая уже будут учитываться такие особенности СУБД, как допустимые типы и наименования полей и таблиц, ограничения целостности и т.п. Физический вариант диаграммы, приведенной на Рис. 9 может выглядеть, например, следующим образом:

    Рис. 10

    На данной диаграмме каждая сущность представляет собой таблицу базы данных, каждый атрибут становится колонкой соответствующей таблицы. Обращаем внимание на то, что во многих таблицах, например, "CUST_DETAIL" и "PROD_IN_SKLAD", соответствующих сущностям "Запись списка накладной" и "Товар на складе", появились новые атрибуты, которых не было в концептуальной модели - это ключевые атрибуты родительских таблиц, мигрировавших в дочерние таблицы для того, чтобы обеспечить связь между таблицами посредством внешних ключей.

    Легко заметить, что полученные таблицы сразу находятся в 3НФ.

    Выводы

    Реальным средством моделирования данных является не формальный метод нормализации отношений, а так называемое семантическое моделирование .

    В качестве инструмента семантического моделирования используются различные варианты диаграмм сущность-связь (ER - Entity-Relationship ).

    Диаграммы сущность-связь позволяют использовать наглядные графические обозначения для моделирования сущностей и их взаимосвязей.

    Различают концептуальные и физические ER-диаграммы. Концептуальные диаграммы не учитывают особенностей конкретных СУБД. Физические диаграммы строятся по концептуальным и представляют собой прообраз конкретной базы данных. Сущности, определенные в концептуальной диаграмме становятся таблицами, атрибуты становятся колонками таблиц (при этом учитываются допустимые для данной СУБД типы данных и наименования столбцов), связи реализуются путем миграции ключевых атрибутов родительских сущностей и создания внешних ключей.

    При правильном определении сущностей, полученные таблицы будут сразу находиться в 3НФ. Основное достоинство метода состоит в том, модель строится методом последовательных уточнений первоначальных диаграмм.

    В данной главе, являющейся иллюстрацией к методам ER-моделирования, не рассмотрены более сложные аспекты построения диаграмм, такие как подтипы, роли, исключающие связи, непереносимые связи, идентифицирующие связи и т.п.



  • Рекомендуем почитать

    Наверх