Построить блок схему алгоритма онлайн. Создание простой блок-схемы

Инструмент 18.09.2019
Инструмент

Блок-схема представляет собой графическое отображение какого-либо процесса, четко показывающего систематическую последовательность всех этапов выполнения поставленной задачи, а также все группы, которые вовлечены в данный процесс. Такая схема является системой графических символов (блоков) и линий переходов (стрелок) между ними. Каждый из таких блоков соответствует определенному шагу алгоритма. Внутри такого символа дается описание данного действия.

Для чего применяют блок-схемы?

Упомянутые системы призваны выполнять следующие функции:

Разрабатывать новый процесс;

Описывать и документировать текущий алгоритм;

Разрабатывать модификации к данному процессу либо исследовать звенья с вероятным возникновением ошибок и сбоев;

Определять, когда, где и как можно менять текущий алгоритм, с целью проверки устойчивости всей системы.

Разработка последовательности операций

Любая блок-схема строится на основе алгоритма действий, описывающего работу устройства или программы. Поэтому сначала строится сама система. "Алгоритмом" называют описание последовательности операций для решения поставленной задачи. По сути, это правила выполнения необходимых процессов Прежде чем приступить к построению алгоритма, требуется четко определить задачу: что необходимо получить в результате, какая исходная информация нужна, а какая уже имеется, есть ли ограничения для ее получения. После этого составляется список действий, которые необходимо осуществить для получения требуемого результата.

Типы алгоритмов

На практике чаще всего применяют следующие виды блок-схем:

Графическая, то есть в основе находятся геометрические символы;

Словесная: составляется с помощью обычных слов того или иного языка;

Псевдокоды: представляют собой полуформализованное описание на которое включает в себя элементы языка программирования и фразы литературного, а также общепринятые математические символы;

Программная: для записи используются исключительно языки программирования.

Блок-схема устройства: описание

Графическое представление последовательности действий включает в себя изображение алгоритма, описывающего связи функциональных блоков данной схемы, которые соответствуют выполнению одного либо нескольких действий. Блок-схема массива состоит из отдельных элементов, размеры и правила построения которых определены государственным стандартом. Для каждого типа действия (ввода данных, вычисления значений выражений, проверки условий, управления повторением действий, окончания обработки и др.) предусмотрена отдельная представленная в виде блока. Эти символы соединяются линиями, определяющими очередность действий.

Основные элементы, употребляемые при составлении блок-схем

Полный список графических символов, используемых для описания алгоритма, состоит из 42 элементов. Его весь мы приводить не будем, а рассмотрим только основное.

Элементы блок-схемы:

1. Процесс означает вычислительное действие либо последовательность таких действий, изменяющих значения, размещения данных или форму представления. Для наглядности схемы такие элементы можно объединить в один блок. Данный символ имеет вид прямоугольника, внутри которого записываются комментарии, сопровождающие выполнение операции (либо группы операций).

2. Решение. Данный блок применяется для обозначения перехода управления по определенному условию. В каждом таком элементе указывается вопрос, сравнение или условие, которые его определяет. Другими словами, решение - это выбор направления для выполнения программы или алгоритма в зависимости от некоего переменного условия. Графический вид данного элемента - это ромб. Упомянутый символ может использоваться в качестве изображения следующих унифицированных структур: выбор, развилка полная и неполная, цикл «до» и «пока».

3. Модификация. Этот блок означает начало цикла. Он применяется для организации циклической конструкции. Внутри такого элемента записывают параметр круга действий, указывают его начальные значения, граничное условие, а также шаг изменения параметра для последующего повторения. Другими словами, модификация - это выполнение меняющихся команд или их групп, операций, изменяющих программу. Графическое изображение этого символа представляет собой шестиугольник.

4. Предопределенный процесс означает вычисление по заданной или стандартной программе. Его используют для указания обращения к вспомогательному алгоритму, который существует автономно в виде отдельных самостоятельных модулей, а также для обращения к библиотечным подпрограммам. Графически вид этого символа представлен прямоугольником с двумя вертикальными полями по краям. Этот элемент служит для указаний обращений к функциям, процедурам, программным модулям.

5. Ввод-вывод данных в общем виде.

6. Пуск и остановка. Этот элемент означает начало и конец алгоритма, а также вход в программу и выход из неё. Графически данный символ напоминает прямоугольник, у которого вместо боковых прямых - дуги.

7. Документ означает вывод результатов работы на печать. Графически такой элемент напоминает прямоугольник, только вместо нижней прямой начертана полуволна.

8. Ручной ввод означает пуск данных в процесс обработки оператором с помощью устройства, которое сопряжено с компьютером (клавиатура). Графический символ ручного ввода представляет собой четырехугольник, у которого боковые линии параллельны, нижняя перпендикулярна им, а верхняя косая.

9. Дисплей означает ввод или вывод информации в случае, когда устройство непосредственно подключено к процессору. В тот момент, когда начинают воспроизводиться данные, оператор может вносить изменения во время их обработки. Графически данный элемент представляет фигуру, у которой нижняя и верхняя линии параллельны, правая - это дуга, а левая состоит из двух прямых в виде стрелки.

10. Линии потока - это стрелки, которые указывают последовательность связей. Ни одна блок-схема структуры не может обходиться без данного элемента. Существуют определенные правила начертания этих символов. Перечислим их:

Данные элементы должны быть параллельными линиям внешнего периметра или границам страницы, на которой изображена эта блок-схема;

Направление линии сверху вниз или слева направо считается основным, стрелками оно не обозначается, остальные случаи указания направлений обозначены ими;

Изменение направления данного элемента производится только под углом 90 о.

11. Соединитель. Данный элемент предназначен для указания связи на прерванных линиях потока. Эти символы используются в том случае, если блок-схема программы строится из нескольких частей. Тогда линия потока от одной части должна закончиться «соединителем», а новой части - начаться с данного символа. Внутри такого элемента ставится один и тот же порядковый номер. Графическое изображение «соединителя» - это круг.

12. Межстраничный соединитель. Назначение этого элемента аналогично предыдущему, только используется он для соединения блок-схем, размещенных на разных страницах. Изображение такого элемента представлено пятиугольником в виде домика.

13. Комментарий - это связь между различными элементами блок-схемы с пояснениями. Упомянутый элемент позволяет включать в себя формулы и прочую информацию.

Построение блок-схем

Графическое построение алгоритма - это часть документации к устройству или программе, которая всегда имеется в избытке. Однако в большинстве случаев программное обеспечение вообще не нуждается в блок-схеме. Лишь единицам требуется построение алгоритма, занимающего несколько листов, остальным же достаточно символичной схемы. Простая блок-схема показывает структуру ветвления программ только в одном аспекте. Однако даже такая структура четко видна только при условии, что алгоритм помещается на одном листе. В обратном случае, когда блок-схема расположена на нескольких страницах, связанных межстраничными переходами, весьма сложно получить о ней верное представление. Если она размещается на одном листе, то для большой программы данное изображение алгоритма превращается в ее общий план с перечнем главных блоков и этапов. Конечно же, такой график не следует стандартам построения схем, но он и не нуждается в них, так как этот процесс полностью индивидуален. Правила, касающиеся типа символов, стрелок и порядка нумерации, необходимы только для разбора подробных блок-схем.

Массивы и построение алгоритмов

Массив представляет собой совокупность однотипной информации, которая хранится в последовательных кластерах памяти и имеет общее имя. Такие ячейки называются "элементами системы". Все кластеры нумеруются по порядку. Такой номер называется "индексом элемента массива". Как составить блок-схему для подобной системы? Рассмотрим пример создания алгоритма для элементарного типа. Простейшая система имеет условно вид строки. Зададим имя для данного массива - «А». Будем считать, что наша система состоит из восьми ячеек (от 1 до 8). Каждый из упомянутых кластеров содержит случайное число, которое называется "элементом массива". Для обращения в конкретной ячейке необходимо указывать имя в (). Рассмотрим пример, в котором блок-схема массива предназначена для заполнения системы случайными числами с последующим выводом информации на экран. Что представляет собой такой алгоритм? Это элементарная система. По сути, она не имеет практического применения, однако удобна для учебного процесса. Рассматриваемая блок-схема (пример построения описан ниже) содержит всего семь основных элементов, соединенных линиями переходов.

Описание последовательности выполнения задачи

1. Первым элементом схемы будет символ «Начало».

2. Вторым блоком - «Процесс», внутри которого вписываем «инициализация random».

3. Следующий элемент - «Модификация», в блоке вписываем значение ячеек массива.

4. Далее, согласно заданной функции, происходит переадресация на следующий блок «процесса», в котором задается обращение к конкретным кластерам системы с указанием ограничения случайных чисел в диапазоне от нуля до ста. После проведения данной операции происходит возврат к третьему блоку, а через него - далее на пятый.

5. В этом блоке «Модификации», согласно вписанной функции, происходит переадресация на следующий элемент.

6. «Вывод» производит отображение информации о новом содержимом массива на мониторе с последующим направлением на предыдущий блок. Далее - на последний элемент.

7. «Конец» работы алгоритма.

На базе такой блок-схемы составляется программа, которая обеспечит работу представленного алгоритма.

«Редактор блок-схем»

Если вы задаетесь вопросом о том, как составить блок-схему, то знайте, что существуют специальные программы, которые предназначены для создания, а также редактирования таких систем. Удобством графического отображения алгоритма является то, что пользователь не привязан к синтаксису конкретного языка программирования. Построенная блок-схема одинаково подходит для всех языков (например, С, Паскаль, Бейсик и другие). Кроме того, редактор может использоваться для построения диаграмм и проверки работоспособности схем. Такая программа является специализированным софтом. Она предоставляет разнообразный набор инструментов, необходимых для построения блок-схем, что делает ее более удобной, по сравнению с обычными Дополнительные опции позволяют оптимизировать процесс составления системы с дальнейшим ее преобразованием в функции и процедуры языка программирования. Кроме того, редактор блок-схем предлагает набор шаблонов, способных существенно ускорить работу начинающего пользователя. Ведь известно, что при построении алгоритма часто применяются повторяющиеся структуры, например разнообразные варианты циклов, альтернативы (полные и неполные), множественные ветвления и прочее. Редактор позволяет выделять часто используемые в блок-схемах элементы и добавлять их в создаваемую схему. Это избавляет от прорисовки их каждый раз заново. Кроме того, с помощью редактора можно импортировать функции и процедуры, реализованные на любом известном языке программирования. Данная опция полезна для разбора структуры алгоритма, который написан на малознакомом языке. Системные требования рассматриваемой программы довольно скромные, что позволяет использовать ее на любом

Заключение

Подводя итог, следу отметить, что подробные схемы построения алгоритмов уже устарели. В качестве описания процесса они никому не интересны. В лучшем случае блок-схемы пригодны для проведения обучения новичков, которые не умеют алгоритмически мыслить. Предложенные в свое время элементы со своим содержанием являлись языком высокого уровня, они объединяли операторов языка машины в отдельные группы. На данный момент каждый графический элемент соответствует конкретному оператору. Значит, сам символ превратился в случайное, а главное - бесполезное занятие по рисованию, от которого легко можно отказаться. Сегодня стали лишними даже линии переходов, так как каждый оператор уже определен. В действительности графическое построение алгоритмов больше превозносится, чем применяется на практике. Программист с большим опытом работы, прежде чем написать программу, редко чертит блок-схему. Когда стандарт организации требует графический алгоритм, то рисуют его уже после окончания работ.

Блок-схема алгоритма

Пример блок-схемы алгоритма вычисления факториала числа N

Схе́ма - графическое представление определения, анализа или метода решения задачи, в котором используются символы для отображения операций, данных, потока, оборудования и т. д. (ГОСТ 19.701-90 ).

Блок-схема - распространенный тип схем, описывающий алгоритмы или процессы, изображая шаги в виде блоков различной формы, соединенных между собой стрелками.

Стандарты выполнения

Правила выполнения схем определяются следующими документами:

Для программной документации:

Данные документы в частности регулируют способы построения схем и внешний вид их элементов.

Основные элементы схем алгоритма

Наименование Обозначение Функция
Терминатор
(пуск-останов)
Элемент отображает вход из внешней среды или выход из нее (наиболее частое применение − начало и конец программы). Внутри фигуры записывается соответствующее действие.
Процесс Выполнение одной или нескольких операций, обработка данных любого вида (изменение значения данных, формы представления, расположения). Внутри фигуры записывают непосредственно сами операции, например, операцию присваивания : a = 10*b + c .
Решение Отображает решение или функцию переключательного типа с одним входом и двумя или более альтернативными выходами, из которых только один может быть выбран после вычисления условий, определенных внутри этого элемента. Вход в элемент обозначается линией, входящей обычно в верхнюю вершину элемента. Если выходов два или три то обычно каждый выход обозначается линией, выходящей из оставшихся вершин (боковых и нижней). Если выходов больше трех, то их следует показывать одной линией, выходящей из вершины (чаще нижней) элемента, которая затем разветвляется. Соответствующие результаты вычислений могут записываться рядом с линиями, отображающими эти пути. Примеры решения: в общем случае − сравнение (три выхода: > , < , = ); в программировании − условные операторы if (два выхода: true , false ) и case (множество выходов).
Предопределенный процесс Символ отображает выполнение процесса, состоящего из одной или нескольких операций, который определен в другом месте программы (в подпрограмме, модуле). Внутри символа записывается название процесса и передаваемые в него данные. Например, в программировании − вызов процедуры или функции.
Данные
(ввод-вывод)
Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод). Данный символ не определяет носителя данных (для указания типа носителя данных используются специфические символы).
Граница цикла Символ состоит из двух частей − соответственно, начало и конец цикла − операции, выполняемые внутри цикла, размещаются между ними. Условия цикла и приращения записываются внутри символа начала или конца цикла − в зависимости от типа организации цикла. Часто для изображения на блок-схеме цикла вместо данного символа используют символ решения, указывая в нем условие, а одну из линий выхода замыкают выше в блок-схеме (перед операциями цикла).
Соединитель Символ отображает выход в часть схемы и вход из другой части этой схемы. Используется для обрыва линии и продолжения ее в другом месте (пример: разделение блок-схемы, не помещяющейся на листе). Соответствующие соединительные символы должны иметь одно (при том уникальное) обозначение.
Комментарий Используется для более подробного описания шага, процесса или группы процессов. Описание помещается со стороны квадратной скобки и охватывается ей по всей высоте. Пунктирная линия идет к описываемому элементу, либо группе элементов (при этом группа выделяется замкнутой пунктирной линией). Также символ комментария следует использовать в тех случаях, когда объем текста в каком-либо другом символе (например, символ процесса, символ данных и др.) превышает его объем.

Описание других элементов схем можно найти в соответствующих ГОСТ (указаны выше).

Порядок выполнения действий задается путем соединения вершин дугами, что позволяет рассматривать блок-схемы не только как наглядную интерпретацию алгоритма, удобную для восприятия человеком, но и как взвешенный ориентированный граф . Однако не любой ориентированный граф, составленный из вершин указанных выше типов, является корректным алгоритмом . Например, из операторной вершины не может выходить более одной дуги. Поэтому на практике обычно ограничиваются рассмотрением подкласса граф-схем алгоритмов, удовлетворяющих свойствам безопасности, живости и устойчивости.

Дракон-схемы

В последнее время появились структурные, математически строгие блок-схемы, которые называются «дракон-схемы». С появлением дракон-схем блок-схемы стали терять своё значение, так как они во всех отношениях уступают дракон-схемам.

Примечания

См. также

  • Диаграмма связей

Wikimedia Foundation . 2010 .

Смотреть что такое "Блок-схема алгоритма" в других словарях:

    блок-схема алгоритма - контрольная диаграмма — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы контрольная диаграмма EN control diagram …

    блок-схема - — блок схема [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и электроэнергетике. 2 е издание М.: РУССО, 1995 616 с.] блок схема Условное изображение алгоритма,… … Справочник технического переводчика

    блок-схема (программы или алгоритма) - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN flow diagram … Справочник технического переводчика

    В программировании графическое представление программы или алгоритма с использованием стандартных графических элементов (прямоугольников, ромбиков, трапеций и др.), обозначающих команды, действия, данные и т.п. По английски: Flowchart См. также:… … Финансовый словарь

    Блок-схема - – условное изображение алгоритма, программы для ЭВМ, процесса принятия решения, документооборота и т.п., предназначенное для выявления их структуры и общей последовательности операций. Пример Б. с. см. в статье Алгоритм … Экономико-математический словарь

    У этого термина существуют и другие значения, см. Блок. Пример блок схемы алгоритма вычисления факториала числа N Схема графическое представление определения, анализа или метода решения задачи, в котором используются символ … Википедия

    БЛОК-СХЕМА - условное изображение алгоритма решения задачи, документооборота, последовательности выполнения рабочих операций или процедур с помощью стрелок, соединительных линий и геометрических фигур различной формы, содержащих внутри символы управления или… … Большой экономический словарь

    поэтапная блок-схема - представляет собой подробное графическое изображение структурной организации алгоритма, в котором каждый этап процесса переработки данных представляется в виде пронумерованных геометрических фигур (или блоков) … Толковый переводоведческий словарь

    Блок схема алгоритма Дейкстры. Алгоритмы поиска на гр … Википедия

    аттестация информационных технологий в области качества служебной информации - Официальное подтверждение органом по сертификации или другим специально уполномоченным органом наличия необходимых и достаточных условий применения информационной технологии, обеспечивающих стабильность выполнения норм качества служебной… … Справочник технического переводчика

Книги

  • Императивы эффективности производства , Николай Александрович Жданкин. На основе проведенного исследования рассматриваются вопросы разработки стратегии крупной компании в металлургии. Приведены примеры анализа внутренней и внешнейсреды предприятия. Произведена… электронная книга

Основные элементы блок-схемы. Типы блок-схем.

Описание алгоритма с помощью блок схем осуществляется рисованием последовательности геометрических фигур, каждая из которых подразумевает выполнение определенного действия алгоритма. Порядок выполнения действий указывается стрелками. Написание алгоритмов с помощью блок-схем регламентируется ГОСТом. Внешний вид основных блоков, применяемых при написании блок схем, приведен на рисунке.

Представление алгоритма программы в виде блок-схемы имеет два недостатка:

· предполагает слишком низкий уровень детализации, что часто скрыва­ет суть сложных алгоритмов

· и позволяет использовать неструктурные способы передачи управления (goto), причем часто на схеме алгоритма они выглядят проще, чем эквивалентные структурные.

Кроме схем, для описания алгоритмов можно использовать псевдокоды , Flow-формы и диаграммы Насси-Шнейдермана . Все перечисленные способы с одной стороны базируются на тех же основных структурах, а с другой стороны, допускают разные уровни детализации.

Каждый символ Flow-формы соответствует управляющей структу­ре и изображается в виде прямоугольника. Для демонстрации вложенности структур символ Flow-формы вписывается в соответствующую область прямоугольника любого другого символа. Символы Flow-форм, соответствую­щие основным и дополнительным управляющим конструкциям, приведены на рисунке А1.

<Действие>
а)
б)
в)
г)
д)

Рисунок А2 - Условные обозначения диаграмм Насси-Шнейдермана для основных конструкций:

а - следование; б - ветвление; в - выбор; г - цикл-пока; д - цикл-до

Основное отличие диаграмм Насси-Шнейдермана от Flow-форм заключается в том, что область обозначения условий и вариантов ветвления изображают в виде треугольников (рисунок А2). Такое обозначение обеспечивает большую наглядность представления алгоритма.

Общим недостатком Flow-форм и диаграмм Насси-Шнейдермана являет­ся сложность построения изображений символов, что усложняет практическое применение этих нотаций для описания больших алгоритмов.

В отличие от блок-схем псевдокоды не ограничивают степень детализации операций, но, не являясь графическими, хуже отображают их вложенность.

Описать неструктурный алгоритм с помощью псевдокодов, Flow-форм и диаграмм Насси-Шнейдермана невозможно, т. к. для неструктурной передачи управления в них отсут­ствуют условные обозначения. Их использование изначально ориентирует проектировщика толь­ко на структурные способы передачи управления, а потому требует тщательного анализа алгоритма.

В зависимости от последовательности выполнения действий в алгоритме выделяют алгоритмы:

· линейной,

· разветвленной

· и циклической структуры.

В алгоритмах линейной структуры действия выполняются последовательно одно за другим.

В алгоритмах разветвленной структуры в зависимости от выполнения или невыполнения какого-либо условия производятся различные последовательности действий. Каждая такая последовательность действий называется ветвью алгоритма.

В алгоритмах циклической структуры в зависимости от выполнения или невыполнения какого-либо условия выполняется повторяющаяся последовательность действий, называющаяся телом цикла. Вложенным называется цикл, находящийся внутри тела другого цикла. Различают циклы с предусловием и постусловием:

Итерационным называется цикл, число повторений которого не задается, а определяется в ходе выполнения цикла. В этом случае одно повторение цикла называется итерацией.

Итак: При всем многообразии алгоритмов решения задач в них можно выделить три основных вида вычислительных процессов:

· линейный ,

· разветвленный

· и циклический ,

для реализации которых в программах используют соответствующие базовые управляющие конструкции:

· следование ,

· ветвление ,

· цикл-пока.

Помимо базовых, процедурные языки программирования высокого уровня используют еще три конструкции (структуры), которые легко реализуются через базовые:

· выбор ,

· цикл-до ,

· цикл с заданным числом повторений .

Перечисленные шесть конструкций были положены в основу структур­ного программирования . Слово «структурное» в названии подчеркивает тот факт, что при программировании использованы только перечисленные конструкции. Отсюда и понятие «программирование без go to». Программы, написанные с использованием только структурных операторов передачи управления, называют структурными, чтобы подчеркнуть их отличие от программ, при реализации которых исполь­зовались низкоуровневые способы передачи управления.

Разработанный алгоритм реализуется в виде программных кодов (программы ) на одном из языков программирования.

Схема это абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части . Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД) , частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» . Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985 .

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

Терминатор начала и конца работы функции

Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.

Операции ввода и вывода данных

В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.

Выполнение операций над данными

В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.

Блок, иллюстрирующий ветвление алгоритма

Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.

Вызов внешней процедуры

Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.

Начало и конец цикла

Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).

Подготовка данных

Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.

Соединитель

В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.

Комментарий

Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.


Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того .

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком , как и сортировка вставками , использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.


Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием ), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap ). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).


Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива , поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort , … .

Блок-схемой будем называть такое графическое представление алгоритма, когда отдельные действия (или команды) представляются в виде геометрических фигур – блоков . Внутри блоков указывается информация о действиях, подлежащих выполнению. Связь между блоками изображают с помощью линий, называемых линиями связи , обозначающих передачу управления.

Существует Государственный стандарт, определяющий правила создания блок-схем. Конфигурация блоков, а также порядок графического оформления блок-схем регламентированы ГОСТ 19.701-90 "Схемы алгоритмов и программ". В табл. 2.1 приведены обозначения некоторых элементов, которых будет вполне достаточно для изображения алгоритмов при выполнении студенческих работ.

Правила составления блок-схем:

    Каждая блок-схема должна иметь блок «Начало » и один блок «Конец ».

    «Начало » должно быть соединено с блоком «Конец » линиями потока по каждой из имеющихся на блок-схеме ветвей.

    В блок-схеме не должно быть блоков, кроме блока «Конец », из которых не выходит линия потока, равно как и блоков, из которых управление передается «в никуда».

    Блоки должны быть пронумерованы. Нумерация блоков осуществляется сверху вниз и слева направо, номер блока ставится вверху слева, в разрыве его начертания.

    Блоки связываются между собой линиями потока, определяющими последовательность выполнения блоков. Линии потоков должны идти параллельно границам листа. Если линии идут справа налево или снизу вверх , то стрелки в конце линии обязательны , в противном случае их можно не ставить.

    По отношению к блокам линии могут быть входящими и выходящими . Одна и та же линия потока является выходящей для одного блока и входящей для другого.

    От блока «Начало » в отличие от всех остальных блоков линия потока только выходит, так как этот блок – первый в блок-схеме.

    Блок «Конец » имеет только вход, так как это последний блок в блок-схеме.

    Для простоты чтения желательно, чтобы линия потока входила в блок «Процесс» сверху, а выходила снизу.

    Чтобы не загромождать блок-схему сложными пересекающимися линиями, линии потока можно разрывать. При этом в месте разрыва ставятся соединители , внутри которых указываются номера соединяемых блоков. В блок-схеме не должно быть разрывов, не помеченных соединителями.

    Чтобы не загромождать блок, можно информацию о данных, об обозначениях переменных и т.п. размещать в комментариях к блоку.

Название блока

Обозначение блока

Назначение блока

Терминатор

Начало/Конец программы или подпрограммы

Обработка данных (вычислительное действие или последовательность вычислительных действий)

Ветвление, выбор, проверка условия. В блоке указывается условие или вопрос, который определяет дальнейшее направление выполнения алгоритма

Подготовка

Заголовок счетного цикла

Предопределенный процесс

Обращение к процедуре

Ввод/Вывод данных


Типы алгоритмов

Тип алгоритма определяется характером решаемой в соответствии с его командами задачи. Различают три типа алгоритмов: линейные, разветвляющиеся, циклические.

Линейный алгоритм состоит из упорядоченной последовательности действий, не зависящей от значений исходных данных, при этом каждая команда выполняется только один раз строго после той команды, которая ей предшествует.

Таким, например, является алгоритм вычисления по простейшим безальтернативным формулам, не имеющий ограничений на значения входящих в эти формулы переменных. Как правило, линейные процессы являются составной частью более сложного алгоритма.

Разветвляющимися называются алгоритмы, в которых в зависимости от значения какого-то выражения или от выполнения некоторого логического условия дальнейшие действия могут производиться по одному из нескольких направлений.

Каждое из возможных направлений дальнейших действий называется ветвью .

В блок-схемах разветвление реализуется специальным блоком «Решение» . Этот блок предусматривает возможность двух выходов. В самом блоке «Решение» записывается логическое условие, от выполнения которого зависят дальнейшие действия.

Различают несколько видов разветвляющихся алгоритмов.

1. «Обход» – такое разветвление, когда одна из ветвей не содержит ни одного оператора, т.е. как бы обходит несколько действий другой ветви.

2. «Разветвление» – такой тип разветвления, когда в каждой из ветвей содержится некоторый набор действий.

3. «Множественный выбор» – особый тип разветвления, когда каждая из нескольких ветвей содержит некоторый набор действий. Выбор направления зависит от значения некоторого выражения.

Циклические алгоритмы применяются в тех случаях, когда требуется реализовать многократно повторяющиеся однотипные вычисления. Цикл – это последовательность действий, которая может выполняться многократно, т.е. более одного раза.

Различают:

      циклы с известным числом повторений (или со счетчиком);

      циклы с неизвестным числом повторений (циклы с предусловием и циклы с постусловием).

В любом цикле должна быть переменная, которая управляет выходом из цикла, т.е. определяет число повторений цикла.

Последовательность действий, которая должна выполняться на каждом шаге цикла (т.е. при каждом повторении цикла), называется телом цикла или рабочей частью цикла .



Рекомендуем почитать

Наверх