Применение в технике. Индукционная катушка

Авто 22.06.2019
Авто

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника. Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна

Где ψ - потокосцепление, µ0 = 4π*10-7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах. Цели применения различны:

Подавление помех в электрической цепи;
- сглаживание уровня пульсаций;
- накопление энергетического потенциала;
- ограничение токов переменной частоты;
- построение резонансных колебательных контуров;
- фильтрация частот в цепях прохождения электрического сигнала;
- формирование области магнитного поля;
- построение линий задержек, датчиков и т.д.

Энергия магнитного поля катушки индуктивности

Электрический ток способствует накоплению энергии в магнитном поле катушки. Если отключить подачу электричества, накопленная энергия будет возвращена в электрическую цепь. Значение напряжения при этом в цепи катушки возрастает многократно. Величина запасаемой энергии в магнитном поле равна примерно тому значению работы, которое необходимо получить, чтобы обеспечить появление необходимой силы тока в цепи. Значение энергии, запасаемой катушкой индуктивности можно рассчитать с помощью формулы.

Реактивное сопротивление

При протекании переменного тока , катушка обладает кроме активного, еще и реактивным сопротивлением, которое находится по формуле

По формуле видно, что в отличие от конденсатора , у катушки с увеличением частоты, реактивное сопротивление растет, это свойство применяется в фильтрах частот.

При построении векторных диаграмм важно помнить, что в катушке, напряжения опережает ток на 90 градусов.

Добротность катушки

Еще одним важным свойством катушки является добротность. Добротность показывает отношение реактивного сопротивления катушки к активному.

Чем выше добротность катушки, тем она ближе к идеальной, то есть она обладает только главным своим свойством – индуктивностью.

Конструкции катушек индуктивности

Конструктивно катушки индуктивности могут быть представлены в разном исполнении. Например, в исполнении однослойной или многослойной намотки проводника. При этом намотка провода может выполняться на диэлектрических каркасах разных форм: круглых, квадратных, прямоугольных. Нередко практикуется изготовление бескаркасных катушек. Широко применяется методика изготовления катушек тороидального типа.

Индуктивность катушки можно изменять, добавляя в конструкцию катушки ферромагнитный сердечник. Внедрение сердечников отражается на подавлении помех. Поэтому практически все дроссели, предназначенные для подавления высокочастотных помех, как правило, имеют ферродиэлектрические сердечники, изготовленные на основе феррита, флюкстрола, ферроксона, карбонильного железа. Низкочастотные помехи хорошо сглаживаются катушками на пермалоевых сердечниках или на сердечниках из электротехнической стали.

Индукционная катушка (рисунок 1) представляет собой частный случай трансформатора. Она состоит из сердечника 1 (набранного из нарезанных кусков стальной проволоки), на который намотано несколько витков толстой изолированной проволоки 2 . Эти витки являются первичной обмоткой индукционной катушки. Поверх первичной обмотки наматывается другая обмотка 3 из тонкой изолированной проволоки с большим числом витков (от 16 000 до 1 000 000 и более). Это - вторичная обмотка индукционной катушки.

Рисунок 1. Схема устройства индукционной катушки

Принцип работы индукционной катушки состоит в следующем. Первичная обмотка через механический прерыватель 4 присоединяется к источнику постоянного напряжения 5 (батарее элементов, аккумуляторов и так далее).

При замыкании выключателя 6 ток батареи проходит по первичной обмотке катушки и намагничивает ее сердечник. Намагнитившийся сердечник притягивает к себе якорек прерывателя, чем разрывается цепь первичной обмотки. В следующее мгновение размагнитившийся сердечник отпускает якорек прерывателя. Последний под действием пружины возвращается на прежнее место, замыкает цепь первичной обмотки, и далее процесс повторяется вновь.

В результате непрерывных замыканий и размыканий цепи в первичной обмотке катушки протекает прерывистый ток. Изменяющееся магнитное поле первичной обмотки, пересекая витки вторичной обмотки, индуктирует в ней электродвижущую силу (ЭДС). При замыкании первичной цепи ЭДС во вторичной обмотке имеет одно направление, при размыкании - другое. Большое число витков дает возможность получать на концах вторичной обмотки напряжение в несколько тысяч, а иногда и сотен тысяч вольт. Слой воздуха между выводами вторичной обмотки пробивается и проскакивает искра, длина которой в больших индукционных катушках достигает 1 метра.

Для получения большой ЭДС во вторичной обмотке необходимо, чтобы ток в первичной цепи изменялся как можно быстрее. Однако искра в механическом прерывателе, появляющаяся при размыкании его контактов, не дает возможности току прекращаться сразу. Для быстрейшего исчезновения искры параллельно месту разрыва включают конденсатор 7 .

Первичную обмотку индукционной катушки можно питать также переменным током. Тогда надобность в прерывателе отпадает.

При помощи индукционной катушки было сделано много важнейших физических открытий. Индукционные катушки широко применяются для зажигания рабочей смеси в автомобильных и авиационных двигателях и так далее.

Рисунок 2. Внешний вид автомобильной индукционной катушки и механического прерывателя используемых для подачи искры в камеру сгорания двигателя (слева катушка, справа прерыватель)

Видео 1. Катушка Румкорфа

Стандартная конструкция катушки индуктивности состоит из изолированного провода с одной или несколькими жилами, намотанными в виде спирали на каркас из диэлектрика, имеющего прямоугольную, цилиндрическую или форму. Иногда, конструкции катушек бывают бескаркасными. Наматывание провода производится в один или несколько слоев.

Для того, чтобы увеличить индуктивность, используются сердечники из ферромагнитов. Они же позволяют изменять индуктивность в определенных пределах. Не всем до конца понятно, для чего нужна катушка индуктивности. Ее используют в электрических цепях, как хороший проводник постоянного тока. Однако, при возникновении самоиндукции, возникает сопротивление, препятствующее прохождению переменного тока.

Разновидности катушек индуктивности

Существует несколько вариантов конструкций катушек индуктивности, свойства которых определяют и сферу их использования. Например, применение контурных катушек индуктивности вместе с конденсаторами, позволяют получать резонансные контуры. Они отличаются высокой стабильностью, качеством и точностью.

Катушки связи обеспечивают индуктивную связь отдельных цепей и каскадов. Таким образом, становится возможным деление базы и цепей по постоянному току. Здесь не требуется высокой точностью, поэтому, для этих катушек используется тонкий провод, наматываемый в две небольшие обмотки. Параметры данных приборов определяются в соответствии с индуктивностью и коэффициентом связи.

Некоторые катушки используются в качестве вариометров. Во время эксплуатации их индуктивность может изменяться, что позволяет успешно перестраивать колебательные контуры. Весь прибор включает в себя две последовательно соединенных катушки. Подвижная катушка вращается внутри неподвижной катушки, тем самым, создавая изменение индуктивности. Фактически, они являются статором и ротором. Если их положение изменится, то поменяется и значение самоиндукции. В результате, индуктивность прибора может измениться в 4-5 раз.

В виде дросселей используются те приборы, у которых при переменном токе отмечается высокое сопротивление, а при постоянном - очень низкое. Благодаря этому свойству, они используются в радиотехнических устройствах в качестве фильтрующих элементов. При частоте 50-60 герц для изготовления их сердечников применяется трансформаторная сталь. Если частота имеет более высокое значение, то сердечники изготавливаются из феррита или пермаллоя. Отдельные разновидности дросселей можно наблюдать в виде так называемых бочонков, подавляющих помехи на проводах.

Где применяются катушки индуктивности

Сфера применения каждого такого прибора, тесно связана с особенностями его конструкции. Поэтому нужно обязательно учитывать ее индивидуальные свойства и технические характеристики.

Совместно с резисторами или , катушки задействованы в различных цепях, имеющих частотно-зависимые свойства. Прежде всего, это фильтры, колебательные контуры, цепи обратной связи и прочее. Все виды этих приборов способствуют накоплению энергии, преобразованию уровней напряжения в импульсном стабилизаторе.

При индуктивной связи между собой двух и более катушек, происходит образование трансформатора. Эти приборы могут использоваться, как электромагниты, а также, как источник энергии, возбуждающий индуктивно связанную плазму.

Индуктивные катушки успешно используются в радиотехнике, в качестве излучателя и приемника в конструкциях кольцевых и , работающих с электромагнитными волнами.

Использование: в области сильных импульсных магнитных систем, используемых в физике твердого тела и высоких энергий. Технический результат заключается в увеличении срока службы за счет изготовления катушки из легкоплавкого металла. Катушка содержит металлический цилиндр из легкоплавного материала, находящегося в форме из немагнитного пластичного материала, расположенной в сосуде. Работа предлагаемого устройства происходит следующим образом. Через штуцер в сосуд впускается хладагент. Под действием низкой температуры жидкий металл цилиндра затвердевает согласно форме, тем самым получается цилиндр. С помощью токоведущих шин от импульсного генератора через фланцы в цилиндр подается импульсный ток, который создает необходимое магнитное поле. Если после импульса тока в цилиндре образовались трещины, хладагент через выпускной штуцер выпускается из сосуда. В результате металл цилиндра переходит в жидкое состояние. Далее производится впуск хладагента в сосуд, металл затвердевает и цилиндр готов к очередному импульсу тока. 1 ил.

Изобретение относится к электрофизике, а более конкретно к области сильных импульсных магнитных систем, используемых в физике твердого тела и физике высоких энергий. Известны импульсные катушки (Ф. Херлах. Сильные и сверхсильные магнитные поля и их применения. - М.: Мир, 1988. - С. 330-331), которые представляют собой катушки, намотанные прямоугольным проводом, с пропиткой эпоксидной смолой. Снаружи катушка закреплена цилиндром из стали или из стеклопластика. Основным недостатком данных катушек является значительная величина собственной индуктивности катушки, что ограничивает начальную скорость нарастания магнитного поля и увеличивает время нарастания импульса тока в катушке. При больших питающих напряжениях (например, в установках по исследованию высокотемпературной плазмы напряжения, достигают 100-150 кВ) возникают осложнения, связанные с обеспечением межвитковой изоляции. Отмеченных недостатков лишена импульсная катушка (В.С. Камельков. Техника больших импульсных токов и магнитных полей. - М.: Атомиздат, 1970. - С. 440-441), выполненная в виде одновиткового соленоида, выбранная в качестве прототипа. Катушка изготовлена из целого куска металла (например, из малоуглеродистой стали, меди или бериллиевой бронзы), благодаря чему удается избежать ослабления в месте подвода тока. Конструктивно катушка представляет толстостенный цилиндр с щелью по боковой поверхности. Края цилиндра (по щели) заканчиваются фланцами, в которых проделаны отверстия для крепления токоподводящих шин. Снаружи цилиндр стянут бандажом из дельта-древесины. Основным недостатком прототипа является малый срок службы, например, при увеличении амплитуды индукции получаемого магнитного поля до 28 Т разрушение катушки из малоуглеродистой стали (толщина стенки 5 мм) происходит уже на втором импульсе. Перед автором стояла задача создать импульсную катушку с увеличенным сроком службы. Указанная задача достигается тем, что в импульсной катушке, содержащей металлический цилиндр с щелью по боковой поверхности, края которого (по щели) оканчиваются фланцами для токоведущих шин, металлический цилиндр выполнен из легкоплавкого металла (например, ртути или галлия) и снабжен формой из немагнитного пластичного материала (например, из фторопласта), расположенной в сосуде, который имеет штуцеры для впуска и выпуска хладагента (например, жидкого азота). Сопоставительный анализ с прототипом показывает, что импульсная катушка отличается: 1) выполнением металлического цилиндра из легкоплавкого металла; 2) использованием формы из немагнитного пластичного материала; 3) наличием сосуда со штуцерами для впуска и выпуска хладагента. Отмеченные отличия позволяют увеличить срок службы из-за возможности восстановления разрушений, вызванных протеканием тока через катушку, путем расплавления металла, из которого выполнен цилиндр, с последующим замораживанием. Таким образом, заявляемое устройство соответствует критерию "новизна". Отмеченная новизна заявляемого устройства исследована по его существенным признакам на соответствие критерию "изобретательский уровень", при этом были приняты во внимание источники информации в данной и родственных областях техники, а также те условия, что все существенные признаки изобретения находятся в единой логической взаимосвязи и направлены в совокупности на достижение единого результата. Так, в источнике (Патент N 2082654, МПК 6 В 64 G 1/64. Стыковочное устройство космических аппаратов / Гамаюнов А. В. , Ким К.К., Нефедов А.В. (Россия). - Опубл. 27.06.97. Бюл. N 18) используется легкоплавкий металл, находящийся в стыковочном стакане одного космического аппарата, для жесткой фиксации стреловидного штыря другого стыкуемого аппарата. Очевидно, что данное устройство по своей конструкции, выполняемым функциям и достигнутым результатам не эквивалентно заявляемому устройству. Это позволяет заключить, что заявляемая импульсная катушка обладает новизной и отвечает критерию "изобретательский уровень". Предлагаемое устройство показано на чертеже. Металлический цилиндр 1, выполненный из легкоплавкого металла (например, из ртути или галлия), имеет щель 2 на боковой поверхности. Края цилиндра 1 (по щели) заканчиваются фланцами 3, в которые входят токоведущие шины 4. Стрелками с обозначением I показано направление тока. Цилиндр 1 находится в форме 5, которая изготовлена из немагнитного пластичного материала (например, фторопласта), и представляет собой сосуд для жидкого металла. Форма 5 с цилиндром 1 помещены в сосуд 6, который выполнен из немагнитного материала (например, стекла) и снабжен штуцерами для впуска 7 и выпуска 8 хладагента, например жидкого азота, аргона или двуокиси углерода. Сосуд 6 может выполняться с замкнутой полостью, тогда он снабжается стравливающим клапаном (не показан) или с открытой полостью. Работа предлагаемого устройства происходит следующим образом. Во фланцы 3 опускаются токоподводящие шины 4 (металл, находящийся в форме 5, пребывает в жидком состоянии). Через штуцер 7 в сосуд 6 впускается хладагент (если это жидкий азот, то температурой минус 195,8 o C, если аргон - минус 185,7 o C, если двуокись углерода - минус 78,55 o C). Под действием низкой температуры жидкий металл затвердевает согласно форме 5, тем самым получается цилиндр 1 (температура плавления для ртути -38,84 o C; для галлия - -29,78 o C). С помощью токоведущих шин от импульсного генератора (не показаны) через фланцы 3 в цилиндр 1 заводится импульсный ток (I), который создает необходимое магнитное поле. Если после импульса тока в цилиндре 1 образовались трещины (в случае выполнения сосуда 6 из стекла повреждения цилиндра обнаруживаются визуально; если сосуд изготовлен из непрозрачного материала, обнаружение разрушения цилиндра 1 определяется средствами магнитной дефектоскопии), хладагент через выпускной штуцер 8 выпускается из сосуда 6 (либо в окружающее пространство, либо в систему хранения и сжижения хладагента), в результате чего металл цилиндра 1 переходит в жидкое состояние. Далее производится впуск хладагента в сосуд 6, металл затвердевает и цилиндр 1 готов к очередному импульсу тока. Как можно заметить, по сравнению с прототипом в заявляемом устройстве из-за использования легкоплавкого металла появляется возможность быстрого восстановления разрушенной катушки и ее многократного использования, что значительно увеличивает срок службы последней.

Формула изобретения

Импульсная катушка, содержащая металлический цилиндр с щелью по боковой поверхности, края которого по щели оканчиваются фланцами для токоведущих шин, отличающаяся тем, что металлический цилиндр выполнен из легкоплавкого металла и находится в форме из немагнитного пластичного материала, расположенной в сосуде, который имеет штуцеры для впуска и выпуска хладагента.

Похожие патенты:

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении механически нагруженных сверхпроводящих обмоток с напряжением проводника больше 100 МПа при работе, а также сверхпроводящих обмоток и устройств, работающих в переменных режимах, например сверхпроводящих магнитов для ускорителей заряженных частиц и сверхпроводящих индуктивных накопителей энергии

Катушки индуктивности нашли широкое применение в электротехнике в качестве накопителей энергии, колебательных контуров, ограничения тока. Поэтому их можно встретить везде, начиная от портативной электроники, заканчивая подстанциями в виде гигантских реакторов. В этой статье мы расскажем, что это такое катушка индуктивности, а также какой у нее принцип работы и многое другое.

Определение и принцип действия

Катушка индуктивности - это катушка смотанного в спираль или другую форму изолированного проводника. Основные особенности и свойства: высокая индуктивность при низкой ёмкости и активном сопротивлении.

Она накапливает энергию в магнитном поле. На рисунке ниже вы видите её условное графическое обозначение на схеме (УГО) в разных видах и функциональных назначениях.

Она может быть с сердечником и без него. При этом с сердечником индуктивность будет в разы больше, чем если его нет. От материала, из которого изготовлен сердечник, также зависит величина индуктивности. Сердечник может быть сплошным или разомкнутым (с зазором).

Напомним один из законов коммутации:

Ток в индуктивности не может измениться мгновенно.

Это значит, что катушка индуктивности - это своего рода инерционный элемент в электрической цепи (реактивное сопротивление).

Давайте поговорим, как работает это устройство? Чем больше индуктивность, тем больше изменение тока будет отставать от изменения напряжения, а в цепях переменного тока - фаза тока отставать от фазы напряжения.

В этом и заключается принцип работы катушек индуктивности – накопление энергии и задерживание фронта нарастания тока в цепи.

Из этого же вытекает и следующий факт: при разрыве в цепи с высокой индуктивностью напряжение на ключе повышается и образуется , если ключ полупроводниковый - происходит его пробой. Для борьбы с этим используются снабберные цепи, чаще всего из и , установленного параллельно ключу.

Виды и типы катушек

В зависимости от сферы применения и частоты цепи может отличаться конструкция катушки.

По частоте можно условно разделить на:


Конструкция отличается в зависимости от характеристик катушки, например, намотка может быть однослойной и многослойной, намотанной виток к витку или с шагом. Шаг между витками может быть постоянным или прогрессивным (изменяющимся по длине катушки). Способ намотки и конструкция влияют на конечные размеры изделия.

Отдельно стоит рассказать о том, как устроена катушка с переменной индуктивностью, их еще называют вариометры. На практике можно встретить разные решения:

  • Сердечник может двигаться относительно обмотки.
  • Две обмотки расположены на одном сердечнике и соединены последовательно, при их перемещении изменяется взаимоиндукция и индуктивная связь.
  • Сами витки для настройки контура могут раздвигаться или сужаться приближаясь друг к другу (чем плотнее намотка - тем больше индуктивность).

По способу намотки бывают также различными, например, фильтры со встречной намоткой подавляют , а намотанные в одну сторону (согласованная намотка) подавляют дифференциальные помехи.

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Обычно так называются устройства для ограничения тока, область применения:


Токоограничивающие реакторы - используются для ограничения токов короткого замыкания на ЛЭП.

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано - это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид - так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы - поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, и соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Рамочные и кольцевые антенны. Их назначение - передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Основные параметры

К основным характеристикам катушки индуктивности можно отнести:

Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.


Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.

На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна. Напоследок рекомендуем посмотреть полезное видео по теме статьи:

Материалы



Рекомендуем почитать

Наверх