Примеры применение таймера NE555. Какие практические схемы можно сделать на таймере NE555

Авто 06.09.2019
Авто

Микросхема 555 появилась сорок лет назад и стала фактически первым таймером на широком рынке. С тех пор из-за бешеной популярности микросхемы ее начали выпускать почти все производители электронных компонентов, и несмотря на почтенный возраст, 555 до сих пор выходит многомиллионными тиражами.

В этом году прошел конкурс проектов (555contest.com), использующих ее для решения самых разных задач. Заявки принимались в нескольких категориях: искусство, сложные проекты, минималистичные и полезные гаджеты. Призовой фонд составлял около $1500.

Среди нескольких сотен проектов была видеоигра, собранная на целой горсти 555; контроллер для пинбола; электрогитара; устройство, не дающее спать соседям; замок, отпирающий дверь по секретному стуку и еще куча интересного.

Если ты хоть раз в жизни держал паяльник и даже отличишь резистор от транзистора, а со старушкой 555 еще не знаком, то нужно срочно исправить ситуацию. Что это за зверь? Внутри пластикового корпуса с восемью выводами скрывается пара десятков транзисторов, диодов и резисторов, но в доскональное изучение работы таймера вдаваться не будем, пусть он останется для нас черным ящиком, из которого торчат ножки. А вот ножки обсудим.

  1. Земля. Здесь все просто, во всех схемах ее нужно подключать к минусу питания.
  2. Триггер, он же пуск. Если напряжение на пуске падает ниже одной трети напряжения питания (Vcc) - например, нажимается кнопка, притянутая к земле, - то схема стартует.
  3. Выход. Задача таймера простая - генерировать прямоугольные импульсы заданной длины (длительность задается парой сопротивлений и конденсатором). Напряжение выхода примерно на 2 В ниже напряжения питания, когда он включен, и почти ноль (меньше 0,5 В), когда выключен. Максимальная нагрузка, которую способен выдержать выход - около 200 мА. Этого достаточно для небольшого динамика, парочки светодиодов или маленького реле.
  4. Сброс. Если подать на него низкий уровень (меньше 0,7 В), то схема переходит в исходное состояние, и выход становится низким. Если в схеме сброс не нужен, то лучше притянуть его к плюсу, чтобы он не скидывал случайно (например, от прикосновения пальцем).
  5. Контроль. Напряжение, приложенное к этой ноге, может изменять длительность выходов таймера. Но используется он редко, а висящий в воздухе - может сбивать работу, поэтому в схемах лучше присоединить к земле через небольшой керамический конденсатор на 10 нФ.
  6. Порог, он же стоп. Если напряжение на нем выше 2/3 Vcc, то таймер останавливается и выход переводится в выключенное состояние. Работает, только если вход при этом выключен.
  7. Разряд. Этот выход соединяется с землей внутри микросхемы, когда на выходе низкий уровень, и используется, чтобы разрядить конденсатор временной цепочки. Может пропускать до 200 мА и иногда используется как дополнительный выход.
  8. Питание. Нужно подключить к плюсу питания. Микросхема поддерживает напряжения от 4,5 В до 16 В. Можно запитать от обычной 9В-батарейки, можно от блока питания детских игрушек или от проводка USB.

Заводим лошадку. Режимы

1. Моностабильный.

При подаче сигнала на вход микросхема включается, генерирует выходной импульс заданной длины и выключается, ожидая нового входного импульса. Важно, что после включения микросхема не будет реагировать на новые сигналы, сколько бы их не посылали. Длину импульса можно посчитать по простой формуле t=1,1R1 C4. Чтобы получить время в секундах, сопротивление нужно подставлять в мегаомах, а емкость - в микрофарадах.

Например, при C4=100 мкФ и R1=2,2 МОм период будет примерно 4 минуты. Эту цифру можно менять в очень широких пределах: от 0,000001 секунды до 15 минут. В теории можно и еще больше, но на практике возникнут проблемы.

2. Нестабильный мультивибратор.

В этом режиме таймером и управлять-то не надо, он сам себе хозяин - сперва включится, подождет время t1, потом выключится, подождет время t2, и все заново. На выходе получается забор из высоких и низких состояний, что в лучших традиция ASCII-арта можно представить так: ПП ПП П. Частота, с которой будет колебаться вся система, зависит от параметров RC-цепочки (точнее - от величин R2, R3 и С1) и ее можно посчитать по формуле f = 1,44/((R3 + 2R2)C1). В течение времени t1 = 0,693 (R3 + R2)C1 на выходе будет высокий уровень, а в течение t2=0,693(R2)C1 - низкий.

3. Бистабильный.

В этом режиме микросхема используется как выключатель. Нажал одну кнопку - выход включился, нажал другую - выключился. Довольно теоретического экскурса, наверняка ты уже захотел приступить к практике.

Собирать простые железки удобно на макетной плате без пайки - ее, как и все детали, можно прикупить в любой радиолавке, за пару сотен рублей. Но у меня почта ближе, чем магазин, и я заказывал все детали из Гонконга на sureelectronics.net, хотя этот вариант на любителя - нужно много терпения: посылка будет идти почти месяц.

Здравствуй, свет!

Задача №1: собрать «хэллоу ворлд» - моргалку светодиодиком. Все просто, как и в мире софта, но в железе даже для такой безделушки можно придумать полезное применение.

От каких деталей уж совсем никак не отвертеться? Во-первых, сам таймер 555 (на схеме IC1). Подойдет таймер любого производителя, но чтобы экспериментировать на макетке - бери в корпусе DIP с длинными ножками. Его названия у разных производителей незначительно отличаются, но три пятерочки в них есть всегда. Например, та, что я использую в примерах этой статьи, называется NE555N. Существуют и другие версии схемы, 556 и 558, у которых в одном корпусе стоит 2 и 4 таймера соответственно.

Они тоже подойдут для всех примеров, просто у них больше ног и расположены они иначе. Во-вторых, потребуются конденсаторы: электролитический C1 емкостью от 5 до 10 мкФ и керамический C3 на 10 нФ. Еще будут нужны: светодиод (LED1) любого цвета и к нему токоограничительный резистор (R5) на 300-600 Ом (у меня 470 Ом), а также резисторы, задающие частоту R1 на 1 кОм и R2 на 10 кОм. Последнее из обязательной программы - маленькая кнопка (типа той, что ставят в мыши и на всяческие приборные панели).

Еще на схеме есть конденсатор C2 на 100 мкФ, который перекинут от плюса к минусу. Если у тебя с питанием все хорошо (например, ты используешь батарейку), то необходимости в нем нет, а с дешевым сетевым адаптером без такого конденсатора никуда. В примерах я использовал пятивольтовый блок питания от детской китайской игрушки, на выпрямителе которого производитель сэкономил - в результате без этой сглаживающей емкости схема не работала вовсе. Поэтому на всех схемах в статье этот конденсатор есть, а ставить его или нет - решать тебе.

Также при желании можно опустить и конденсатор C3, который притягивает пятую ногу к земле, но в этом случае стабильность гарантировать не стану.
Схема работает в нестабильном режиме и собрана таким образом, что пока подключена к питанию, то постоянно генерирует выходные импульсы, а как только мы нажимаем кнопку, то замыкаем ее выход на светодиод и ее работа становится видна. Теперь можешь собрать все по схеме.

При нажатии кнопки светодиод должен бодро начать моргать. Если не заработало, то проверяй контакты и полярности. На микросхеме 555 у одного из краев есть выемка: поставь схему так, чтобы выемка была слева, тогда ножки в нижнем ряду будут нумероваться слева направо от 1 до 4, а в верхнем - справа налево от 5 до 8. У светодиода более длинный выход должен подключаться к плюсу, а более короткий - к минусу. Если у диода ножки одной длины, то на помощь придет плоская литиевая батарейка, вроде той, что стоят на материнских платах. Подключи светодиод и так и эдак, когда он засветится - плюс и минус у него будут расположены, как на батарейке.

Если не заработал в обоих положениях, то либо диод горелый, либо это не диод - фототранзисторы могут выглядеть точно так же, как светодиоды. У электролитических конденсаторов минус, как правило, помечен светлой полосой на корпусе. Для остальных деталей полярность не важна.

Теперь о практической пользе. В некоторых играх бывает необходимо щелкать по левой кнопке беспрестанно, натирая мозоли на пальце, но это не наш метод. Можно собрать эту схему покомпактнее, припаяв детали напрямую к выходам микросхемы, и запихнуть в корпус любой USB-мыши - места там, как правило, хватает. Из схемы нужно только выкинуть светодиод с его резистором, а третью ножку микросхемы подпаять напрямую к плюсу левой кнопки мыши.

Определить, где в мышиной кнопке плюс (зеленая точка на фото), а где - минус, обычно несложно: контакт с нулем более толстый и идет к черному проводу от USB, а другой - это плюс, к нему и подпаивайся. Для питания подключайся к красному и черному проводам, уходящим в сторону компьютера, их контакты также помечены на фото. Просверли слева в корпусе мышки отверстие (так, чтобы было удобно дотягиваться до него большим пальцем) и установи туда кнопку при помощи термоклеевого пистолета. Все, теперь можешь нещадно валить врагов.

Создаем электронную музыку

Еще одна схемка, в которой таймер также работает в режиме мультивибратора, но задача у нее другая. Она перенесет тебя в прошлое, в прокуренные студии отцов андеграундной электронной музыки, которым приходилось самим ваять устройства, при помощи которых они создавали бессмертные хиты.

Изменения в предыдущей схеме придется сделать совсем небольшие. Вместо светодиода с его резистором здесь установлен динамик, подключенный к земле через конденсатор C4 - он нужен, чтобы отфильтровать постоянную составляющую выхода и прогонять через динамик только переменный ток. Для максимальной громкости этот конденсатор должен быть электролитическим, емкостью порядка 10 мкФ, но подобный звук будет резать ухо, и если такой задачи не стоит, поставь керамический на 100 нФ, будет потише. Можешь взять динамик из сломанных больших наушников или бипер из старого системного блока. Пьезодинамик (в виде круглой металлической пластинки) также подойдет, плюс ему не нужен конденсатор С4.

Поскольку звуковые частоты несколько выше, чем частота моргания диода, то RC-цепочку тоже придется чутка переделать. Конденсатор C1 заменить на керамический 100 нФ, резистор R2 заменить на 1 кОм и последовательно с ним поставить переменный резистор R3 на 10 кОм. У переменных резисторов обычно 3 ножки, расположенные в ряд, но тебе нужно подключить только две - любую из крайних и центральную. Такие параметры не позволят частоте убежать за слышимый диапазон на всем диапазоне R3. Резистором выставляй частоту, нажимай кнопку и слушай, что звучит. При некоторой сноровке получится музыка.

Сервомашинка как удлинитель пальца

Еще одна схема в режиме мультивибратора. Здесь при помощи таймера 555 ты будешь управлять сервомашинкой. Крути переменный резистор, а машинка будет крутить все, что угодно. Сервоприводы (или просто сервы) используются обычно в радиоуправляемых модельках машин/вертолетов/самолетов, но это не значит, что ты не найдешь им другого применения.

Для начала тебе нужно эту машинку где-нибудь достать. Неплохой выбор недорогих серв есть в популярном китайском онлайнмагазинчике DealExtreme (s.dealextreme.com/search/servo), все свои я заказывал именно там. В наших магазинах они тоже есть, но заметно дороже.

Типичная хобби-серво имеет три провода: черный или коричневый минус питания, который нужно подключить к контакту SERVO-3 на схеме, красный плюс - к SERVO-1, желтый или белый для управляющих команд - к SERVO-2.

Серво ждет, что по сигнальному проводу 50 раз в секунду будут приходить короткие импульсы длиной от 0,9 до 2,1 мс, и длительность сигнала подскажет, на какой угол нужно отклониться. Параметры RC-цепочки в схеме подобраны таким образом, чтобы обеспечить именно такие сигналы. Поскольку время импульса должно быть меньше, чем время между ними, то в схему нужно добавить диод D1. В схеме указан 1n4148, так как он один из самых распространенных, но можно заменить его на другой. Определить полярность диода просто - перпендикулярная полоска на корпусе соответствует черте на схеме.

Таймер 555 - штука простая, хоть 15 вольт на вход подавай, ей все нипочем. А сервомашинка требует более бережного отношения и работает только в диапазоне напряжений от 4,8 В до 6 В. Так что если для питания ты использовал батарейку на 9 В, то придется напряжение понижать. С этой задачей отлично справляется стабилизатор 7805, который срезает все лишнее и оставляет на выходе чистые 5 В. Правда, все лишние вольты он попросту преобразует в тепло и может сильно нагреваться. Хотя, нагреваясь, стабилизатор поддерживает приятный теплый микроклимат в комнате, его не стоит применять в проектах, питающихся от батареек - прожорливый он. Включить его в схему просто: если ты возьмешь его за выходы и будешь читать надписи на корпусе, то первая нога окажется слева - ее нужно подсоединить к плюсу батареи, вторую - к общей земле, а третья - выход +5 В.

Собрав эту штуку, ты сможешь не просто тестировать сервы на работоспособность, а еще удаленно управлять выключателями и открывать замки.

Постоянная кнопка

Порой необходимо, чтобы твоя схемка работала, как телевизор: нажал кнопочку, она включилась, нажал еще раз - выключилась. И эту задачу тоже можно решить на 555. Внутри микросхемы запрятан триггер, который для этой цели можно использовать.

Основная часть схемы уже не должна вызывать у тебя особых вопросов, остановлюсь лишь на выходе третьей ножки, а именно - резисторе R4 и транзисторе T1. Ведь мы делаем кнопку, а значит - она должна уметь пропускать ток, и не факт, что 200 мА, на которые способен 555, будет достаточно. Здесь в качестве ключа используется небольшой NPN-транзистор 2N3904, который способен пропускать те же 200 мА, что и сам таймер, и смысла в нем немного, но его всегда можно заменить на более мощный МОП-транзистор - например, IRF630, который позволит подключить нагрузку до 9А. Правда, для такого транса напряжение придется увеличить на схеме до 12 вольт, иначе затвор не откроется.

Еще не очень круто применять такой выключатель в мобильных устройствах, так как даже в выключенном состоянии он потребляет ток в 3-6 мА, что заметно подсаживает батарею.

Гаджет для приготовления чая

Когда я только начал знакомиться с linux’ом, мне попалась небольшая, но очень важная программа для приготовления чая. В ней можно выбрать сорт чая, и по прошествии времени, необходимого для заварки, она начинала помаргивать иконкой в трее и пищать. Из какого дистрибутива была программа, я уже не помню, но она пару раз помогла мне выпить не остывший чай. С программами всегда так: снес операционку - и нет ее, а железка на столе куда надежнее!

Для реализации этой штуковины понадобится целых два таймера 555. Один (тот, что на схеме слева) будет отсчитывать 4 минуты, за которые заварка превращается в благоуханный напиток, а другой - генерировать импульсы для пищалки.

Генератор на IC2 трудолюбиво и непрерывно генерирует импульсы. Рассмотрим подробнее первый таймер. Он подсоединен в моностабильном режиме. В нормальном состоянии сразу после включения питания на выходе 3 низкий уровень - он притянут к земле, а значит - пищит динамик и горит светодиод LED2 (на самом деле светодиод моргает, но очень быстро, и это незаметно). Как только нажимается кнопка S1, таймер включается, на выходе 3 становится высокий уровень, зажигается светодиод LED1, а динамик выключается, ведь LED2 хоть и «свето-», но все-таки диод, и в обратную сторону ток пропускать не будет. Так продолжается, пока конденсатор C4 заряжается через резистор R1. Когда напряжение на ножке 6 станет больше 2/3 Vcc, то таймер выключится и вновь запищит бипер.

Схему можно чутка модифицировать, добавив последовательно R1 - переменный резистор на 500 кОм, тогда можно будет регулировать время заварки для разных сортов чая.

Уверен, этих схем тебе хватит для вдохновения. Если нет - попробуй поискать чтонибудь на сайте instructables.com . Также со схемами может помочь программа 555 Timer Pro schematica.com/555_Timer_design/555_Timer_PRO_EX.htm , которая позволяет в пару кликов рассчитать детали для любого режима (правда, стоит она «всего» $29, но если постараться, то можно найти в сети более старую бесплатную версию).

Часть первая. Теоретическая.

Наверное нет такого радиолюбителя, который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.

Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием "Интегральный таймер" (The IC Time Machine ).
На тот момент это была единственная "таймерная" микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.

За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.

Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.

А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:

Производитель

Название микросхемы

Texas Instruments

В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы - гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.

Начнем с корпуса и выводов.

Микросхема выпускается в двух типах корпусов - пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась - сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем - 556 и 558. 556 - это сдвоенная версия таймера, 558 - счетверенная.

Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый - на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф - 0,005%/С.

Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги - какой вывод для чего нужен и что все это значит.

Итак, выводы:

1. Земля. Особо комментировать тут нечего - вывод, который подключается к минусу питания и к общему проводу схемы.

2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С - это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий - высокий уровень происходит приблизительно за 100 нс.

4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания - это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.

5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.

6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?! ) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.

7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.

Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе - низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ - мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?

Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии - на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.

Первый - если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения - в таком случае выход остается активным - на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй - если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили - перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она: t = R*C , где R - сопротивление резистора в МегаОм-ах, С - емкость конденсатора в микроФарад-ах. Время получается в секундах.

К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам - работает ваш экземпляр таймера или нет.

Если после включения питания мигают оба светодиода - значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот - горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания - 9 вольт. Например, от батареи "Крона".

Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый - моностабильный мультивибратор . Моностабильный - потому что стабильное состояние у такого мультивибратора одно - выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот - для формирования паузы на заданное время.

Второй режим - это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой.

Начнем сначала, то есть с первого режима.

Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 - Останов. Это вход компаратора №1. Сюда же подключен вывод 7 - Разряд. Входной импульс подается на вывод 2 - Запуск. Это вход компаратора №2. Совершенно простецкая схема - один резистор и один конденсатор - куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень - около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера - это очень важно. Так, что там у нас происходит то? А, да - заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.

Время, на которое таймер, так сказать "выходит из себя", может быть от одной миллисекунды до сотен секунд.
Считается оно так: T=1.1*R*C
Теоретически, пределов по длительности импульсов нет - как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься - нужно ли это делать и не проще ли выбрать другое схемное решение.

Перейдем ко второму режиму.

В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.

Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.

Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер - напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться...

Короче говоря, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:

Значения R1 и R2 подставляются в Омах, C - в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса - t1 и промежутком между импульсами - t2. t = t1+t2 .
Частота и период - понятия обратные друг другу и зависимость между ними следующая:
f = 1/t .
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C ;
t2 = 0.693R2C ;

Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.

В предыдущей заметке, посвященной электронике, мы познакомились с довольно простой интегральной схемой, счетчиком 4026 . Чип, о котором речь пойдет в этом посте, существенно интереснее, как минимум, потому что он может выполнять не одну-единственную функцию, а сразу несколько. Более того, с его помощью мы наконец-то научимся не только мигать светодиодами, но и генерировать звуки. Название чипа — таймер 555.

Как работает таймер 555

Я видел разные объяснения того, как работает данная микросхема. Но лучшее, как мне кажется, приводится во всей той же книге Чарьза Платта . Платт предлагает представить, что внутри микросхемы как бы спрятан виртуальный переключатель:

Ножки 1 и 8 просто подключаются к питанию. Про ножку 5 (control) можно пока забыть, потому что она редко используется и обычно подключается к земле. Притом, через конденсатор небольшой емкости, чтобы предотвратить помехи. Зачем она на самом деле нужна, будет объяснено чуть позже.

Упомянутый переключатель изображен на картинке зеленым цветом. В исходном состоянии он подключает выходы 3 и 7 к земле. Когда напряжение на ножке 2 (trigger) падает до 1/3 напряжения питания, это замечает компаратор A (тоже виртуальный, понятное дело) и опускает переключатель вниз. В этом состоянии выход 3 становится подключен к плюсу, а выход 7 разомкнут. Когда напряжение на ножке 6 (threshold) вырастает до 2/3 напряжения питания, это замечает компаратор B и поднимает переключатель вверх. Собственно, ножка 5 (control) нужна для того, чтобы вместо 2/3 выбирать какое-то другое значение. Наконец, понизив напряжение на ножке 4 (reset), можно вернуть микросхему в исходное состояние.

Чтобы понять, почему же таймер 555 называется «таймером», рассмотрим три режима его работы.

Моностабильный режим (monostable mode)

Также иногда называется режимом одновибратора. Ниже изображена схема использования чипа в этом режиме:

Заметьте, что, как это часто бывает, расположение ножек чипа на схеме не совпадает с их физическим расположением. На этой и следующих схемах не указано напряжение источника питания, так как его можно менять в некотором диапазоне. Лично я проверял работоспособность схем при напряжении от 3 до 6 В. На всех схемах есть конденсатор емкостью 100 мкФ, подключенный параллельно нагрузке. Как нам с вами уже известно, он играет роль сглаживающего фильтра . На двух схемах из трех ножка 5 (control) подключена к керамическому конденсатору на 100 нФ. Почему так сделано, уже было рассказано выше. Это что общего у всех схем. Теперь поговорим о различиях.

Fun fact! Согласно спецификации, таймер 555 не рассчитан на работу при напряжении менее 4.5 В. Однако на практике он не так уж плохо работает и при напряжении 3 В.

Итак, что здесь происходит. В исходном состоянии светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger), светодиод загорается примерно на 2.5 секунды, а затем гаснет. Если в то время, когда светодиод горит, нажать на кнопку, подключенную к ножке 4 (reset), светодиод тут же погаснет, до истечения времени.

Как это работает? Обратите внимание на правую часть схемы. В начальный момент времени вывод 7 подключен к минусу, поэтому ток идет через резистор прямо на него, не доходя до конденсатора внизу схемы. Вывод 3 (out) также подключен к минусу, поэтому ток через светодиод не идет и, соответственно, он не горит. При нажатии на копку, подключенную к выводу 2 (trigger), вывод 7 начинает ни к чему не вести, а вывод 3 подключается к плюсу. В итоге ток идет на светодиод и он зажигается. Кроме того, начинает заряжаться конденсатор внизу схемы. Когда конденсатор достигает 2/3 напряжения питания, таймер видит это через вывод 6 (threshold) и возвращает чип в исходное состояние. В итоге светодиод гаснет, а конденсатор полностью разряжается. Пользователь может преждевременно вернуть чип в исходное состояние, нажав вторую кнопку.

Время, в течение которого светодиод горит, можно регулировать при помощи емкости конденсатора и сопротивления резистора по следующей формуле:

>>> import math
>>> R = 100 * 1000
>>> C = 22 / 1000 / 1000
>>> T = math.log(3) * R * C
>>> T
2.4169470350698417

Здесь R — сопротивление резистора в омах, C — емкость конденсатора в фарадах, а T — время горения светодиода в секундах. Учтите однако, что на практике характеристики всех элементов определяются с некоторой погрешностью. Для резисторов, например, она типично составляет либо 5% (золотая полоска), либо 10% (серебряная полоска).

Автоколебательный режим (astable mode)

Соответствующая схема:

Что здесь происходит? Светодиод просто мигает с частотой около 3-х раз в секунду. Никаких кнопок или иного интерактива не предусмотрено.

Как это работает. Благодаря тому, что изначально вывод 7 (discharge) подает низкое напряжение и подключен к выводу 2 (trigger) через резистор сопротивлением 10 кОм, чип тут же переключается в свое «нижнее» состояние. Светодиод загорается, а конденсатор внизу схемы начинает заряжаться через два резистора справа. Когда напряжение на конденсаторе достигает 2/3 полного напряжения, чип видит это через вывод 6 (threshold) и переключается в «верхнее» состояние. Конденсатор начинает разряжаться через вывод 7 (discharge), но делает это медленнее, чем в предыдущей схеме, так как на сей раз он разряжается через резистор сопротивлением 10 кОм. Когда напряжение на конденсаторе падает до 1/3 полного напряжения, чип видит это через вывод 2 (trigger). В результате он снова переходит в «нижнее» состояние и процесс повторяется.

То, как будет мигать светодиод, можно определить по формулам:

>>> import math
>>> C = 22 / 1000 / 1000
>>> R1 = 1 * 1000
>>> R2 = 10 * 1000
>>> H = math.log(2) * C * (R1 + R2)
>>> H
0.16774161769550675
>>> L = math.log(2) * C * R2
>>> L
0.15249237972318797
>>> F = 1 / (H + L)
>>> F
3.1227165387207

Здесь F — частота миганий в герцах, H — время в секундах, в течение которого светодиод горит, а L — время в секундах, в течение которого светодиод не горит. Интересно, что параллельно с резистором R2 можно подключить диод, тем самым заставив конденсатор заряжаться только через R1, а разряжаться, как и раньше, через R2. Таким образом, можно добиться полной независимости времени H от времени L и наоборот.

Fun fact! Подключив в этой схеме вместо светодиода динамик или пьезо-пищалку, а также выбрав C равным 100 нФ или 47 нФ, можно насладиться звуком с частотой 687 Гц или 1462 Гц соответственно. На самом деле, это далеко не чистый звук определенной частоты, так как чип 555 генерирует прямоугольный сигнал, а для чистого звука нужна синусоида. Почувствовать разницу между прямоугольным и синусоидальным сигналом проще всего в Audacity, сказав Generate → Tone. Заметьте, что можно регулировать R2, а следовательно и частоту звука, заменив соответствующий резистор на потенциометр. Кроме того, резистор, подключенный последовательно с динамиком или пьезо-пищалкой, можно также заменить на потенциометр и регулировать с его помощью громкость. Наконец, к выводу 5 (control) вместо конденсатора также можно подключить потенциометр и с его помощью более тонко подогнать частоту сигнала.

Бистабильный режим (bistable mode)

И, наконец, схема бистабильного режима:

Что происходит. Изначально светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger) он загорается и горит бесконечно долго. При нажатии на другую кнопку, подключенную к ножке 4 (reset), светодиод гаснет. То есть, получилось что-то вроде кнопок «включить» и «выключить».

Как это работает. Режим похож на моностабильный (первый рассмотренный), только нет никакого конденсатора, который мог бы вернуть чип из «нижнего» состояния обратно в «верхний». Вместо этого вывод 6 (threshold) подключен напрямую к земле, а выводы 5 (control) и 7 (discharge) вообще ни к чему не подключены. В данном случае это нормально, так как подача любого сигнала на эти выводы все равно будет игнорироваться. В общем и целом, это тот же моностабильный режим, только чип не меняет свое состояние автоматически. Изменить состояние может только пользователь, явно подав низкое напряжение на вывод 2 (trigger) или 4 (reset).

Заключение

Согласитесь, это было не так уж и сложно! На следующем фото изображены все описанные выше режимы, собранные на макетной плате:

Слева направо — моностабильный, автоколебательный и бистабильный режимы. Вариант, где автоколебательный режим используется с динамиком и двумя потенциометрами, выглядит куда более впечатляюще, но менее наглядно, поэтому здесь я его не привожу.

Исходники приведенных выше схем, созданных в gschem, вы найдете . Кое-какие дополнительные сведения можно найти в статье 555 timer IC на Википедии, а также далее по ссылкам.

Как всегда, буду рад вашим вопросам и дополнениям. А часто ли вам приходится использовать таймер 555?

Fun fact! Есть энтузиасты, которые делают на таймере 555 совершенно сумасшедшие вещи. Например, при сильном желании на его основе можно делать операционные усилители или логические вентили, а следовательно, теоретически, и целые процессоры. Подробности можно найти, например, в посте You Know You Can Do That with a 555 на сайте hackaday.com.

Дополнение: Вас также могут заинтересовать посты

История создания очень популярной микросхемы и описание ее внутреннего устройства

Одной из легенд электроники является микросхема интегрального таймера NE555 . Разработана она была в далеком 1972 году. Таким долгожительством может гордиться далеко не каждая микросхема и даже не каждый транзистор. Так что же такого особенного в этой микросхеме, имеющей в своей маркировке три пятерки?

Серийный выпуск микросхемы NE555 начала компания Signetics ровно через год после того, как ее разработал Ганс Р. Камензинд . Самым удивительным в этой истории было то, что на тот момент времени Камензинд был практически безработным: он уволился из компании PR Mallory, но устроиться никуда не успел. По сути дела это была «домашняя заготовка».

Микросхема увидела свет и получила столь большую известность и популярность благодаря стараниям менеджера фирмы Signetics Арта Фьюри бывшего, конечно, приятелем Камензинда. Раньше он работал в фирме General Electric, поэтому знал рынок электроники, что там требуется, и чем можно привлечь внимание потенциального покупателя.

По воспоминаниям Камензинда А. Фьюри был настоящим энтузиастом и любителем своего дела. Дома у него была целая лаборатория, заполненная радиокомпонентами, где он и проводил различные исследования и опыты. Это давало возможность накапливать огромный практический опыт и углублять теоретические познания.

В то время продукция фирмы Signetics именовалась в виде «5**», и опытный, обладавший сверхъестественным чутьем в вопросах рынка электроники А. Фьюри, решил, что маркировка 555 (три пятерки) будет для новой микросхемы как нельзя кстати. И он не ошибся: микросхема пошла просто нарасхват, она стала, пожалуй, самой массовой за всю историю создания микросхем. Самое интересное, что свою актуальность микросхема не утратила и по сей день.

Несколько позднее в маркировке микросхемы появились две буквы, она стала называться NE555. Но поскольку в те времена в системе патентования существовала полная неразбериха, то интегральный таймер бросились выпускать все, кому не лень, естественно, поставив перед тремя пятерками другие (читай свои) буквы. Позднее на базе таймера 555 были разработаны сдвоенные (IN556N) и счетверенные (IN558N) таймеры, естественно, в более многовыводных корпусах. Но за основу был взят все тот же NE555.

Рис. 1. Интегральный таймер NE555

555 в СССР

Первое описание 555 в отечественной радиотехнической литературе появилось уже в 1975 году в журнале «Электроника». Авторы статьи отмечали тот факт, что эта микросхема будет пользоваться не меньшей популярностью, чем широко известные уже в то время операционные усилители. И они нисколько не ошиблись. Микросхема позволяла создавать очень простые конструкции, причем, практически все они начинали работать сразу, без мучительной наладки. А ведь известно, что повторяемость конструкции в домашних условиях возрастает пропорционально квадрату ее «простоты».

В Советском Союзе в конце 80 - х годов был разработан полный аналог 555, получивший название КР1006ВИ1 . Первое промышленное применение отечественного аналога было в видеомагнитофоне «Электроника ВМ12».

Внутреннее устройство микросхемы NE555

Прежде, чем схватиться за паяльник и начать сборку конструкции на интегральном таймере, давайте сначала разберемся, что там внутри и как все это работает. После этого понять, как работает конкретная практическая схема, будет намного проще.

Внутри интегрального таймера содержится свыше двадцати , соединение которых показано на рисунке -

Как видно, принципиальная схема достаточно сложна, и приведена здесь лишь для общей информации. Ведь все равно в нее паяльником не влезешь, отремонтировать ее не удастся. Собственно говоря, именно так выглядят изнутри и все другие микросхемы, как цифровые, так и аналоговые (см. - ). Уж такова технология производства интегральных схем. Разобраться в логике работы устройства в целом по такой схеме тоже не удастся, поэтому ниже показана функциональная схема и приводится ее описание.

Технические данные

Но, перед тем как разбираться с логикой работы микросхемы, наверно, следует привести ее электрические параметры. Диапазон питающих напряжений достаточно широк 4,5…18В, а выходной ток может достигать 200мА, что позволяет использовать в качестве нагрузки даже маломощные реле. Сама же микросхема потребляет совсем немного: к току нагрузки добавляется всего 3…6мА. При этом точность собственно таймера от питающего напряжения практически не зависит, - всего 1 процент от расчетного значения. Дрейф составляет всего 0,1%/вольт. Также невелик и температурный дрейф - всего 0, 005%/°C. Как видно, все достаточно стабильно.

Функциональная схема NE555 (КР1006ВИ1)

Как было сказано выше, в СССР сделали аналог буржуйской NE555 и назвали его КР1006ВИ1. Аналог получился очень даже удачный, ничуть не хуже оригинала, поэтому использовать его можно, без всяких опасений и сомнений. На рисунке 3 показана функциональная схема интегрального таймера КР1006ВИ1. Она же полностью соответствует микросхеме NE555.

Рисунок 3. Функциональная схема интегрального таймера КР1006ВИ1

Сама микросхема не так уж и велика, - выпускается в восьмивыводном корпусе DIP8, а также в малогабаритном SOIC8. Последнее говорит о том, что 555 может использоваться для SMD - монтажа, другими словами интерес к ней у разработчиков сохранился до сих пор.

Внутри микросхемы элементов тоже немного. Основным является DD1. При подаче логической единицы на вход R триггер сбрасывается в ноль, а при подаче логической единицы на вход S, естественно, устанавливается в единицу. Для формирования управляющих сигналов на RS - входах служит , о которой будет рассказано несколько позже.

Физические уровни логической единицы зависят, конечно, от используемого напряжения питания и практически составляют от Uпит/2 почти до полного Uпит. Примерно такое же соотношение наблюдается и у логических микросхем структуры КМОП. Логический же ноль находится, как обычно, в пределах 0…0,4В. Но эти уровни находятся внутри микросхемы, о них можно только догадываться, но руками их не пощупать, глазами не увидеть.

Выходной каскад

Для увеличения нагрузочной способности микросхемы, к выходу триггера подключен мощный выходной каскад на транзисторах VT1, VT2.

Если RS - триггер сброшен, то на выходе (вывод 3) присутствует напряжение логического нуля, т.е. открыт транзистор VT2. В случае, когда триггер установлен на выходе также уровень логической единицы.

Выходной каскад выполнен по двухтактной схеме, что позволяет подключать нагрузку между выходом и общим проводом (выводы 3,1) или шиной питания (выводы 3,8).

Небольшое замечание по выходному каскаду. При ремонте и наладке устройств на цифровых микросхемах одним из методов проверки схемы является подача на входы и выходы микросхем сигнала низкого уровня. Как правило, это делается замыканием на общий провод этих самых входов и выходов с помощью швейной иголки, при этом, не принося никакого вреда микросхемам.

В некоторых схемах питание NE555 составляет 5В, поэтому создается впечатление, что это тоже цифровая логика и с ней тоже можно обходиться достаточно вольно. Но на самом деле это не так. В случае с микросхемой 555, точнее с ее двухтактным выходом, такие «опыты» делать нельзя: если выходной транзистор VT1 в этот момент окажется в открытом состоянии, то получится короткое замыкание и транзистор просто сгорит. А уж если питающее напряжение будет близко к максимальному, то плачевный финал просто неизбежен.

Дополнительный транзистор (вывод 7)

Кроме упомянутых транзисторов имеется еще транзистор VT3. Коллектор этого транзистора соединен с выводом микросхемы 7 «Разрядка». Его назначение разряжать времязадающий конденсатор при использовании микросхемы в качестве генератора импульсов. Разряд конденсатора происходит в момент сброса триггера DD1. Если вспомнить описание триггера, то на инверсном выходе (обозначен на схеме кружком) в этот момент имеется логическая единица, приводящая к открыванию транзистора VT3.

О сигнале сброс (вывод 4)

Сбросить триггер можно в любой момент, - у сигнала «сброс» высокий приоритет. Для этого существует специальный вход R (вывод 4), обозначенный на рисунке как Uсбр. Как можно понять из рисунка сброс произойдет, если на 4 вывод подать импульс низкого уровня, не более 0,7В. При этом на выходе микросхемы (вывод 3) появится напряжение низкого уровня.

В тех случаях, когда этим входом не пользуются, на него подают уровень логической единицы, чтобы избавиться от импульсных помех. Проще всего это сделать, подключив вывод 4 напрямую к шине питания. Ни в коем случае нельзя оставлять его, что называется, в «воздухе». Потом долго придется удивляться и раздумывать, а почему же схема работает столь нестабильно?

Замечания о триггере «вообще»

Чтобы не запутаться совсем, в каком состоянии находится триггер, следует напомнить о том, что в рассуждениях о триггере всегда принимается во внимание состояние его прямого выхода. Уж, если сказано, что триггер «установлен», то на прямом выходе состояние логической единицы. Если говорят, что триггер «сброшен», - на прямом выходе непременно состояние логического нуля.

На инверсном выходе (отмечен маленьким кружком) все будет с точностью до наоборот, поэтому, часто выход триггера называют парафазным. Чтобы не перепутать все еще раз, об этом больше говорить не будем.

Тот, кто внимательно дочитал вот до этого места, может спросить: «Позвольте, ведь это же просто триггер с мощным транзисторным каскадом на выходе. А где же собственно сам таймер?» И будет прав, поскольку до таймера дело еще и не дошло. Чтобы получился таймер его отец - создатель Ганс Р. Камензинд изобрел оригинальный способ управления этим триггером. Вся хитрость этого способа заключается в формировании сигналов управления.

Формирование сигналов на RS - входах триггера

Итак, что же у нас получилось? Всем делом внутри таймера заправляет триггер DD1: если он установлен в единицу, - на выходе микросхемы напряжение высокого уровня, а если сброшен, то на выводе 3 низкий уровень и вдобавок открыт транзистор VT3. Назначение этого транзистора - разряд времязадающего конденсатора в схеме, например, генератора импульсов.

Управление триггером DD1 осуществляется с помощью компараторов DA1 и DA2. Для того, чтобы управлять работой триггера на выходах компараторов нужно получить сигналы R и S высокого уровня. На один из входов каждого компаратора подано опорное напряжение, которое формируется прецизионным делителем на резисторах R1…R3. Сопротивление резисторов одинаково, поэтому поданное на них напряжение делится на 3 равные части.

Формирование сигналов управления триггером

Запуск таймера

На прямой вход компаратора DA2 подано опорное напряжение величиной 1/3U, а внешнее напряжение запуска таймера Uзап через вывод 2 подано на инверсный вход компаратора. Для того, чтобы воздействовать на вход S триггера DD1 на выходе этого компаратора необходимо получить высокий уровень. Это возможно в том случае, если напряжение Uзап будет находиться в пределах 0…1/3U.

Даже кратковременный импульс такого напряжения вызовет срабатывание триггера DD1 и появление на выходе таймера напряжения высокого уровня. Если на вход Uзап воздействовать напряжением выше 1/3U и вплоть до напряжения питания, то никаких изменений на выходе микросхемы не произойдет.

Останов таймера

Для останова таймера надо просто сбросить внутренний триггер DD1, а для этого на выходе компаратора DA1 сформировать сигнал R высокого уровня. Компаратор DA1 включен несколько иначе, чем DA2. Опорное напряжение величиной 2/3U подано на инвертирующий вход, а управляющий сигнал «Порог срабатывания» Uпор подан на прямой вход.

При таком включении высокий уровень на выходе компаратора DA1 возникнет лишь тогда, когда напряжение Uпор на прямом входе превысит опорное напряжение 2/3U на инвертирующем. В этом случае произойдет сброс триггера DD1, а на выходе микросхемы (вывод 3) установится сигнал низкого уровня. Также произойдет открывание «разрядного» транзистора VT3, который и разрядит времязадающий конденсатор.

Если входное напряжение находится в пределах 1/3U…2/3U, не сработает ни один из компараторов, изменение состояния на выходе таймера не произойдет. В цифровой технике такое напряжение называется «серый уровень». Если просто соединить выводы 2 и 6, то получится компаратор с уровнями срабатывания 1/3U и 2/3U. И даже без единой дополнительной детали!

Изменение опорного напряжения

Вывод 5, обозначенный на рисунке как Uобр, предназначен для контроля опорного напряжения или его изменения с помощью дополнительных резисторов. Также на этот вход возможна подача управляющего напряжения, благодаря чему возможно получения частотно или фазо модулированного сигнала. Но чаще этот вывод не используется, а для уменьшения влияния помех соединяется с общим проводом через конденсатор небольшой емкости.

Питание микросхемы осуществляется через выводы 1 - GND, 2 +U.

Вот собственно описание интегрального таймера NE555. На таймере собрано множество всяких схем, которые будут рассмотрены в следующих статьях.

Борис Аладышкин

Продолжение статьи:

Таймеры — NA555 , NE555 , SA555 , SE555

1 Особенности

  • Диапазон времени от микросекунд до часов
  • Астабильный или моностабильный режимы
  • Регулируемый коэффициент заполнения
  • ТТЛ —совместимый выход может быть использован как сток или исток (до 200 мА)
  • Изделие соответствует стандарту MIL-PRF-38535

2 Применение

  • Биометрия отпечатков пальцев
  • Биометрия сетчатки глаза
  • RFID — считыватели

3 Описание

Эти устройства предназначены для работы в прецизионных времязадающих цепях и могут производить точные временные задержки или колебания. В режиме временной задержки или в моностабильном режиме временной интервал задается одним внешним резистором или конденсатором.

Пороговый уровень и уровень переключения располагаются в двух третях и одной трети от напряжения питания соответственно. Эти уровни могут быть изменены, путем изменения напряжения на выводе управления. Когда на вход trigger подается сигнал низкого уровня, таймер срабатывает и подает на вывод output высокий уровень напряжения. Если уровни сигналов на выводах trigger и threshold выше порогового уровня то триггер срабатывает и устанавливает низкий уровень напряжения на выводе output . Вывод reset (сброс) может переопределить значения напряжения на всех других выводах, чтобы запустить новый цикл синхронизации. Когда на вывод reset подается низкий уровень напряжения, триггер сбрасывается и устанавливает на выводе output тоже низкий уровень напряжения. Когда на выходе устанавливается низкий уровень, вывод discharge (разряд) замыкается через низкоомный канал на землю.

Выходная цепь способна поддерживать ток до 200 мА. Может работать с напряжением питания от 5 В до 15 В. При напряжении питания 5 В уровни напряжения на выходах совместимы с ТТЛ-входами.

Размеры для разных типов корпусов
Серийный номер Корпус Размеры
xx555 PDIP (8) 9.81 мм × 6.35 мм
SOP (8) 6.20 мм× 5.30 мм
TSSOP (8) 3.00 мм× 4.40 мм
SOIC (8) 4.90 мм× 3.91 мм

6 Расположение и назначение выводов

NA555…D или P корпус
NE555…D, P, PS, или PW корпус
SA555…D или P корпус
SE555…D, JG, или P корпус (Вид сверху) SE555…FK корпус (NC — не задействованные выводы)
ВЫВОД I/O Описание
Название D, P, PS, PW, JG FK
NO.
CONT 5 12 I/O Управляет пороговым напряжением компаратора, позволяет отказаться от подключения конденсатора.
DISCH 7 17 O При открытом транзисторе через него происходит разряд времязадающего конденсатора.
GND 1 2 Земля
NC 1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19 Внутренне не подключенные выводы
OUT 3 7 O Выход таймера для подключения нагрузки
RESET 4 10 I При подаче напряжения низкого уровня на этот вывод таймер сбрасывается и на выводах OUT и DISCH
THRES 6 15 I Остановка работы таймера. Когда напряжение на THRES > CONT на выводах OUT и DISCH устанавливается низкий уровень напряжения
TRIG 2 5 I Запуск таймера. При подаче напряжения на TRIG < ½ CONT на выводах OUT и DISCH устанавливается высокий уровень напряжения
V CC 8 20 Напряжение питания, от 4.5 В до 16 В. (SE555 максимум 18 В)

7 Характеристики

7.1 Абсолютные максимальные значения

Мин. Макс. Ед. изм.
V CC Напряжение питания 18 В
V I Входное напряжение CONT, RESET, THRES, TRIG V CC В
I O Выходной ток ±225 мA
θ JA D корпус 97 °C/Вт
P корпус 85
PS корпус 95
PW корпус 149
θ JC Тепловое сопротивление для корпусов FK корпус 5.61 °C/Вт
JG корпус 14.5
T J Рабочая температура 150 °C
Температура корпуса в течении 60 с. FK корпус 260 °C
Температура пайки для корпуса в течении 60 с. JG корпус 300 °C

(1) Абсолютные максимальные значения указывают пределы, превышение которых, может привести к повреждению устройства. Электрические характеристики не применяются при работе с устройством за пределами своих заявленных условий эксплуатации. Воздействие абсолютных максимальных значений на устройство в течении длительного времени, может повлиять на его надежность.

(2) Все напряжения указаны по отношению к земле.

(3) Максимальная рассеиваемая мощность является функцией от T J (max), θ JA , и T A . при любой допустимой равна P D = (T J (max) — T A) / θ JA

(4) Тепловое сопротивление для корпуса рассчитывается по стандарту JESD 51-7.

(5) Максимальная рассеиваемая мощность является функцией от T J (max), θ JC , и T C . Максимально допустимая рассеиваемая мощность при любой допустимой температуре окружающего воздуха равна P D = (T J (max) — T С) / θ JС . Работа на абсолютном максимуме T J от 150°C может повлиять на надежность.

(6) Тепловое сопротивление для корпуса рассчитывается по стандарту MIL-STD-883.

7.2 Температура хранения

В рабочем диапазоне температур на открытом воздухе (если не указано иное)

MIN MAX Ед. изм.
V CC Напряжение питания NA555, NE555, SA555 4.5 16 В
SE555 4.5 18
V I Входное напряжение CONT, RESET, THRES, and TRIG V CC В
I O Выходной ток ±200 мA
T A Рабочая температура на открытом воздухе NA555 –40 105 °C
NE555 0 70
SA555 –40 85
SE555 –55 125

7.4 Электрические характеристики

Параметр Условия испытаний SE555 NA555
NE555
SA555
Ед. изм.
MIN TYP MAX MIN TYP MAX
Уровень напряжения на выводе THRES V CC = 15 В 9.4 10 10.6 8.8 10 11.2 В
V CC = 5 В 2.7 3.3 4 2.4 3.3 4.2
Ток через вывод THRES 30 250 30 250 нA
Уровень напряжения на выводеTRIG V CC = 15 В 4.8 5 5.2 4.5 5 5.6 В
T A = от –55°C до 125°C 3 6
V CC = 5 В 1.45 1.67 1.9 1.1 1.67 2.2
T A = от –55°C до 125°C 1.9
Ток через вывод TRIG при 0 В на TRIG 0.5 0.9 0.5 2 мкA
Уровень напряжения на выводе RESET 0.3 0.7 1 0.3 0.7 1 В
T A = от –55°C до 125°C 1.1
Ток через вывод RESET при V CC на RESET 0.1 0.4 0.1 0.4 мA
при 0 В на RESET –0.4 –1 –0.4 –1.5
Переключающий ток на DISCH в закрытом состоянии 20 100 20 100 нA
Переключающее напряжение на DISCH в открытом состоянии V CC = 5 В, I O = 8 мA 0.15 0.4 В
Напряжение на CONT V CC = 15 В 9.6 10 10.4 9 10 11 В
T A = от –55°C до 125°C 9.6 10.4
V CC = 5 В 2.9 3.3 3.8 2.6 3.3 4
T A = от –55°C до 125°C 2.9 3.8
Низкий уровень напряжения на выходе V CC = 15 В, I OL = 10 мA 0.1 0.15 0.1 0.25 В
T A = от –55°C до 125°C 0.2
V CC = 15 В, I OL = 50 мА 0.4 0.5 0.4 0.75
T A = от –55°C до 125°C 1
V CC = 15 В, I OL = 100 мА 2 2.2 2 2.5
T A = от –55°C до 125°C 2.7
V CC = 15 В, I OL = 200 мA 2.5 2.5
V CC = 5 В, I OL = 3.5 мA T A = от –55°C до 125°C 0.35
V CC = 5 В, I OL = 5 мA 0.1 0.2 0.1 0.35
T A = от –55°C до 125°C 0.8
V CC = 5 В, I OL = 8 мA 0.15 0.25 0.15 0.4
Высокий уровень напряжения на выходе V CC = 15 В, I OH = –100 мA 13 13.3 12.75 13.3 В
T A = от –55°C до 125°C 12
V CC = 15 В, I OH = –200 мA 12.5 12.5
V CC = 5 В, I OH = –100 мA 3 3.3 2.75 3.3
T A = от –55°C до 125°C 2
Потребляемый ток V CC = 15 В 10 12 10 15 мA
V CC = 5 В 3 5 3 6
Низкий уровень на выходе, без нагрузки V CC = 15 В 9 10 9 13
V CC = 5 В 2 4 2 5

(1) Этот параметр влияет на максимальные значения времязадающих резисторов R A и R B в цепи Рис. 12. Для примера, когда V CC = 5 V R = R A + R B ≉ 3.4 МОм, и для V CC = 15 В максимальное значение равно 10 мОм.

7.5 Эксплуатационные характеристики

V CC = от 5 В до 15 В, T A = 25°C (если не указано иное)

Параметр Условия испытаний SE555 NA555
NE555
SA555
Ед. изм.
Мин. Тип. Макс. Мин. Тип. Макс.
Начальная погрешность интервалов времени T A = 25°C 0.5 1.5 1 3 %
Каждый таймер, астабильный 1.5 2.25
Температурный коэффициент временного интервала Каждый таймер, моностабильный T A = MIN to MAX 30 100 50 ppm/
°C
Каждый таймер, астабильный 90 150
Изменение временного интервала от напряжения питания Каждый таймер, моностабильный T A = 25°C 0.05 0.2 0.1 0.5 %/V
Каждый таймер, астабильный 0.15 0.3
Время нарастания выходного импульса C L = 15 пФ,
T A = 25°C
100 200 100 300 нс
Время спада выходного импульса C L = 15 пФ,
T A = 25°C
100 200 100 300 нс

(1) Соответствуют стандарту MIL-PRF-38535, эти параметры не проходили производственные испытания.

(2) Для условий указанных как Мин. и Макс. , используют соответствующее значение, указанное в рекомендуемых условиях эксплуатации.

(3) Погрешность интервала времени определяется как разность между измеренным значением и средним значением случайной выборки из каждого процесса .

(4) Значения указаны для моностабильной схемы, показанной на рис. 9, со следующими значениями компонентов R A = 2 от кОм до 100 кОм, C = 0.1 мкФ.

(5) Значения указаны для астабильной схемы, показанной на рис. 9, со следующими значениями компонентов R A = 1 от кОм до 100 кОм, C = 0.1 мкФ.

7.6 Типовые характеристики

Данные для температур ниже -40 ° C и выше 105 ° C применимы только для SE555

Рис.1 Выходное напряжение низкого уровня от выходного тока низкого уровня для напряжения питания 5 В.

Рис.2 Выходное напряжение низкого уровня от выходного тока низкого уровня для напряжения питания 10 В. Рис. 8 Время задержки распространения сигнала от запускающего импульса низкого уровня.

8 Подробное описание

8.1 Обзор

Таймеры серии xx555 популярны и просты в использовании и зачастую применяются для синхронизации временных интервалов от 1 мкс до часов или частот от <1 мГц до 100 кГц. В режиме временной задержки или моностабильном режиме заданный интервал регулируется одним внешним компонентом (резистором и конденсатором). В астабильном режиме работы частоту и коэффициент заполнения можно изменять независимо друг от друга двумя внешними резисторами и конденсатором.

8.2 Функциональная блок-схема

  1. RESET может быть заменен TRIG, который можно заменить THRES.

8.3 Описание характеристик

8.3.1 Моностабильный режим работы

Для работы в моностабильном режиме любой из таймеров этой серии может быть подключен как показано на Рис. 9.

Рис. 9 Схема включения для моностабильного режима работа.

Рис. 10 Осциллограмма напряжений для моностабильного режима работы.

Рис 11 Длительность выходного импульса от емкости конденсатара

8.3.2 Астабильный режим работы

Рис. 12 Схема включения для астабильного режима работы. Рис. 13 Осциллограмма напряжений для астабильного режима работы.

9. Применение

9.1 Информация для применения

В таймерах серии xx555 используются резистор и конденсатор для формирования времени задержки или рабочей частоты. В данном разделе представлена упрощенная информация для разработки схем.

9.2 Типичные схемы применения

9.2.1 Индикатор пропуска импульсов

Рис. 16 Схема индикатора пропуска импульсов

9.2.2 Требования к проектированию

Входная ошибка (отсутствие импульса) должна быть большой. Небольшой входной сигнал не будет обнаружен, так как времязадающий конденсатор «C» будет разряжен.

9.2.1.1 Подробное описание проектирования

Следует подобрать величину R A и C таким образом, чтобы R A × C>[максимальной длительности входного импульса]. R L улучшает V OH , но не является обязательным для совместимости с ТТЛ-логикой.

9.2.1.2 Диаграмма напряжений

Рис. 17 Осциллограмма выполнения синхронизации для индикатора пропуска импульсов

9.2.2 ШИМ регулятор на 555

Работа таймера может регулироваться, с помощью изменения внутреннего порога срабатывания и переключения, которое осуществляется подачей внешнего напряжения или тока на вывод CONT. На показана схема для широтно-импульсной модуляции. Непрерывная последовательность входных импульсов запускает моностабильный мультивибратор, а управляющий сигнал модулирует пороговое напряжение. На показана, полученная на выходе широтно-импульсная модуляция. В то врем как синусоидальный модулирующий сигнал может быть любой формы.


Рис. 18 Схема ШИМ-регулятора на 555

Номера выводов показаны для корпусов D, JG, P, PS, и PW.

  1. Модулирующий сигнал может быть подключен напрямую или через емкость к выводу CONT. Для подключения напрямую воздействие напряжения и сопротивления источника модуляции на отклонение таймера, должно учитываться.

9.2.2.1 Требования к проектированию

На вход синхронизации должны подаваться V OL и V OH больше и меньше 1/3 напряжения питания. Напряжение на входе модулирующего сигнала должно изменяться относительно земли. Подключаемая нагрузка должна быть терпима к нелинейности передаточной функции; связь между модуляцией и шириной импульса не является линейной, поскольку заряд конденсатора в RC-цепочке идет по отрицательной экспоненциальной кривой.

9.2.2.2 Подробное описание проектирования

Следует подобрать R A и C таким образом, чтобы R A × C = 1/4 [периода синхронизации]. R L улучшает V OH , но не является обязательным для совместимости с ТТЛ-логикой.

9.2.2.3 Диаграмма напряжений

Рис. 19 Осциллограмма ШИМ-модуляции.

9.2.3 Фазово-импульсная модуляция

На показана схема включения 555 для работы в качестве фазово-импульсного регулятора. В этой схеме регулируется пороговое напряжение и, тем самым, время задержки, связанное с несинхронизируемым генератором.На показан сигнал треугольной формы для этой цепи; однако сигнал может быть любой формы.


Рис. 20 Схема включения для фазово-импульсной модуляции

9.2.3.1 Требования к проектированию

Постоянный и переменный ток на входе модулирующего сигнала, будут изменять верхние и нижние пороговые значения напряжения времязадающего конденсатора. Частота и коэффициент заполнения будут измениться в зависимости от модулирующего сигнала.

9.2.3.2 Подробное описание проектирования

Номинальная выходная частота и коэффициент заполнения можно вычислить по формуле для астабильного мультивибратора. R L улучшает V OH , но не является обязательным для совместимости с ТТЛ-логикой.

9.2.3.3 Диаграмма напряжений

Рис. 21 Осциллограмма напряжений для фазово-импульсной модуляции

9.2.4 Последовательный таймер

Многие устройства, например такие как компьютеры требуют сигналы для инициализации условий во время запуска. Другие, такие как испытательное оборудование требуют активирующих тестовых сигналов в последовательности импульсов. Данная схема может быть подключена, чтобы обеспечить такое последовательное управление. Таймеры могут использоваться в различных комбинациях, как с астабильной так и моностабильной схемой подключения, с модуляцией и без для исключительно гибкого управления формой сигнала. На показана последовательная схема с возможность применения во многих системах, а на показана диаграмма напряжений на выходе.


Рис. 22 Последовательный таймер на 555

9.2.4.1 Требования к проектированию

Последовательный таймер представляет собой цепочку из нескольких, соединенных между собой, таймеров, подключенных по моностабильной схеме. Подключенные компоненты — резисторы 33 кОм и конденсаторы 0.001 мкФ.

9.2.4.2 Подробное описание проектирования

Величину времязадающих конденсаторов и резисторов можно рассчитать по формуле: t w = 1.1 × R × C.

9.2.4.3 Диаграмма напряжений


Рис. 23 Осциллограммы напряжений на выходах

Рекомендуем почитать

Наверх