Программа для понижения напряжения процессора. Уменьшаем тепловыделение процессора и увеличиваем время автономной работы ноутбука

Бытовая техника 21.10.2019
Бытовая техника

Регулирование напряжения питания процессоров Intel

ВНИМАНИЕ! Автор статьи не несет никакой ответственности за любой вред, нанесенный компьютеру вследствие применения описанных здесь действий

Одним пользователям везет больше, другим меньше. Бывают счастливчики, которым достаются процессоры, легко разгоняющиеся до следующей "стандартной" частоты FSB: Celeron до 100, а Рentium III "Е"-модификации до 133 МГц соответственно. Однако подобный процессор не так-то просто раздобыть: на рынках они есть, но продавцы за "гарантировано" разгоняемый камень чаще всего хотят столько, что можно купить процессор с примерно такой же, но "родной" частотой, гарантированной производителем. Но нередко попадаются процессоры, работающие на повышенной частоте, но нестабильно. То есть появляются неожиданные сбои, программы "выполняют недопустимые операции" и закрываются, взгляд радуют "синие экраны" и тому подобные прелести.

Часто от этого можно избавиться поднятием напряжения питания процессора. У классического Celeron (на ядре Mendocino; т.е. модели 300A-533) стандартное напряжение ядра составляет 2 В. В принципе, без особого риска его можно поднять на 5-10% (до 2.1 — 2.2 В). Абсолютно то же самое касается и процессоров с ядром Coppermine (Celeron 533A-766 и Pentium III): меняются лишь абсолютные цифры.

Однако хорошо, если при помощи BIOS или джамперов на материнской плате можно выставить нужный уровень напряжения, а что делать, если такая возможность отсутствует (что обычно и бывает, если говорить о недорогих материнских платах)? Фактически пропадает основная идея разгона: на недорогом "железе" получить большую производительность. На платах с разъемом Slot 1 можно применять специальные переходники, однако пользователям сокетных плат от этого не легче (к тому же, иногда и 5-7 долларов разницы в цене переходника с регулировкой напряжения и простенькой моделью без оной критичны). Разница же в цене между платами, рассчитанными на оверклокинг и дешевыми сокетными моделями составляет до 30 долларов (к тому же большинство таких плат имеют АТХ-формат, так что при апгрейде компьютера приходится менять и корпус), а ради экономии такой суммы иногда стоит воспользоваться несколько нестандартными методами.

В последнее время тема изменения напряжения питания стала актуальной не только для оверклокеров. Дело в том, что имеющиеся в наличии платы на старых чипсетах (LX, EX, BX, ZX, Apollo Pro) зачастую способны работать с, как минимум, новыми Celeron (иногда сразу, иногда после некоторой модификации), а иногда и Pentium III, и единственным препятствием является преобразователь напряжения на плате, неспособный обеспечить менее 1.8 В. Вполне логичным решением данной проблемы является принудительный перевод процессора на данное напряжение.

Предупреждение . Не стоит забывать о том, что при увеличении напряжения, увеличивается и рассеиваемая процессором мощность. Особенно это касается разгона: дополнительное тепловыделение будет наблюдаться и из-за увеличения частоты процессора. Поэтому стоит заранее задуматься о хорошем охлаждение процессора (впрочем, сделать это стоит в любом случае, независимо от того, будет увеличиваться напряжение или нет)

Для питания процессоров класса Pentium II и Celeron требуются довольно мощные источники питания, поэтому питание вторичного кэша (на рисунке обозначен Vccs) отделено от питания ядра (Vccp) причем при совпадающих номиналах значения напряжения линии Vccs не используются. То есть в зависимости от типа процессора (от того какой уровень напряжения на соответствующей ножке процессора), стабилизатор на материнской плате выставляет нужное напряжение.

Таблица №1. Идентификация напряжения питания
VID Напряжение, В VID Напряжение, В
01111 1.30 11111 нет процессора
01110 1.35 11110 2.1
01101 1.40 11101 2.2
01100 1.45 11100 2.3
01011 1.50 11011 2.4
01010 1.55 11010 2.5
01001 1.60 11001 2.6
01000 1.65 11000 2.7
00111 1.70 10111 2.8
00110 1.75 10110 2.9
00101 1.80 10101 3.0
00100 1.85 10100 3.1
00011 1.90 10011 3.2
00010 1.95 10010 3.3
00001 2.00 10001 3.4
00000 2.05 10000 3.5

VID используется только в SEPP/SECC-исполнении (Slot1), поэтому увеличить напряжение на платах для Socket 370 можно только до 2.05 В. Для работы со всеми процессорами Intel необходима поддержка значений, выделенных жирным шрифтом; подчеркиванием выделены напряжения питания для процессоров FCPGA.

Таблица №2. Питание некоторых процессоров
Процессор Vccp, ядро, В Vccs, Кэш, В
Pentium II 233-300 (Klamath) 2.8 3.3
Pentium II 266-450 (Dechutes) 2.0 2.0
Pentium III 450-550 (Katmai) 2.0 3.3
Pentium III 600 (Katmai) 2.05 3.3
Celeron 266-533 (Covington, Mendocino) 2.0 -
Celeron 533A-600
1.5
1.7
-
Celeron 633-766
1.65
1.7
-

(Celeron 533А -766 имеют две модификации, рассчитанные на разное напряжение)

Физически (0) означает что ножка подключена к земле (GND или Vss), а (1) что вывод свободен, то есть ни к чему не подключен (на ножке должен быть потенциал логической единицы).

Таким образом, можно сделать так, чтобы стабилизатор выдавал не стандартные 2 В для Celeron (дальше пойдет речь именно о них), а больше или меньше (что интересно, в некоторых случаях наблюдалось улучшение стабильности работы при пониженном напряжении).

На рисунке показаны контакты для сокетных процессоров. У процессоров, изготовленных в конструктиве Slot 1, за идентификацию питания отвечают следующие выводы:

VID0 VID1 VID2 VID3 VID4
B120 A120 A119 B119 A121

Например, если заклеить VID, VID, VID, то получим напряжение 2.2 В. Этого должно хватить любому любителю разгона, и, в то же время, вполне приемлемо для того, чтобы при хорошем охлаждении процессор работал достаточно долго:) То есть достаточно легко можно получить некоторые уровни напряжений для чего требуется только заизолировать некоторые ноги. Например, для PPGA и SEPP (Slot1):

Примеры напряжений питания процессоров
Напряжение, В Какие ножки надо заклеить Рекомендации
1.80 VID Если вы не поклонник разгона, то такое напряжение можно использовать для уменьшения температуры процессора во время работы или экономии электроэнергии:) (Celeron потребляет 10-20 Вт в зависимости от штатной частоты, а так получается 10% экономии:))
1.90 VID В общем, верно тоже, что и для напряжения 1.8 В
2.00 Стандартное напряжение Приведено для примера
2.20 VID;VID;VID Процессор должен работать без проблем, разве что будет сильнее греться.
2.40 VID;VID;VID Может работать, а может и не работать:) (но скорее первое), и еще больше греться
2.60 VID;VID Риск довольно большой, но энтузиасты могут пробовать (если уж очень хочется разогнать процессор как можно сильнее).
2.80 VID;VID;VID И не пытайтесь — указано только для примера

Остальные значения получить труднее, так как необходимо более сильное воздействие на процессор — придется соответствующий контакт процессора или разъема соединить с землей (GND). Так, например, соединив с помощью проводка и пайки выводы слота (или сокета) VID и GND на обратной стороне материнской платы, получим напряжение 2.05 В. Однако это рискованная операция так как в случае ошибки или неаккуратной пайки напряжение цепей ввода-вывода (3,3 В) может попасть на ядро, что приведет к печальным последствиям. Зато таким образом, можно получить на ядре процессора любое напряжение из таблицы №1.

Собственно о том, как заклеить ножки. Есть несколько вариантов. Во-первых, можно заизолировать их путем нанесения прочного лака. Этот способ нормально действует только при действительно прочном лаке, так как при установке в гнездо ноги процессора испытывают большое физическое усилие, что может привести к разрушению изолирующего слоя и, соответственно, на ядро может попасть не запланированный уровень напряжения (например 2.6 вместо 2.2 В при нарушении изоляции проводника VID). Во-вторых, у сокетного процессора их можно просто откусить а у слотового — перерезать соответствующие проводники, но это способ не оставляет шансов для отступления (если перерезанный проводник еще можно спаять, то припаять откушенную ногу довольно проблематично).

Самым реальным, по-видимому, является вариант с заклеиванием ног процессора. В случае корпуса типа SEPP/SECC можно воспользоваться скотчем, аккуратно вырезанным по форме контактной площадки. На плате процессора есть надписи, при помощи которых можно сориентироваться, где какой вывод расположен. В случае PPGA и FCPGA можно воспользоваться таким способом. Из фторопластовой или полиэтиленовой пленки (такой, какая применяется для изготовления пакетов) вырезается круг диаметром около 5 мм. Он размещается так, чтобы его центр оказался точно над контактом, который нужно заизолировать. Затем швейной иглой края круга опускаются между выводами.

При установке никаких проблем обычно не возникает, однако проблема может возникнуть при извлечении процессора из сокета: пленка остается внутри, и извлечь ее не такт-то просто (в крайнем случае сокет можно разобрать и вытащить оттуда все лишнее:))

На фотографии "подготовлена" ножка VID

При должной аккуратности и внимательности произвести необходимые операции довольно легко.

Те же способы пригодны и для повышения или понижения напряжения питания в Pentium II и Pentium III, как в исполнении под Slot 1, так и под FCPGA (разумеется, с соответствующими изменениями касательно уровней напряжения). Следует правда учесть, что, в случае процессоров с ядрами Klamath и Coppermine, для повышения напряжения питания браться за паяльник придется обязательно: без замыкания части контактов на "землю" в данном случае обойтись не удастся (в отличие от ядер, рассчитанных на напряжение 2,0 В).

Также не стоит забывать о том, что не все регуляторы напряжения, устанавливаемые на материнских платах, поддерживают абсолютно все уровни. Соответствующая микросхема обычно расположена около процессорного гнезда. По ее маркировке можно узнать фирму-производителя чипа, а, следовательно, и ее характеристики. Вот адреса некоторых фирм производящих регуляторы напряжения:

В статье были использованы материалы из книги Михаила Гука "Процессоры Pentium II, Pentium Pro и просто Pentium" издательства "Питер", а также официальная документация фирмы Intel по процессорам Celeron

Введение.
Достаточно давно мне хотелось остановиться на вопросах обеспечения снижения энергопотребления современных персональных компьютеров и ноутбуков. Многие пользователи оправданно зададут вопрос: "Зачем это надо? - производитель уже позаботился обо всех тонкостях энергопотребления моей системы. Как показывает опыт, к сожалению, это практически всегда не так. Если производители ноутбуков еще как-то стараются обеспечить снижение энергопотребления своих устройств, то с персональными компьютерами, как правило, все находится в запущенном состоянии.

Энергопотребление персональных компьютеров и необходимо снижать по следующим причинам:
- снижая энергопотребление ноутбука, вы продлеваете его время автономной работы,
- продлевая время автономной работы ноутбука, вы добиваетесь, снижения циклов заряда/разряда аккумуляторной батареи и продлеваете его срок службы,
- вместе с энергопотреблением снижается и тепловыделение компонентов ноутбука или персонального компьютера, что позволяет, с одной стороны, повысить стабильность работы системы, с другой стороны, продлить срок службы электрических компонентов,
- снижение энергопотребления персонального компьютера и ноутбука позволит сократить расходы на электричество. Для многих это до сих пор не критично, но стоимость электроэнергии растет день ото дня, государственная политика заставляет граждан устанавливать электросчетчики, количество компьютеров в семье увеличивается из года в год, длительность их работы удлиняется в пропорциональных масштабах, поэтому в технологиях снижения энергопотребления заинтересован каждый из нас.

Определение ключевых компонентов энергопотребления системы.

Несмотря на то, что современный персональный компьютер и ноутбук настолько различны между собой, как правило, они полностью идентичны по схемам строения. В ноутбуке производители стараются компоновать все, таким образом, чтоб максимально уменьшить итоговые размеры. В то время как любой персональный компьютер является модульной системой, любой компонент которой может быть заменен без каких-либо проблем.

Картинка кликабельна --


На представленном рисунке видны компоненты стандартного системного блока . Знание этих компонентов системы позволит вам еще на этапах сборки или апгрейда своего компьютера определиться с теми параметрами, которые позволят вам снизить энергопотребление системы. Итак, современный системный блок содержит:
- корпус,
- блок питания,
- материнская плата,

Оперативная память,
- видеокарта/видеокарты,
- жесткий диск/диски,
- привод компакт-дисков,
- дисководы,
- картридеры,
- системы охлаждения процессора, корпуса.
Звуковые карты, ТВ-тюнеры в отдельном исполнении редко встречаются в современных компьютерах. Во-первых, все существующие материнские платы имеют встроенные контроллеры звука, которые не уступают по качеству звучания дешевым звуковым картам и картам среднего ценового диапазона. Во-вторых, ТВ-тюнеры отслужили свой век, как и коаксиальное телевидение. В эпоху FulHD, IP-TV, DVB говорит о ТВ-тюнерах попросту излишне.

Энергосбережение: корпус и блок питания.

Для многих может показаться странным, обсуждать блок питания и корпус в контексте энергосберегающих технологий. Тем не менее, практика показывает, что пользователи зачастую выбирают корпус по внешнему виду и его ценовому параметру. При этом следует понимать, что малогабаритный, плохо вентилируемый корпус будет способствовать перегреванию компонентов системы и снижению стабильности работы того же процессора, оперативной памяти, материнской платы при снижении напряжений питания, чем мы будем заниматься в дальнейшем.

Блок питания может стать источником неэффективного энергопотребления в первую очередь. Любой современный блок питания должен обеспечивать высокие показатели КПД при преобразовании тока высокого напряжения в 12, 5 и 3,3 вольта.

Любой современный блок питания имеет соответствие одному из стандартов серии 80 Plus . Стандарт 80 Plus был принят еще в далеком 2007 году, в рамках энергосберегающих стандартов Energy Star четвертого пересмотра. Данный стандарт требует от производителей блоков питания обеспечение 80% КПД своих устройств при различных нагрузках, - 20%, 50% и 100% от номинальной мощности.

Из этого следует, что для обеспечения максимальной эффективности вашего блока питания, он должен быть нагружен не менее 20 % от своей номинальной мощности. Абсолютно не правильно, когда пользователь приобретает блоки питания "с запасом" на 900 и 1200 Ватт. При выборе блока питания руководствуйтесь тем, что без нагрузки на систему, нагрузка на него не должна падать ниже 20% и он должен иметь сертификат соответствия 80 Plus.

Картинка кликабельна --


Справедливости ради, нужно отметить, что на сегодняшний день стандарт 80 Plus дифференцировался на следующие категории:
- 80 Plus
- 80 Plus Bronze
- 80 Plus Silver
- 80 Plus Gold
- 80 Plus Platinum.

Различие между стандартами заключается в обеспечении более высоких показателей КПД внутри семейства стандарта 80 Plus. Если при 50% нагрузке блок питания стандарта 80 Pus обеспечивает КПД на уровне 80%, то дорогие блоки питания соответствующие стандарту 80 Plus Platinum обеспечивают КПД на уровне 94% и выше.

Энергосбережение: материнская плата.


На сегодняшний день материнские платы развиваются максимально быстро, не отставая от развития процессоров. Следует понимать, что материнские платы состоят из различных наборов контроллеров, обеспечение слаженной работы которых, и является основной задачей материнской платы. В большинстве случае, энергопотребление материнской платы зависит от вида примененного северного и южного моста. Современные северные мосты значительно снизили свое энергопотребление, что повлекло за собой уменьшение размеров их систем охлаждения. Многие пользователи помнят времена, когда система охлаждения северного моста состояла из нескольких тепловых трубок соединенных с радиаторами охлаждения. Появление последнего поколения системной логики от Intel позволило снова отойти на уровень обычных радиаторов.

В силу общих тенденций, многие именитые производители материнских плат, такие как Gigabyte , ASUS , MSI демонстрируют на выставках свои новые "экологичные" продукты. Как правило, экологичность данных решений достигается за счет оптимизации схем питания процессора и видеокарт, - основных потребителей любого системного блока. Как правило, это осуществляется за счет применения многофазных стабилизаторов напряжения процессоров.

Современные материнские платы , применяют в схемах питания от шести до двенадцати стабилизаторов напряжения. Данные схемы значительно повышают стабильность подаваемого напряжения, но увеличивают энергопотребление. Поэтому производители "экологичных" материнских плат оснащают их технологиями, которые при низкой нагрузке на систему питания выключают часть фаз, и питание процессора осуществляется за счет одной-двух фаз стабилизаторов напряжения.

При покупке материнской платы, также следует быть более внимательным. Приобретение "навороченной" материнской платы всегда оборачивается повышенным энергопотреблением. Если вам никогда не будет нужен порт FireWire, не следует за него переплачивать, а затем ежемесячно платить за то электричество, которое потребляет его контроллер на материнской плате.

Энергосбережение: процессор.

Ведущие производители процессоров AMD и Intel на протяжении последних десятилетий занимаются снижением энергопотребления своих продуктов. Следует отдать должное, вся эстафета была начата компанией AMD, в которой она удерживала прочное лидерство на протяжении двух-трех лет. Были времена, когда процессоры компании AMD с технологией Cool"n"Quiet имели значительно меньшее энергопотребление, нежели процессоры от компании Intel линеек Pentium 4 и Pentium D.

Компания Intel быстро наверстала свое отставание и внедрила технологию EIST - Enhanced Intel SpeedStep Technology, которая прекрасно себя показала в последних поколениях процессоров. В то время как новые процессоры от компании Intel обзаводятся все новыми и новыми технологиями энергосбережения и наращивают производительность, от компании AMD существенных рывков вперед мы не видим.

Как известно, ключевым энергопотребителем любого персонального компьютера или ноутбука является именно процессор, поэтому мы остановимся на вопросах снижения его энергопотребления.

Для того чтоб понять, как можно снизить энергопотребление , вы должны четко для себя представлять, от чего оно зависит. Энергопотребление современного процессора зависит:
- от напряжения питания подаваемого на транзисторы,
- частоты работы процессора. Частота работы процессора формируется из произведения его множителя на частоту шины.

По сути дела, технологии Cool"n"Quiet и EIST занимаются снижением энергопотребления именно за счет этих двух параметров. К сожалению, чаще всего мы сталкиваемся с работой не с напряжением питания процессора, а с работой его частотой. При снижении нагрузки на процессор энергосберегающие технологии снижают множитель процессора и тем самым добиваются снижения энергопотребления процессора. При появлении нагрузки на процессоре, множитель возвращается на прежние значения, и процессор работает, как ни в чем не бывало. К сожалению, данная методика снижения энергопотребления не всегда позволяет добиться высокой энергоэффективности. Покажем на примере.
В качестве примера выбран процессор Core 2 Duo с номинальной частотой работы 2,0 Ггц.

Картинка кликабельна --


Из представленной диаграммы видно, что температура работы процессора без включения режима энергосбережения, при номинальном множителе x12 и напряжении питания 1,25 вольт мы имеем рабочую температуру порядка 55-56 градусов в простое.

Картинка кликабельна --


После подачи нагрузки на процессор, при аналогичных условиях работы мы фиксируем среднею температуру работы порядка 71-72 градусов, что и было зафиксировано на наших диаграммах.
Температура ядер снимается по внутренним датчикам, поэтому погрешности минимальны. Учитывая тот факт, что между энергопотреблением процессора и его рабочей температурой имеется прямопропорциональная связь, мы будем ориентироваться на данный параметр при оценке его энергоэффективности.
Следующим этапом мы снизили множитель до минимально возможных значений, до 6. При этом частота процессора составила 997 Мгц, грубо можно округлить до 1 Ггц. Напряжение питания осталось неизменным, в районе 1,25 вольт.

Картинка кликабельна --


Из представленных данных видно, что в режиме простоя, рабочая температура процессора изменилась очень мало, она осталась, по-прежнему, в рамках 55-56 градусов. Отсюда напрашивается вывод о том, что от простого снижения частоты работы процессора мы выигрываем очень мало.

Картинка кликабельна --


После этого мы подали нагрузку на , но множитель и рабочее напряжение процессора оставили на прежнем уровне. Естественно, подобное тестирование имеет значение только с практической стороны, реализовывать его в жизни мы не рекомендуем. Связано это с тем, что именно от частоты процессора зависит его производительность, и никто не покупает высокочастотный процессор для его последующей работы на заниженных частотах. После стабилизации температурных значений, мы получили среднею рабочую температуру равную 65-66 градусам, что на шесть градусов ниже, чем при работе процессора на номинальной частоте равной 2 Ггц.
Из этого всего следует, что действительно энергосбережение от снижения рабочей частоты процессора путем изменения значения множителя имеет место быть, но оно не того уровня, которого нам бы хотелось видеть, в каждом конкретном случае. Поэтому мы приступаем к работе с напряжением процессора.


Наш процессор и материнская плата позволяют изменять напряжение питания процессора в промежутке 0,95-1,25 вольт. Шаг составляет 0,0125 вольт. Это связано с тем, что процессор установлен в ноутбуке, материнские платы которых, редко когда дают возможность менять рабочие напряжения компонентов в широких диапазонах.
Для того чтоб доказать эффективность снижения рабочего напряжения процессора в плане снижения его энергопотребления и тепловыделения, мы оставим его рабочую частоту на уровне 1 Ггц, но параллельно снизим рабочее напряжение до минимально возможных значений, - 0,95 вольт.

Картинка кликабельна --


Данная манипуляция позволила нам снизить температуру простоя процессора до 45-46 градусов, что представлено на диаграмме. В данном режиме мы добиваемся максимально возможно низкого энергопотребления процессора. Снижение рабочего напряжения до 0,95 вольт позволило нам снизить рабочую температуру простоя на 10 градусов!!!

Картинка кликабельна --


Для оценки эффективности метода снижения рабочего напряжения процессора, мы подали на него нагрузку. В результате чего мы получили рабочую температуру в нагрузке равную 50-51 градусам, в то время как без изменения напряжения и аналогичной производительности системы на частоте 1 Ггц ранее мы получали 65-66 градусов. Полученные нами данные зафиксированы на диаграммах.

Энергопотребление процессора: выводы

- Из всего вышеизложенного следует, что для обеспечения высокой энергоэффективности процессора не следует только снижать рабочую частоту процессора, как это делается многими ноутбуками и персональными компьютерами в рамках энергосберегающих технологий от Intel и AMD. Снижение частоты работы процессора всегда должно сопровождаться снижением его рабочего напряжения.

Учитывая тот факт, что любой процессор может работать при более низком напряжении при более низких частотах своей работы, следует подобрать свое минимальное стабильное напряжение для каждой частоты его работы.

Для определения приблизительных рабочих напряжений для каждой частоты (множителя) процессора достаточно построить график прямой зависимости минимального напряжения от частоты путем нанесения максимальных и минимальных значений. Это значительно облегчит работу начинающим пользователям.


- Для обеспечения необходимой энергоэффективности процессора, необходимо правильно настроить существующие технологии или применять сторонние программные продукты, которые могли бы снижать частоту процессора, его напряжение при низкой нагрузке и повышать их при ее повышении.

Энергосбережение процессора: RightMark CPU Clock Utility (RMClock)

Утилита имеет небольшой вес, порядка 250 килобайт . Не требуется какой-либо установки, просто распаковываете его в выбранную папку и запускаете файл RMClock.exe. Для простоты ссылка на архив с программой будет представлена в конце нашей статьи.

На момент написания статьи последняя версия программы 2.35 имеет следующий функционал в рамках бесплатного использования:
- контроль тактовой частоты процессоры,
- контроль троттлинга,
- контроль уровня загрузки процессора, ядер процессора,
- контроль рабочего напряжения процессора,
- контроль температуры процессора/ядер процессора,
- постоянный мониторинг указанных параметров,
- возможность изменения напряжения процессора из операционной системы,
- возможность изменения множителя процессора (его частоты) из операционной системы,
- автоматическое управление частотой и напряжением процессора в зависимости от подаваемой нагрузки на него. Концепция носит название "Perfomance on demand" или "производительность по требованию".

Картинка кликабельна --


Запустив программный продукт, вы попадаете в один из разделов его меню. Мы перечислим весь функционал RightMark CPU Clock Utility по порядку. В разделе About представлена информация о разработчиках, их сайте, и ссылка на лицензионное соглашение. Базовая версия продукта поставляется бесплатно для некоммерческих целей, никакой регистрации не требуется. Имеется профессиональная версия, которая предоставляет гораздо более широкий функционал настроек работы системы и стоит символические 15 долларов. Для начинающего пользователя возможностей базовой версии вполне хватит.

Картинка кликабельна --


В закладке "Settings " представлены настройки программы для удобства его использования. К сожалению, русского языкового пакета, который встречался в ранее выпущенных версиях продукта, в нашем случае не оказалось, но в этом нет ничего страшного. В данной закладке имеется возможность выбора цвета оформления и, прошу обратить внимание, - режим автозапуска.

За режим автозапуска отвечает подраздел "Startup options ". Автозапуск RightMark CPU Clock Utility при загрузке операционной системы позволяет максимально легко решить вопросы энергосбережения без вмешательства в BIOS компьютера, что особенно полезно, когда BIOS не предоставляет каких-либо возможностей по изменению рабочего напряжения и множителя процессора. Подобное встречается в BIOS"ах современных ноутбуков.

Поставив галочку в окне пункта "Start minimized to system tray " вы избавите себя от надобности постоянно закрывать окно программы при очередном запуске. Оно будет выполнять свои задачи после автоматического запуска с предварительным свертыванием.

Пункт "Run at Windows startup :" позволяет установить автоматический запуск программного продукта и выбрать, как это делать. В нашем случае мы осуществляем автоматический запуск через реестр, также имеется возможность автоматического запуска через папку "Автозагрузка". Оба варианта прекрасно работают, начиная от Windows XP заканчивая Windows 7.

Имеется возможность записи необходимых параметров работы процессора в Log-файл . Данный параметр бывает необходим для выяснения причин нестабильной работы системы.

Картинка кликабельна --


В закладке "CPU info " представлена информация о процессоре, его характеристики на текущий момент. Перечислены поддерживаемые технологии энергосбережения. Чем более современный процессор, тем больше технологий он поддерживает.

Картинка кликабельна --


В закладке "Monitoring " представлены диаграммы изменения рабочей частоты ядра процессора, его троттлинг, нагрузка на него, множитель, рабочее напряжение и температура. Количество вкладок соответствует количеству ядер процессора.

Картинка кликабельна --


Во вкладке "Management " пользователю предоставляется возможность выбора метода переключения множителей, методов определения фактической нагрузки на процессор, интеграции программного продукта с энергосберегающими технологиями операционной системы.

Пункт "P-states transitions method " позволяет выбрать метод перехода от одной заданной комбинации множителя-напряжения на другой. Имеются следующие возможности выбора:
- Single-step: множитель переключается с шагом равной единице. То есть при переходе с множителя 10 на множитель 12 всегда будет промежуточное звено 11.
- Multi-step: переход будет осуществляться с переменным шагом. В случае нашего примера, с 10 сразу на 12.

Пункт "Multi-CPU load calculation " позволяет определить метод определения загрузки процессора. Данный параметр будет влиять на скорость переключения комбинации множитель-напряжение на процессоре. В каждом случае подбирается исходя из индивидуальных особенностей работы пользователя. Обычно данный параметр мы не меняем и оставляет на указанном на скрине значении, который означает, что оценка будет осуществляться по максимальной нагрузке любого из ядер процессора.

Пункт "Standby/hibernate action " позволяет выбрать действие программы при переходе в режим гибернации или сна. Как правило, оставление текущего профиля работы является вполне достаточным.

В разделе "CPU Default Settings " представлены следующие пункты:
- Restore CPU defaults on management turns off, который позволяет вернуть первоначальные параметры работы процессора после выбора режима "No Power Managemet".
- Restore CPU defaults on application exit, который позволяет вернуть первоначальные параметры работы процессора после выключения RightMark CPU Clock Utility.

В разделе "CPU defeaults selection" выбирается метод определения комбинаций множитель-напряжение у процессора:
- CPU-defined default P-state, комбинация определяются процессором,
- P-state found at startup, комбинации определяются при загрузке программы,
- Custom P-state, комбинации устанавливаются вручную.

Пункт "Enable OS power management integration " позволяет создать профиль в схемах энергопотребления системы под названием "RMClock Power Management".

Картинка кликабельна --


В разделе "Profiles " пользователю предлагается задать те самые комбинации множитель-напряжение, - P-state. Во-первых, предлагается выбрать профили в зависимости от режима энергопотребления, - сеть или батарея/ИБП.

Ниже предлагается выбрать множители процессора и напряжение для них в каждом конкретном случае. Как правило, я выбираю три значения:
- минимальный множитель и минимальное напряжение для него,
- максимальный множитель и минимально рабочее напряжение для него,
- среднее значение множителя, а напряжение для него устанавливается самой программой исходя из максимальных и минимальных значений.

Как правило, подобный подход подходит для большинства ноутбуков и персональных компьютеров. Естественно, бывают исключения, и пользователю приходится длительно подбирать минимальное напряжение для каждого множителя.

Картинка кликабельна --


Затем устанавливаете галочки для уже выбранных профилей в соответствующих разновидностях работы программы:
- No management - без управления, в настройках не нуждается
- вкладки "Power Saving", "Maximal performance", "Perfomance on Demand" по сути дела равнозначны и позволяют установить диапазоны изменения множителей-напрежения процессора.

Например, в нашем случае для вкладки "Power Saving " мы выбрали минимально возможный множитель и напряжением, для вкладки "Maximal performance" максимальный множитель и минимально рабочее напряжение при данной частоте у процессора.

В разделе производительность по требованию "Perfomance on Demand " выбрали три комбинации множитель-напряжение:
- x4-0,95 вольт
- x9-1,1 вольт
- x12-1,25 вольт.

Картинка кликабельна --


Затем наводите на значок в области уведомлений рабочего стола программы RightMark CPU Clock Utility и выбираете необходимые параметры процессора, которые всегда должны вам показываться и выбираете текущий профиль работы. Я всегда ставлю для мониторинга частоту процессора и его температуру работы, что всегда удобно и отчасти интересно.

Картинка кликабельна --


На рисунке представлены три пиктограммы в области уведомлений рабочего стола:
- пиктограммы программы RightMark CPU Clock Utility,
- текущая частота процессора,
- его текущая температура.

Картинка кликабельна --


На скрине представлены диаграммы работы процессора в режиме "Производительность по требованию ". Видно, как программный продукт при увеличении нагрузки на процессор ступенчато увеличивает его множитель и напряжение вначале до x9-1,1 вольт и при необходимости до максимальных x12-1,25 вольт. Как только нагрузка падает, все ступенчато возвращается обратно.
Подобная регулировка практически никак не влияет на итоговую производительность системы.

Картинка кликабельна --


Во вкладке "Battery info " предлагается выбрать способы оповещения о состоянии аккумуляторной батареи ноутбука.

Во вкладке "Advanced CPU settings " предлагается выбрать опрашиваемые температурные датчики процессора, включаемые технологии энергосбережения.
Все эти энергосберегающие технологии описаны на сайте Intel . Мы просто хотим сказать, что, как правило, их включение не влияет на стабильность системы, поэтому - почему бы их не включить?

Наш процессор относится к раннему семейству процессоров Core 2 Duo . Современные процессоры поддерживает не активные у нас технологии:
- Engage Intel Dynamic Acceleration (IDA)
- Enable Dynamic FSB Frequency Switching (DFFS)

Первая технология позволяет процессору повысить множитель одного из ядер при отсутствии нагрузки на второе. Например, работают два ядра процессора при частоте 2,2 Ггц. Процессор оценивает, что нагрузка подается только на одно ядро, то его множитель будет повышен, и он начнет работать на частоте 2,4 Ггц. Технология интересная, но опасная на разогнанных процессорах.

Вторая технология позволяет добиться еще более сильного снижения рабочей частоты процессора в режимах простоя. Ранее мы говорили о том, что итоговая частота процессора - это всегда произведение множителя на частоту системной шины. Современные процессоры Intel в рамках технологии DFFS позволяют снижать не только значение множителя, но и частоту шины, что позволяет достичь еще более низких частот. Данная технология также опасна для разогнанных процессоров, так как можно получить нестабильность со стороны оперативной памяти.

Картинка кликабельна --


Пожалуй, это все что мы хотели рассказать о программном продукте RightMark CPU Clock Utility . Остается посоветовать следить за ее обновлениями. При этом не имеет смысл обновляться, когда у вас уже на протяжении многих месяцев все стабильно работает. Имеет смысл искать новую версию при смене процессора или переходе на более современную операционную систему.
Использование программы RightMark CPU Clock Utility позволит вам максимально продлить жизнь не только своего процессора, но и системы питания материнской платы, а также значительно снизить шум от системы охлаждения процессора, который не будет надрываться для его охлаждения, когда вы будете печатать, смотреть фильмы или просто листать страницы в Интернете.

Энергопотребление процессора: определяем минимальное рабочее напряжение

В своей статье я многократно указывал на то, что важно определить минимальное рабочее напряжение для каждой частоты работы процессора. Делается это путем проб и ошибок. Как правило, последовательно выполняется следующий цикл задач:
- снижение напряжения на один пункт,
- проверка стабильности процессора в стресс-тестовом программном продукте,
- понижение или повышение напряжения на один пункт в зависимости от результатов стресс-тестирования.

Для стресс-тестирования процессоров существует множество программных продуктов. Они были описаны в одной из наших статей. Считаю, что наиболее ценной из них является программа Prime95. Ссылка на нее будет предоставлена в конце статьи. Она полностью бесплатна и доступна для скачивания в сети.

Картинка кликабельна --


Последняя ее версия была выпущена в 2008 году, как раз тогда, когда было необходимо внедрить мультиядерность в тестирование. Имеется возможность выбора различных методов тестирования, указывать длительность тестирования, периодичность тестирования и т.д.

Картинка кликабельна --


Выбираем метод тестирования в разделе "Options "=> "Torture test " и запускаем его. Длительность тестирования полностью зависит от вас. Как правило, при определении ориентировочного минимального напряжения я дожидаюсь либо первой ошибки, либо провожу тестирование в течение получаса. Если полчаса теста прошло без ошибок, снижаем напряжение на один пункт и вперед заново.
После того, как вы определились с минимальным напряжением окончательно, имеет смысл оставить тест на ночь. За несколько часов кропотливой работы, практически всегда удается выявить возникающие ошибки.
Нередко, операционная система зависает или в лучшем случае, выдает "синий экран смерти ". Это говорит о том, что напряжение занижено и возникла ошибка, - следует поднять рабочее напряжение на процессоре для данной частоты.

Картинка кликабельна --


В нашем случае, мы определили минимальное рабочее напряжение для нашего процессора . Как оказалось, при максимальной частоте в 2 Ггц нашему процессору 1,25 вольт совсем не нужны. Он вполне стабильно работает и при 1,00 вольтах. Стабильность операционной системы была обнаружена и при режиме 0,975 вольт, но Prime95 сообщил об ошибке, которая пропала после поднятия напряжения до 1,00 вольт.

В итоге мы имеем

:
- процессор с неизменным уровнем производительности и частотой работы 2 Ггц,
- максимальную рабочую температуру в нагрузке 62-63 градуса, вместо привычных 72 градусов,
- более низкое энергопотребление, которое позволяет без каких-либо схем энергопотребления от Acer, Asus, Samsung, Gigabyte максимально продлить длительность работы ноутбука от аккумуляторной батареи не теряя уровня производительности,
- более низкое энергопотребление позволит сократить расходы на электричество, особенно, если указать данные значения в описанном выше программном продукте RightMark CPU Clock Utility.

В действительности, подобное низкое рабочее напряжение процессора для оверклоккера говорит всегда об одном, - об его высоком разгонном потенциале. Но нюансам разгона у нас будут посвящены другие статьи, - тема разгона процессора выходит за рамки темы об энергосбережении. Заключение.
Прочитав статью, у пользователя должен возникнуть вопрос: "Неужели производители настолько неумелые, что сами не понижают рабочее напряжение процессоров, особенно в ноутбуках, где это так критично?" Ответ прост и заключается в том, что процессоры выпускаются массово, ноутбуки также выходят с конвейера. Не в интересах производителей затягивать процесс производства, поэтому кому-то везет и его процессор показывает чудеса разгона, а у кого-то отказывается это делать, у кого-то процессор работает при напряжении 1,175 вольт, а у кого-то он стабилен и при 0,98 вольтах. Покупка электроники, - это всегда лотерея. Что скрыто под этикеткой в каждом конкретном случае, познается только на практике.
В заключение хочется поблагодарить разработчиков программных продуктов RightMark CPU Clock Utility и Prime95 , которым наш портал МегаОбзор вручает золотую почетную медаль. Ждем ваших вопросов и напоминаем, что все, что вы делаете со своей электроникой, вы делаете на свой страх и риск.

RightMark CPU Clock Utility можно найти по .
Описанную в статье программу Prime95 можно найти по .



Рекомендуем почитать

Наверх