Разложение спектра в ряд фурье. Разложение сигналов по гармоническим функциям

Инструмент 07.07.2019
Инструмент

Разложению в ряды Фурье подвергаются периодические сигналы. Как уже было сказано выше, периодическую функцию любой формы, заданную на интервале одного периода Т = b-a и удовлетворяющую на этом интервале условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода), можно представить в виде ряда Фурье:

s(t) = S n exp(jnDwt), S n = S(nDw), Dw = 2p/T, (1)

где весовые коэффициенты S n ряда определяются по формуле:

S n = (1/T) s(t) exp(-jnDwt) dt. (2)

Ряд Фурье представляет собой ансамбль комплексных экспонент exp(jnDwt) с частотами, образующими арифметическую прогрессию. Функцию весовых коэффициентов S(nDw ) принято называть комплексным спектром периодического сигнала или фурье-образом функции s(t). Спектр периодического сигнала является дискретной функцией, т.к. он определен только для целых значений n с шагом по частоте, обратным периоду: Dw = 2p/Т (или Df = 1/T ). Первую частотную составляющую спектра при n = 1, равную w 1 = 1×Dw = 2p/T (или f 1 = 1/T ), называют основной частотой сигнала (первой гармоникой), остальные частоты дискретного спектра nw 1 при n>1 называют гармониками сигнала. Значения S(nDw) по положительным и отрицательным значениям n являются комплексно сопряженными.

С чисто математических позиций множество функций exp(jnDwt) , -¥ < n < ¥ образует бесконечномерный базис линейного пространства L 2 ортогональных синус-косинусных функций, а коэффициенты S n по (2) представляют собой проекции сигнала s(t) на эти базисные функции. Соответственно, сигнал s(t) в форме ряда Фурье (1) – это бесконечномерный вектор в пространстве L 2 , точка с координатами S n по базисным осям пространства exp(jnDwt). Подынтегральную функцию экспоненты в выражении (2) с использованием тождества Эйлера

exp(±jwt) = cos(wt) ± j×sin(wt)

можно разложить на косинусную и синусную составляющие и выразить комплексный спектр в виде действительной и мнимой части:

S n = (1/T) s(t) dt = А n - jB n . (3)

A n ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

B n ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

На рис. 4 приведен пример периодического сигнала (прямоугольный импульс на интервале (1-3.3), повторяющийся с периодом Т=40) и форма действительной и мнимой части его спектра. Обратим внимание, что действительная часть спектра является четной относительно нуля функцией A(nDw) = A(-nDw), так как при вычислении значений A(nDw) по формуле (4) используется четная косинусная функция cos(nDwt) = cos(-nDwt). Мнимая часть спектра является нечетной функцией B(nDw) = -B(-nDw), так как для ее вычисления по (5) используется нечетная синусная функция sin(nDwt) = - sin(-nDwt).

Рис. 4. Сигнал и его комплексный спектр.

Комплексные числа дискретной функции (3) могут быть представлены в виде модулей и аргументов комплекс. экспоненты, что дает следующую форму записи комплексного спектра:

S n = R n exp(jj n), (3")

R n 2 ≡ R 2 (nDw) = A 2 (nDw)+B 2 (nDw),j n ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

Рис. 5. Модуль и аргумент спектра.

Модуль спектра R(nDw) называют двусторонним спектром амплитуд или АЧХ - сигнала, а аргумент спектра (последовательность фазовых углов j(nDw)) - двусторонним спектром фаз или ФЧХ. Спектр амплитуд всегда представляет собой четную функцию: R(nDw) = R(-nDw), а спектр фаз нечетную: j(nDw) = -j(-nDw). Пример спектра в амплитудном и фазовом представлении для сигнала, показанного на рис. 4, приведен на рис. 5. При рассмотрении спектра фаз следует учитывать периодичность 2p угловой частоты (при уменьшении фазового значения до величины менее -p происходит сброс значения -2p).

Если функция s(t) является четной, то все значения B(nDw) по (5) равны нулю, т.к. четные функции ортогональны синусным гармоникам и подынтегральное произведение s(t)·sin(nDwt) дает нулевой интеграл. Следовательно, спектр функции будет представлен только вещественными коэффициентами. Напротив, при нечетности функции s(t) обнуляются все значения коэффициентов А(nDw) (нечетные функции ортогональным косинусным гармоникам) и спектр является чисто мнимым. Этот фактор не зависит от выбора границ задания периода функции на числовой оси. На рис. 6(А) можно наглядно видеть ортогональность первой гармоники синуса и четной функции, а на рис. 6(В) соответственно косинуса и нечетной функции в пределах одного периода. Учитывая кратность частот последующих гармоник первой гармонике спектра, ортогональность сохраняется для всех гармоник ряда Фурье.

Рис. 6. Ортогональность функций.

При n = 0 имеем В о = 0, и получаем постоянную составляющую сигнала:

S 0 ≡ A o ≡ R o ≡ (1/T) s(t) dt.

2.5. Тригонометрическая форма рядов Фурье.

Объединяя комплексно сопряженные составляющие (члены ряда, симметричные относительно центрального члена ряда S 0), можно перейти к ряду Фурье в тригонометрической форме:

s(t) = А о +2 (A n cos(nDwt) + B n sin(nDwt)), (6)
s(t) = А о +2 R n cos(nDwt + j n). (6")

Значения A n , B n вычисляются по формулам (4-5), значения R n и j n - по формулам (3").

Ряд (6) представляют собой разложение периодического сигнала s(t) на сумму вещественных элементарных гармонических функций (косинусных и синусных) с весовыми коэффициентами, удвоенные значения которых (т.е. значения 2×A n , 2×B n) не что иное, как амплитуды соответствующих гармонических колебаний с частотами nDw. Совокупность амплитудных значений этих гармоник образует односторонний физически реальный (только для положительных частот nDw) спектр сигнала. Для сигнала на рис. 4, например, он полностью повторяет правую половину приведенных на рисунке спектров с удвоенными значениями амплитуд (за исключением значения А о на нулевой частоте, которое, как это следует из (6), не удваивается). Но такое графическое отображение спектров используется довольно редко (за исключением чисто технических приложений). Более широкое применение для отображения физически реальных спектров находит формула (6"). Спектр амплитуд косинусных гармоник при таком отображении называется амплитудно-частотным составом сигнала, а спектр фазовых углов гармоник – фазовой характеристикой сигнала. Форма спектров повторяет правую половину соответствующих двусторонних спектров (см. рис. 5) также с удвоенными значениями амплитуд. Для четных сигналов отсчеты фазового спектра могут принимать только значения 0 или p, для нечетных соответственно ±p/2.

Ряды Фурье произвольных аналоговых периодических сигналов могут содержать бесконечно большое количество членов. Однако одним из важных достоинств преобразования Фурье является то, что при ограничении (усечении) ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

На верхнем графике рисунка 7 приведен реконструированный сигнал при N = 8 (гармоники первого пика спектра, центр которого соответствует главной гармонике сигнала и члену ряда n = w s /Dw), N = 16 (гармоники двух первых пиков) и N=40 (пять первых пиков спектра). Естественно, что чем больше членов ряда включено в реконструкцию, тем ближе реконструированный сигнал к форме исходного сигнала. Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса . При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.

Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции.

В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (1-6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. Однако при этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье. При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Рис. 7. Реконструкция (восстановление) сигнала

Рис. 8. Проявление эффекта Гиббса


Похожая информация.


ЛАБОРАТОРНАЯ РАБОТА № 1

РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ

Цель задания

Ознакомиться с примерами разложения сигналов в ряд Фурье и практически реализовать разложение различного вида сигналов в системе MatLab.

Постановка задачи

Осуществить разложения сигналов различного вида в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.

Для каждого варианта и каждого вида сигнала заданы параметры:

для последовательности прямоугольных импульсов – амплитуда, период повторения и длительность импульсов;

для меандра, пилообразного сигнала и последовательности треугольных импульсов – амплитуда и период повторения импульсов.

Для всех видов сигналов задано число ненулевых гармоник.

Cоставить программы в системеMatLabи построить графики.

    Постановка задачи.

    Код программ для разложения последовательности прямоугольных импульсов, меандр, пилообразного сигнала и последовательности треугольных импульсов.

    Результаты выполнения программ – графики промежуточных стадий суммирования.

Методические указания

Ряд Фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими арифметическую прогрессию.

Ряд Фурье может быть применен для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчета коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Синусно-косинусная форма

В этом варианте ряд Фурье имеет следующий вид:

Здесь
– круговая частота, соответствующая периоду повторения сигнала, равному. Входящие в формулу кратные ей частоты
называются гармониками, гармоники нумеруются в соответствии с индексом ; частота
называется –й гармоникой сигнала. Коэффициенты ряда ирассчитываются по формулам:

,

.

Константа рассчитывается по общей формуле для. Само же это слагаемое представляет собой среднее значение сигнала на периоде:

.

Если
является четной функцией, то всебудут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые. Если
является нечетной функцией, равны нулю будут, наоборот, косинусные коэффициентыи в формуле останутся лишь синусные слагаемые.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

Последовательность прямоугольных импульсов с амплитудой , длительностьюи периодом повторения.

Рис. 1 Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые , равные

.

Отношение периода к длительности импульсов называют скважностью последовательности импульсов и обозначают буквой :
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье:

.

Амплитуды гармонических слагаемых ряда зависят от номера гармоники.

МЕАНДР

Частным случаем предыдущего сигнала является меандр – последовательность прямоугольных импульсов со скважностью, равной двум, когда длительности импульсов и промежутков между ними становятся равными (рис.2).

Рис. 2 Меандр

При
, получим

Здесь m – произвольное целое число.

При разложении в ряд Фурье четные составляющие будут отсутствовать.

ПИЛООБРАЗНЫЙ СИГНАЛ

В пределах периода он описывается линейной функцией:

Рис. 3. Пилообразный сигнал

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

.

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

ПОСЛЕДОВАТЕЛЬНОСТЬ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ

Рис.4. Последовательность треугольных импульсов

Сигнал является четной функцией, поэтому будут присутствовать косинусные составляющие.

Вычислим коэффициенты ряда Фурье:

Сам ряд Фурье имеет следующий вид:

Как видите, в отличие от последовательностей прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник .

Код программы для меандра

N= 8; % число ненулевых гармоник

t= -1:0.01:1; % вектор моментов времени

A= 1; % амплитуда

T= 1; % период

nh= (1:N)*2-1; % номера ненулевых гармоник

harmonics = cos(2*pi*nh"*t/T);

Am= 2/pi./nh; % амплитуды гармоник

Am(2:2:end) = -Am(2:2:end); % чередование знаков

s1 = harmonics .* repmat(Am", 1, length(t));

% строки-частичные суммы гармоник

for k=1:N, subplot(4, 2, k), plot(t, s2(k,:)), end

Р
езультат работы программы

Комментарии :repmat – создание блочной матрицы или многомерного блочного массива из одинаковых блоков.repmat(Am", 1,length(t)) – матрица состоит из 1 блока по вертикали иlength(t) блоков по горизонтали, каждый блок является матрицейAm".

Cumsum – расчет частичных сумм элементов.

Subplot (Rows , Cols , N ) команда для вывода нескольких графиков. Графическое окно разбивается на клетки в виде матрицы, имеющейRows строк,Cols – столбцов, иN клетка становится текущей.

Варианты

варианта

Параметры для сигналов

амплитуда сигнала

период повторения сигналов

длительность сигнала

число ненулевых гармоник

Примеры разложения в ряд Фурье.

а) Последовательность прямоугольных импульсов .

Рис 2. Последовательность прямоугольных импульсов.

Данный сигнал является четной функцией и для его представления удобно использовать синусно-косинусную форму ряда Фурье:

. (17)

Длительность импульсов и период их следования входят в полученную формулу в виде отношения, ĸᴏᴛᴏᴩᴏᴇ принято называть скважностью последовательности импульсов :.

. (18)

Значение постоянного слагаемого ряда с учетом соответствует:

.

Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

. (19)

График функции носит лепестковый характер.
Размещено на реф.рф
Горизонтальную ось градуируют в номерах гармоник и в частотах.

Рис 3. Представление последовательности прямоугольных импульсов

в виде ряда Фурье.

Ширина лепестков , измеренная в количестве гармоник, равна скважности (при , имеем , в случае если ). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов – в нем отсутствуют гармоники с номерами, кратными скважности . Расстояние по частоте между сосœедними гармониками равно частоте следования импульсов . Ширина лепестков, измеренная в единицах частоты, равна , ᴛ.ᴇ. обратно пропорциональна длительности сигнала. Можно сделать вывод: чем короче импульс, тем шире спектр .

б) Пилообразный сигнал.

Рис 4. Пилообразный сигнал.

Пилообразный сигнал в пределах периода описывается линœейной функцией

, . (20)

Данный сигнал является нечетной функцией, в связи с этим его ряд Фурье в синусно-косинусной форме содержит только синусные составляющие:

Ряд Фурье пилообразного сигнала имеет вид:

Важно заметить, что для спектров прямоугольного и пилообразного сигналов характерно, что амплитуды гармоник с ростом их номеров убывают пропорционально .

в) Последовательность треугольных импульсов .

Ряд Фурье имеет вид:

Рис 5. Последовательность треугольных импульсов.

Как видим, в отличие от последовательности прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник. Это связано с тем, что скорость убывания спектра зависит от степени гладкости сигнала.

Лекция №3. Преобразование Фурье.

Свойства преобразования Фурье.

Примеры разложения в ряд Фурье. - понятие и виды. Классификация и особенности категории "Примеры разложения в ряд Фурье." 2017, 2018.

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций, либо комплексных экспонент с частотами, образующими арифметическую прогрессию. Для того, чтобы такое разложение существовало, фрагмент сигнала длительностью в один период должен удовлетворять условиям Дирихле:

1. Не должно быть разрывов второго рода (с уходящими в бесконечность ветвями функции).

2. Число разрывов первого рода (скачков) должно быть конечным.

    Число экстремумов должно быть конечным.

Ряд Фурье может быть применён для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчёта коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Методы Фурье используются для анализа линейных схем или систем: для предсказания реакции (отклика) системы; для определения передаточной функции; для оценки результатов тестов.

Произвольный периодический сигнал выражается через бесконечное число гармоник с возрастающими частотами:

основные члены;

гармонические члены (при n > 1, n – целое число);

коэффициенты гармоник;

постоянный член или составляющая постоянного тока.

Период функции
должен равняться или кратной величине; кроме того функция
должна быть однозначной.Ряд Фурье можно рассматривать как «рецепт приготовления» любого периодического сигнала из синусоидальных составляющих. Чтобы данный ряд имел практическое значение, он должен сходиться, т.е. частичные суммы ряда должны иметь предел.

Процесс создания произвольного периодического сигнала из коэффициентов, описывающих смешивание гармоник, называется синтезом. Обратный процесс вычисления коэффициентов именуется анализом. Вычисление коэффициентов облегчается тем, что среднее от перекрёстных произведений синусоиды на косинусоиду (и наоборот) равно 0.

Введём в пространство Гильберта базис:
Для упрощения будем полагать, что он ортонормированный.

Тогда любую функцию
из пространства Гильберта можно представить через проекции вектора х на оси базиса обобщённым рядом Фурье:

Ряды Фурье особенно полезны при описании произвольных периодических сигналов с конечной энергией каждого периода. Кроме того, они могут использоваться для описания непериодических сигналов, имеющих конечную энергию за конечный интервал. На практике для описания таких сигналов используют интеграл Фурье.

Выводы

1. Для описания периодических сигналов широко применяется ряд Фурье. Для описания непериодических сигналов используют интеграл Фурье.

Заключение

1. Сообщения, сигналы и помехи как векторы (точки) в линейном пространстве можно описать через набор координат в заданном базисе.

2. Для ТЭС наибольший интерес при отображении сигналов представляет n-мерное пространство Евклида
, бесконечное пространство Гильберта
и дискретное пространство Хэмминга2 n . В этих пространствах вводится понятие скалярного произведения двух векторов (x , y ) .

3. Любую непрерывную функцию времени как элемент можно представить обобщенным рядом Фурье по заданному ортонормированному базису.

Литература

Основная:

    Теория электрической связи: Учеб. Для вузов / А.Г. Зюко, Д. Д. Кловский, В.И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. – М.: Радио и связь, 1998. – 433 с.

Дополнительная:

    Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 2000. – 800 с.

    Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

    Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. – М.:МТУСИ, ЦЕНТР ДО, 2002. – 65 с.

    Сухоруков А.С. Теория цифровой связи: Учебное пособие. Часть 2. – М.:МТУСИ, 2008. – 53 с.


ЛАБОРАТОРНАЯ РАБОТА № 1

РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ

Цель задания

Ознакомиться с примерами разложения сигналов в ряд Фурье и практически реализовать разложение различного вида сигналов в системе MatLab.

Постановка задачи

Осуществить разложения сигналов различного вида в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.

Для каждого варианта и каждого вида сигнала заданы параметры:

для последовательности прямоугольных импульсов – амплитуда, период повторения и длительность импульсов ;

для меандра, пилообразного сигнала и последовательности треугольных импульсов – амплитуда и период повторения импульсов.

Для всех видов сигналов задано число ненулевых гармоник.

Cоставить программы в системе MatLab и построить графики.

Методические указания

Ряд Фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими арифметическую прогрессию.

Ряд Фурье может быть применен для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчета коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Синусно-косинусная форма

В этом варианте ряд Фурье имеет следующий вид:

Здесь
– круговая частота, соответствующая периоду повторения сигнала , равному . Входящие в формулу кратные ей частоты
называются гармониками, гармоники нумеруются в соответствии с индексом ; частота
называется –й гармоникой сигнала. Коэффициенты ряда и рассчитываются по формулам:

,

.

Константа рассчитывается по общей формуле для . Само же это слагаемое представляет собой среднее значение сигнала на периоде:

.
Если
является четной функцией , то все будут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые. Если является нечетной функцией , равны нулю будут, наоборот, косинусные коэффициенты и в формуле останутся лишь синусные слагаемые.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ



Последовательность прямоугольных импульсов с амплитудой , длительностью и периодом повторения .

Рис. 1 Периодическая последовательность прямоугольных импульсов
Данный сигнал является четной функцией , поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые , равные

.

Отношение периода к длительности импульсов называют скважностью последовательности импульсов и обозначают буквой :
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье:

.

Амплитуды гармонических слагаемых ряда зависят от номера гармоники.

МЕАНДР



Частным случаем предыдущего сигнала является меандр – последовательность прямоугольных импульсов со скважностью, равной двум, когда длительности импульсов и промежутков между ними становятся равными (рис.2).

Рис. 2 Меандр

При
, получим


Здесь m – произвольное целое число.

При разложении в ряд Фурье четные составляющие будут отсутствовать.

ПИЛООБРАЗНЫЙ СИГНАЛ

В пределах периода он описывается линейной функцией:

Рис. 3. Пилообразный сигнал
Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

.

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

ПОСЛЕДОВАТЕЛЬНОСТЬ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ

Рис.4. Последовательность треугольных импульсов
Сигнал является четной функцией, поэтому будут присутствовать косинусные составляющие.

Вычислим коэффициенты ряда Фурье:

Сам ряд Фурье имеет следующий вид:

Как видите, в отличие от последовательностей прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник .

Код программы для меандра

N = 8; % число ненулевых гармоник

t = -1:0.01:1; % вектор моментов времени

A = 1; % амплитуда

harmonics = cos(2*pi*nh"*t/T);

Am = 2/pi./nh; % амплитуды гармоник

Am(2:2:end) = -Am(2:2:end); % чередование знаков

s1 = harmonics .* repmat(Am", 1, length(t));

% строки-частичные суммы гармоник

s2 = cumsum(s1);

for k=1:N, subplot(4, 2, k), plot(t, s2(k,:)), end

Р
езультат работы программы

Комментарии : repmat – создание блочной матрицы или многомерного блочного массива из одинаковых блоков. repmat(Am", 1, length(t)) – матрица состоит из 1 блока по вертикали и length(t) блоков по горизонтали, каждый блок является матрицей Am".

Cumsum – расчет частичных сумм элементов.

Subplot (Rows , Cols , N ) команда для вывода нескольких графиков. Графическое окно разбивается на клетки в виде матрицы, имеющей Rows строк, Cols – столбцов, и N клетка становится текущей.

Варианты


варианта

Параметры для сигналов

амплитуда сигнала

период повторения сигналов

длительность сигнала

число ненулевых гармоник

1

7

3

2

10

2

5

4

3

12

3

4

5

4

14

4

3

6

5

16

5

2

8

6

18

6

5

3

2

14

7

4

4

3

16

8

3

5

4

18

9

2

6

5

10

10

7

8

6

12

11

4

4

3

18

12

3

5

4

10

13

2

6

5

12

14

7

8

6

14

15

5

3

2

16

16

7

3

2

12

17

5

4

3

14

18

4

5

4

16

19

3

6

5

18

20

2

8

6

10

21

5

3

2

16

22

4

4

3

18

23

3

5

4

10

24

2

6

5

12

25

7

8

6

14

26

4

4

3

10

27

3

5

4

12

28

2

6

5

14

29

7

8

6

16

30

5

3

2

18


Рекомендуем почитать

Наверх