Регулятор мощности: делаем самостоятельно симисторный вариант. Симисторный регулятор мощности своими руками

Детские товары 09.09.2019
Детские товары

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Симистор, по большому счету , - это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков - это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 - предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 - токоограничительный резистор - служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 - потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 - основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 - динистор, открытие которого управляет симистором.
  • VD4 - симистор - главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания . Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор - 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор - только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно .

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья - с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже .

Единственное её отличие от схемы на симисторе - это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных - положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 - диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 - лампа накаливания - представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 - предохранитель, в этом случае стоит на 10 А.
  • R3, R4 - токоограничительные резисторы - нужны, чтобы не сжечь схему управления.
  • VD5, VD6 - стабилитроны - выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 - транзистор КТ117 - установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 - подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 - тиристор - элемент, обеспечивающий коммутацию.
  • С2 - времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

В статье мы расскажем о том, как изготовить симисторный регулятор мощности своими руками. Что такое симистор? Это прибор, построенный на кристалле полупроводника. У него аж 5 p-n-переходов, ток может проходить как в прямом, так и в обратном направлении. Но эти элементы широкое распространение в современной промышленной аппаратуре не получили, так как у них высокая чувствительность к помехам электромагнитной природы.

Также они не могут работать при высокой частоте тока, выделяют большое количество тепла, если производят коммутацию больших нагрузок. Поэтому в промышленной аппаратуре используют IGBT-транзисторы и тиристоры. Но симисторы тоже не стоит упускать из виду - они дешевые, у них маленький размер, а самое главное - высокий ресурс. Поэтому они могут использоваться там, где перечисленные выше недостатки не играют большой роли.

Как работает симистор?

Встретить сегодня симисторный регулятор мощности можно в любой бытовой технике - в болгарках, шуруповертах, стиральных машинках и пылесосах. Другими словами, везде, где есть необходимость в плавной регулировке частоты вращения двигателя.

Регулятор работает как электронный ключ - он закрывается и открывается с определенной частотой, которая задается схемой управления. Когда прибор отпирается, полуволна напряжения проходит через него. Следовательно, к нагрузке поступает небольшая часть минимальной мощности.

Можно ли сделать самому?

Многие радиолюбители изготавливают своими руками симисторные регуляторы мощности для различных целей. С его помощью можно контролировать нагрев жала паяльника. Но, к сожалению, на рынке готовые устройства встретить можно, но довольно редко.

У них низкая стоимость, но часто приборы не отвечают требованиям, которые предъявляются потребителями. Именно поэтому намного проще, оказывается, не купить готовый регулятор, а сделать его самостоятельно. В этом случае вы сможете учесть все нюансы использования прибора.

Схема регулятора

Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:

  1. Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
  2. Динистор с порогом открывания 32 В.
  3. Для регулировки мощности используется переменный резистор.

Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора. Последний при этом открывается, чтобы ток прошел к нагрузке.

Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.

Как работает устройство

Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

В схеме используются такие элементы:

  1. Динистор типа DB3.
  2. Симисторы типа ВТ136-600, ТС106-10-4 и аналогичные с номиналом по току до 12 А.
  3. Полупроводниковые диоды германиевые - 1N4007.
  4. Электролитический конденсатор на напряжение более 250 В, емкость 0,47 мкФ.
  5. Переменный резистор 100 кОм, постоянные - от 270 Ом до 1,6 кОм (подбираются опытным путем).

Особенности схемы регулятора

Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик. В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах. При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.

Подготовительные работы

Для того чтобы собрать симисторный регулятор мощности для электродвигателя, вам достаточно придерживаться такой последовательности:

  1. Сначала нужно определить характеристики прибора, который будет подключаться к регулятору. К характеристикам можно отнести: число фаз (либо 3, либо 1), необходимость в точной корректировке мощности, напряжение и ток.
  2. Теперь нужно выбрать конкретный тип устройства - цифровой или аналоговый. После этого можно осуществить выбор компонентов по мощности нагрузки. В принципе, для моделирования можно использовать специально программное обеспечение.
  3. Рассчитайте тепловыделение. Для этого умножьте два параметра - номинальный ток (в Амперах) и падение напряжения на симисторе (в Вольтах). Все эти данные можно найти среди характеристик элемента. В итоге вы получите мощность рассеяния, выраженную в Ваттах. Исходя из этого значения, нужно выбрать радиатор и кулер (при необходимости).
  4. Закупите все необходимые элементы или подготовьте их, если они у вас имеются.

Теперь можно приступить непосредственно к сборке устройства.

Сборка регулятора

Прежде чем собрать по схеме симисторный регулятор мощности, нужно выполнить ряд действий:

  1. Осуществите разводку дорожек на плате и подготовьте площадки, на которых нужно установить элементы. Заранее предусмотрите места для монтажа симистора и радиатора.
  2. Установите все элементы на плате и припаяйте их. В том случае, если у вас нет возможности сделать печатную плату, допускается использование навесного монтажа. Провода, которыми соединяются все элементы, должны быть как можно короче.
  3. Обратите внимание на то, соблюдена ли полярность при подключении симистора и диодов. Если отсутствует маркировка, прозвоните элементы мультиметром.
  4. Проверьте схему, используя мультиметр в режиме измерения сопротивления.
  5. Закрепите на радиаторе симистор, желательно использовать термопасту для лучшего контакта поверхностей.
  6. Всю схему можно установить в пластиковом корпусе.
  7. Установите в крайнее левое положение ручку переменного резистора и включите прибор.
  8. Измерьте значение напряжения на выходе устройства. Если вращать ручку резистора, напряжение должно плавно увеличиваться.

Как видите, изготовленный своими руками симисторный регулятор мощности - это полезная конструкция, которую можно использовать в быту практически без ограничений. Ремонт этого устройства копеечный, так как себестоимость довольно низкая.

Если в жилье есть газоснабжение, готовить пищу на газовой плите удобнее, а отопление газовым котлом обычно дешевле электрического варианта. Но при отсутствии газа оптимизация потребления электроэнергии становится очень важной задачей. Для ее решения надо потреблять ровно столько электрической энергии, сколько необходимо. А для этого потребуется оптимальное управление бытовыми электроприборами и освещением. Многие электроплиты, электрообогреватели, вентиляторы и т.д. снабжены встроенными регуляторами.

Но технические возможности системы управления электрооборудованием стоят немалых денег. И по этой причине чаще всего покупаются недорогие электроприборы с простейшими регуляторами. Далее мы расскажем читателям об устройствах, использование которых даст не только экономию электроэнергии, но и сделает многие электроприборы более удобными. Эти устройства - регуляторы мощности. Их назначение - регулировка среднего значения напряжения на нагрузке.

Проще всего купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения. Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине - сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение - просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

  • биполярном транзисторе;
  • полевом транзисторе;
  • тиристоре;
  • симметричном тиристоре (симисторе, триаке).

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбери триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах - схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.

Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Современные симисторы в регуляторах

Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.

Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.

Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.

При выборе схемы регулятора мощности

  • коллекторного мотора постоянного тока,
  • универсальных (тоже коллекторных) двигателей,
  • пригодного для управления электродвигателя в каком-либо электрооборудовании,

рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора. Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.

Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.

Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

Немного о принципе работы симистора

Если у тиристора есть анод и катод, то электроды у симистора так охарактеризовать нельзя, потому что каждый электрод является и анодом и катодом одновременно. В отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Как раз простой схемой, характеризующей принцип работы симистора служит наш электронный регулятор мощности.

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника, а также скорость вентилятора.

Принципиальная схема регулятора на симисторе MAC97A6

Описание работы регулятора мощности на симисторе

При каждой полуволне сетевого напряжения конденсатор С заряжается через цепочку сопротивлений R1, R2, когда напряжение на С становится равным напряжению открывания динистора VD1 происходит пробой и разрядка конденсатора через управляющий электрод VS1 .

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики (ВАХ) динистора DB3 изображена на рисунке:

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет разницы, как его подключать.

Характеристики динистора DB3

Кому нужно регулировать нагрузку более 100Вт, ниже представлена похожая схема более мощного регулятора на симисторе ВТ136-600.

Принципиальная схема регулятора на симисторе BT136-600

Приведенная схема регулятора мощности на симисторе рассчитана на достаточно большой ток нагрузки.

Если у Вас нет необходимых деталей и платы для сборки регулятора мощности на симисторе MAC97A6, Вы можете купить полный набор для его сборки в нашем магазине.


П О П У Л Я Р Н О Е:

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.


Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм, R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.


Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.


Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.


Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.


Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.


Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.



Рекомендуем почитать

Наверх