Реляционная модель базы данных. Основные положения реляционной модели БД

Авто 20.08.2019
Авто

Реляционные БД

Реляционная база данных состоит из одной или нескольких связанных таблиц, структуру которых образуют столбцы и строки.

В реляционных базах данных приняты следующие обозначения:

Отношение - таблица;

Поле- набор однотипных записей для нескольких объектов (столбец);

Кортеж (запись) - строка таблицы, содержащая набор нескольких записей соответствующих одному объекту;

Атрибут - запись в строке одного поля.

Сущность - любой различимый объект, информация о котором хранится в базе данных.

Ключевые поля

Каждое отношение базы данных должно содержать в себе поле (или совокупность нескольких полей), однозначно идентифицирующее каждую запись отношения. Такие поля, позволяют связывать данные нескольких отношений и в конечном счете сформировать единую базу данных. Эти поля называют ключевыми полями.

Различают следующие виды ключей:

Потенциальный ключ - поле, атрибуты которого обеспечивают уникальность записи (в отношении таких полей может быть несколько).

Первичный ключ - один из потенциальных ключей, выбранный в качестве основного (как правило, имеет минимальную длину атрибута).

Внешний (вторичный) ключ - одно или несколько полей отношения, обеспечивающих связь с первичным ключом другого отношения.

В зависимости от количества полей образующих ключ выделяют:

Простой ключ - состоит из единственного атрибута, однозначно определяющего запись (номер зачетной книжки студента).

Составной ключ - состоит из двух и более атрибутов, совокупность которых однозначно определяет запись (серия и номер паспорта человека).

Если в отношении есть уникальное поле, однозначно определяющий каждую запись отношения, то его можно использовать в качестве первичного ключа, но значения его атрибутов должны быть различными для всех записей. Не следует использовать в качестве первичного ключа имена или фамилии людей, т. к. они могут повторятся и в одном отношении могут оказаться люди с одинаковы именем и фамилией. Даже если на данный момент фамилии всех людей зарегистрированных в базе данных разные, поле фамилия не должно использоваться в качестве ключевого, поскольку записи в отношении со временем могут быть изменены в связи с изменением состава людей учтенных в баз данных.

При выборе первичного ключа следует также учитывать, что атрибуты ключевого поля не могут быть пустыми. Если поле допускает пустые значения, то его не следует использовать в качестве первичного ключа.

Также при выборе первичного ключа следует учитывать, что его значения не должны меняются. Если же он меняется, то необходимо обеспечить обновление информации о данном изменении во всех связанных с данным полем отношениях. Применение первичного ключа с постоянным значением позволяет упростить синхронизацию между отношениями в базе данных.

Часто в качестве первичного ключа выбирают искусственно созданное поле, значения атрибутов которого не имеют фактического смысла. Таки полями могут быть Код или Номер , эти поля содержат только числовое обозначение строки, причем зачастую это обозначение выставляет компьютер при помощи счетчика. Такие коды не подвержены изменениям в отличие от полей содержащих фактические данные, т.к. Фамилия, Номер телефона, Адрес и т.д. могут меняться и повторятся.

В том случае если уникальность записи не может быть обеспечена одним полем применяется составной ключ, образованный двумя или более полями. Примером составного ключа могут являться поля серия и номер паспорта, отдельно серия и номер паспорта не могут гарантировать уникальность записи, т.к. есть паспорта с одинаковой серией, так же как и с одинаковым номером, но одновременное совпадение серии и номера двух паспортов невозможно.

Мельникова 620000 Россия, Свердловская обл., г. Екатеринбург. +7 953 039 559 1 info@сайт


Реляционная база данных — это связанная информация, представленная в виде двумерных таблиц. Представьте себе адресную книгу. Она содержит множество строк, каждая из которых соответствует данному индивидууму. Для каждого из них в ней представлены некоторые независимые данные, например, имя, номер телефона, адрес. Представим такую адресную книгу в виде таблицы, содержащей строки и столбцы. Каждая строка (называемая также записью) соответствует определенному индивидууму, каждый столбец содержит значения соответствующего типа данных: имя, номер телефона и адрес, представленных в каждой строке. Адресная книга может выглядеть таким образом:

То, что мы получили, является основой реляционной базы данных, определенной в начале нашего обсуждения двумерной (строки и столбцы) таблицей информации. Однако, реляционная база данных редко состоит из одной таблицы, которая слишком мала по сравнению с базой данных. При создании нескольких таблиц со связанной информацией можно выполнять более сложные и мощные операции над данными. Мощность базы данных заключается, скорее, в связях, которые вы конструируете между частями информации, чем в самих этих частях.

Давайте используем пример адресной книги для того, чтобы обсудить базу данных, которую можно реально использовать в деловой жизни. Предположим, что индивидуумы первой таблицы являются пациентами больницы. Дополнительную информацию о них можно хранить в другой таблице. Столбцы второй таблицы могут быть поименованы таким образом: Patient (Пациент), Doctor (Врач), Insurer (Страховка), Balance (Баланс).

Можно выполнить множество мощных функций при извлечении информации из этих таблиц в соответствии с заданными критериями, особенно, если критерий включает связанные части информации из различных таблиц.

Предположим, Dr.Halben желает получить номера телефонов всех своих Пациентов. Для того чтобы извлечь эту информацию, он должен связать таблицу с номерами телефонов пациентов (адресную книгу) с таблицей, определяющей его пациентов. В данном простом примере он может мысленно проделать эту операцию и узнать телефонные номера своих пациентов Grillet и Brock, в действительности же эти таблицы вполне могут быть больше и намного сложнее.

Программы, обрабатывающие реляционные базы данных, были созданы для работы с большими и сложными наборами тех данных, которые являются наиболее общими в деловой жизни общества. Даже если база данных больницы содержит десятки или тысячи имен (как это, вероятно, и бывает в реальной жизни), единственная команда SQL предоставит доктору Halben необходимую информацию практически мгновенно.

Порядок строк произволен

Для обеспечения максимальной гибкости при работе с данными строки таблицы, по определению, никак не упорядочены. Этот аспект отличает базу данных от адресной книги. Строки в адресной книге обычно упорядочены по алфавиту. Одно из мощных средств, предоставляемых реляционными системами баз данных, состоит в том, что пользователи могут упорядочивать информацию по своему желанию.

Рассмотрим вторую таблицу. Содержащуюся в ней информацию иногда удобно рассматривать упорядоченной по имени, иногда — в порядке возрастания или убывания баланса (Balance), а иногда — сгруппированной по доктору. Внушительное множество возможных порядков строк помешало бы пользователю проявить гибкость в работе с данными, поэтому строки предполагаются неупорядоченными. Именно по этой причине вы не можете просто сказать: «Меня интересует пятая строка таблицы». Независимо от порядка включения данных или какого-либо другого критерия, этой пятой строки не существует по определению. Итак, строки таблицы предполагаются расположенными в произвольном порядке.

Идентификация строк (первичный ключ)

По этой и ряду других причин, необходимо иметь столбец таблицы, который однозначно идентифицирует каждую строку. Обычно этот столбец содержит номер, например, приписанный каждому пациенту. Конечно, можно использовать для идентификации строк имя пациента, но ведь может случиться так, что имеется несколько пациентов с именем Mary Smith. В подобном случае нет простого способа их различить. Именно по этой причине обычно используются номера. Такой уникальный столбец (или их группа), используемый для идентификации каждой строки и обеспечивающий различимость всех строк, называется первичным ключом таблицы (primary key of the table).

Первичный ключ таблицы — жизненно важное понятие структуры базы данных. Он является сердцем системы данных: для того чтобы найти определенную строку в таблице, укажите значение ее первичного ключа. Кроме того, он обеспечивает целостность данных. Если первичный ключ должным образом используется и поддерживается, вы будете твердо уверены в том, что ни одна строка таблицы не является пустой и что каждая из них отлична от остальных.

Столбцы поименованы и пронумерованы

В отличие от строк, столбцы таблицы (также называемые полями (fields) упорядочены и поименованы. Следовательно, в нашей таблице, соответствующей адресной книге, можно сослаться на столбец «Address» как на «столбец номер три». Естественно, это означает, что каждый столбец данной таблицы должен иметь имя, отличное от других имен, для того, чтобы не возникло путаницы. Лучше всего, когда имена определяют содержимое поля. В этой книге мы будем использовать аббревиатуру для именования столбцов в простых таблицах, например: cname — для имени покупателя (customer name), odate — для даты поступления (order date). Предположим также, что таблица содержит единственный цифровой столбец, используемый как первичный ключ.

Таблицы 1.1, 1. 2, 1.3 образуют реляционную базу данных, которая достаточно мала для того, чтобы можно было понять ее смысл, но и достаточно сложна для того, чтобы иллюстрировать на ее примере важные понятия и практические выводы, связанные с применением SQL.

Можно заметить, что первый столбец в каждой таблице содержит номера, не повторяющиеся от строки к строке в пределах таблицы. Как вы, наверное, догадались, это первичные ключи таблицы. Некоторые из этих номеров появляются также в столбцах других таблиц (в этом нет ничего предосудительного), что указывает на связь между строками, использующими конкретное значение первичного ключа, и той строкой, в которой это значение применяется непосредственно в первичном ключе.

Например, поле snum в таблице Customers определяет, каким продавцом (salespeople) обслуживается конкретный покупатель (customer). Номер поля snum устанавливает связь с таблицей Salespeople, которая дает информацию об этом продавце (salespeople). Очевидно, что продавец, который обслуживает данного покупателя, существует, т.е. значение поля snum в таблице Customers присутствует также и в таблице Salespeople. В этом случае мы говорим, что система находится в состоянии ссылочной целостности (referential integrity).

Сами по себе таблицы предназначены для описания реальных ситуаций в деловой жизни, когда можно использовать SQL для ведения дел, связанных с продавцами, их покупателями и заказами. Давайте зафиксируем состояние этих трех таблиц в какой-либо момент времени и уточним назначение каждого из полей таблицы.

Перед вами объяснение столбцов таблицы 1.1:

Таблица 1.2 содержит следующие столбцы:

И, наконец, столбцы таблицы 1.3.

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 12:13, 25 марта 2017.

Реляционная база данных - база данных, построенная на основе реляционной модели . В реляционной базе каждый объект задается записью (строкой) в таблице. Реляционная база создается и затем управляется с помощью реляционной системы управления базами данных.Фактически реляционная база данных это тело связанной информации, сохраняемой в двухмерных таблицах. Связь между таблицами может находить свое отражение в структуре данных, а может только подразумеваться, то есть присутствовать на неформализованном уровне. Каждая таблица БД представляется как совокупность строк и столбцов, где строки соответствуют экземпляру объекта, конкретному событию или явлению, а столбцы - атрибутам (признакам, характеристикам, параметрам) объекта, события, явления. Реляционные базы данных предоставляют более простой доступ к оперативно составляемым отчетам (обычно через SQL) и обеспечивают повышенную надежность и целостность данных благодаря отсутствию избыточной информации.

История

Реляционные системы берут свое начало в математической теории множеств. Эдгар Кодд, сотрудник исследовательской лаборатории корпорации IBM в Сан-Хосе, по существу, создал и описал концепцию реляционных баз данных в своей основополагающей работе «Реляционная модель для крупных, совместно используемых банков данных» (A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, июнь 1970).

Нечеткость многих терминов, используемых в сфере обработки данных, заставила Кодда отказаться от них и придумать новые или дать более точные определения существующим. Так, он не мог использовать широко распространенный термин "запись", который в различных ситуациях может означать экземпляр записи, либо тип записей, запись в стиле Кобола (которая допускает повторяющиеся группы) или плоскую запись (которая их не допускает), логическую запись или физическую запись, хранимую запись или виртуальную запись и т.д. Вместо этого он использовал термин "кортеж длины n" или просто "кортеж", которому дал точное определение.

Кодд предложил модель, которая позволяет разработчикам разделять свои базы данных на отдельные, но взаимосвязанные таблицы, что увеличивает производительность, но при этом внешнее представление остается тем же, что и у исходной базы данных. С тех пор Кодд считается отцом-основателем отрасли реляционных баз данных. Кодд сформулировал 12 правил для реляционных баз данных, большинство которых касаются целостности и обновления данных, а также доступа к ним.

Правила Кодда

Правило 0: Основное правило (Foundation Rule):

Правило 1: Информационное правило (The Information Rule):

Вся информация в реляционной базе данных на логическом уровне должна быть явно представлена единственным способом: значениями в таблицах.

Правило 2: Гарантированный доступ к данным (Guaranteed Access Rule):

В реляционной базе данных каждое отдельное (атомарное) значение данных должно быть логически доступно с помощью комбинации имени таблицы, значения первичного ключа и имени столбца.

Правило 3: Систематическая поддержка отсутствующих значений (Systematic Treatment of Null Values):

Неизвестные, или отсутствующие значения NULL, отличные от любого известного значения, должны поддерживаться для всех типов данных при выполнении любых операций. Например, для числовых данных неизвестные значения не должны рассматриваться как нули, а для символьных данных - как пустые строки.

Правило 4: Доступ к словарю данных в терминах реляционной модели (Active On-Line Catalog Based on the Relational Model):

Словарь данных должен сохраняться в форме реляционных таблиц, и СУБД должна поддерживать доступ к нему при помощи стандартных языковых средств, тех же самых, которые используются для работы с реляционными таблицами, содержащими пользовательские данные.

Правило 5: Полнота подмножества языка (Comprehensive Data Sublanguage Rule):

Система управления реляционными базами данных должна поддерживать хотя бы один реляционный язык, который (а) имеет линейный синтаксис, (б) может использоваться как интерактивно, так и в прикладных программах, (в) поддерживает операции определения данных, определения представлений, манипулирования данными (интерактивные и программные), ограничители целостности, управления доступом и операции управления транзакциями (begin, commit и rollback).

Правило 6: Возможность изменения представлений (View Updating Rule):

Каждое представление должно поддерживать все операции манипулирования данными, которые поддерживают реляционные таблицы: операции выборки, вставки, изменения и удаления данных.

Правило 7: Наличие высокоуровневых операций управления данными (High-Level Insert, Update, and Delete):

Операции вставки, изменения и удаления данных должны поддерживаться не только по отношению к одной строке реляционной таблицы, но и по отношению к любому множеству строк.

Правило 8: Физическая независимость данных (Physical Data Independence):

Приложения не должны зависеть от используемых способов хранения данных на носителях, от аппаратного обеспечения компьютеров, на которых находится реляционная база данных.

Правило 9: Логическая независимость данных (Logical Data Independence):

Представление данных в приложении не должно зависеть от структуры реляционных таблиц. Если в процессе нормализации одна реляционная таблица разделяется на две, представление должно обеспечить объединение этих данных, чтобы изменение структуры реляционных таблиц не сказывалось на работе приложений.

Правило 10: Независимость контроля целостности (Integrity Independence):

Вся информация, необходимая для поддержания целостности, должна находиться в словаре данных. Язык для работы с данными должен выполнять проверку входных данных и автоматически поддерживать целостность данных.

Правило 11: Независимость от расположения (Distribution Independence):

База данных может быть распределённой, может находиться на нескольких компьютерах, и это не должно оказывать влияния на приложения. Перенос базы данных на другой компьютер не должен оказывать влияния на приложения.

Правило 12: Согласование языковых уровней (The Nonsubversion Rule):

Если используется низкоуровневый язык доступа к данным, он не должен игнорировать правила безопасности и правила целостности, которые поддерживаются языком более высокого уровня.

Сущность реляционной базы данных

Реляционная база данных представляет собой набор таблиц (сущностей). Таблицы состоят из колонок и строк (кортежей). Внутри таблиц могут быть определены ограничения, между таблицами существуют отношения. При помощи SQL можно выполнять запросы, которые возвращают наборы данных, получаемых из одной или нескольких таблиц. В рамках одного запроса данные получаются из нескольких таблиц путем их соединения (JOIN), чаще всего для соединения используются те же колонки, которые определяют отношения между таблицами.

Нормализация - это процесс структурирования модели данных, обеспечивающий связность и отсутствие избыточности в данных. Целью нормализации реляционной базы данных является устранение недостатков структуры базы данных, приводящих к избыточности, которая, в свою очередь, потенциально приводит к различным аномалиям и нарушениям целостности данных.Теоретики реляционных баз данных в процессе развития теории выявили и описали типичные примеры избыточности и способы их устранения. Реляционные хранилища обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости. Касаемо масштабируемости, реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере.

Особенностью реляционной базы данных является использование в ней реляционной модели данных и вытекающие из этого последствия:

  • Модель данных в реляционных БД определена заранее. Является строго типизированной, содержит ограничения и отношения для обеспечения целостности данных.
  • Модель данных основана на естественном представлении содержащихся данных, а не на функциональности приложения.
  • Модель данных подвергается нормализации, чтобы избежать дублирования данных. Нормализация порождает отношения между таблицами. Отношения связывают данные разных таблиц.

В реляционной базе данных данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL). SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц.Такие запросы могут включать агрегации и сложные фильтры. Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции.

Реляционная система управления базой данных (РСУБД) - СУБД, управляющая реляционными базами данных.

Доступ к реляционным базам данных осуществляется через реляционные системы управления базами данных (РСУБД). Почти все системы баз данных, которые мы используем, являются реляционными, такие как Oracle, SQL Server, MySQL, Sybase, DB2, TeraData и так далее. Причины такого доминирования неочевидны. На протяжении всего существования реляционных БД они постоянно предлагали наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости в сфере управлении данными.

Например, простой SELECT запрос может иметь сотни потенциальных путей выполнения, которые оптимизатор оценит непосредственно во время выполнения запроса. Все это скрыто от пользователей, однако внутри РСУБД создает план выполнения, основывающийся на вещах вроде алгоритмов оценки стоимости и наилучшим образом отвечающий запросу. Однако чтобы обеспечить все эти особенности, реляционные хранилища невероятно сложны внутри.

Реляционная система управления базой данных содержит:

  • командный язык;
  • язык программирования с ориентацией на обработку таблиц;
  • интерпретирующую и/или компилирующую систему; и
  • пользовательскую оболочку.

Уровень 1: Уровень внешних моделей – это самый верхний уровень где каждая модель имеет свое видение данных. Этот уровень определяет точку зрения базы данных отдельных приложений.

Концептуальный уровень: Центральное управляющее звено, где здесь БД представлена в наиболее общем виде, который объединяет данные используемые всеми приложениями. Фактически концептуальный уровень отражает обобщённую модель предметной область.

Физический уровень (База данных): Это сами данные расположенные в файлах или в страничных структурах, расположенных навнешних носителях информации.


Модели данных

Выделяют следующие модели данных:

1. Инфологические

2. Дата логические

3. Физические

Процесс проектирования баз данных начинается с проектирования инфологической модели. Инфологическая модель данных это обобщённое неформальное описание создаваемой БД, выполненное с использованием естественного языка, математических формул, таблиц, графиков и др. средств понятных всем людям работающим над проектированием БД.

Кортеж доменов

Инфологическая модель отображает реальный мир в некоторой понятной человеку концепции, полностью независимой от среды хранения данных. Поэтому Инфологическая модель не должна изменяться до тех пор, пока какие то изменения в реальном мире не потребуют изменения вне определения, чтобы эта модель продолжала отображать предметную область.

Существует множество подходов к построению этой модели: графовые модели, семантические сети, сущность – связь и другие.

Даталогическая модель

Инфологическая модель должна быть отображена в даталогической модели, понятной СУБД. Даталогическая модель это формальное описание инфологической модели на языке СУБД.

Иерархическая модель

Эта модель представляет собой совокупность связанных элементов, образующих иерархическую структуру. К основным понятиям иерархии относятся уровень, узел и связь.

связь уровень


Узлом называется совокупность атрибутов данных описывающих некоторый объект. Каждый узел связан с одним узлом более высокого уровня и с любым количеством узлов нижнего уровня. Исключением является узел самого высокого уровня. Количество деревьев в базе данных определяется количеством корней деревьев. К каждой записи базы данных существует единственный путь от корневой записи. Простым примером может служить система доменных имен в интернете\ адрес. На первом уровне (корень дерева) лежит наша планета земля, на втором Страна, на третьем- Регион, на четвёртом – населённый пункт, улица, дом,квартира. Типичным представителем является СУБД от IBM - IMS.

Все экземпляры данного типа потомка с общим экземпляром типа предка называется близнецами. Для базы данных определён полный порядок обхода. Сверху вниз и с права на лево.

Физическая модель

На основе даталогической модели строится физическая модель. Физическая организация данных оказывает основное влияние на эксплуатационные характеристики базы данных. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий, для под настройки модели для конкретной БД.

Пример: В частности для реляционной БД она уже учитывает:

1. Физические аспекты хранения таблиц в определённых файлах.

2. Создание индексов оптимизирующих скорости операций над данными с помощью приложения.

3. Выполнения различных действий над данными при определённых событиях, определяемых пользователям с помощь триггеров и хранимых процедур.

Инфологические модели Х

Физические модели


Для всех уровней и для любого метода представления предметной области, лежит кодирование понятий отношений между понятиями. Ключевым этапом при разработке любой информационной системы является проведение системного анализа:

Формализация предметной области и представление системы как совокупности компонентов.

Композиция как основа системного анализа может быть функциональной (построение иерархия).

Однако в большинстве систем, если говорить о базах данных, типы данных являются более статичным элементом чем способы их обработки. Поэтому получили интенсивное развитие такие методы системного анализа как диаграмма потоков data flown diagram. Развитие реляционных БД. Стимулировала развитие построения методик развития данных в частности ER диаграмм ER. Реляционная модель данных в качестве отображения непосредственно использует понятие отношения. Она ближе всего находится к концептуальной модели представления данных. И часто лежит в основе её.

В отличие от теоретика графовых моделей, в реляционной модели связи между отношениями реализуются не явным способом для чего используют ключи отношений. Например, отношения иерархического типа реализуется механизмом первичных и внешних ключей, когда в подчинённом отношении должен присутствовать факт атрибутов.

Такой атрибут отношений в основном отношений будет называться первичным ключом, а в подчинённом вторичным.

Прогресс в области разработки языков программирования связанных в первую очередь с типизацией данных и появлением объектно-ориентированных языков позволило подойти к анализу сложных систем с точки зрения иерархических представлений то есть с помощью классов объектов со свойствами полиморфизма, наследование, инкапсуляция.

ОТНОШЕНИЕ ЭТО ТАБЛИЦА.

Редактирование таблиц, записей…

Удаление то что создали и

Редактирование.


Реляционная модель базы данных

Реляционные модели данных в настоящее время приобрели наибольшую популярность именно за такое представление данных.

Реляционную модель можно представить как особый метод представления данных, содержащий собственные данные (в виде таблиц), и способы работы и манипуляции с ними (в виде связей). Реляционная модель предполагает три концептуальных элемента: Структура, Целостность и Обработка данных. В этих элементах есть свои обязательные понятия которые для дальнейшего изложения необходимо пояснить.

Таблица рассматривается как непосредственное хранилище данных. Традиционно в реляционных системах таблицу называют отношением. Строку таблицы называют кортежем , а столбец атрибутом . При этом атрибуты имеют уникальные имена (в пределах отношения).

Количество кортежей в таблице называют кардинальным числом . Количество атрибутов степенью. Для отношения устанавливают уникальный идентификатор, то есть один или несколько атрибутов, значения которых в одно и то же время не бывают одинаковыми – идентификатор называют первичным ключом.Домен это множество допустимых однородных значений для того или иного атрибута. Таким образом домен можно рассмотреть как именованное множество данных причём составные части этого множества являются логически не делимыми единицами (в качестве домена могут выступать например перечень фамилий сотрудников учреждения однако не все фамилии могут присутствовать в таблице).

SUMM Киреева 25.50 Мотылёва 17.05 … …. …

Отношение

атрибуты

Поля KOD, NAME, SUMM это атрибуты таблицы содержащиеся в заголовке.

Пары KOD 5216, NAME Киреева, SUMM 25.50 являются элементами тела отношения.

В Реляционных базах данных в отличие от других моделей пользователь указывает какие данные для него необходимы а не то как это делать. По этой причине процесс перемещения и навигации по базе данных в реляционных системах является автоматическим, а эту задачу в СУБД выполняет оптимизатор. Его работа заключается в том чтобы наиболее эффективным способом произвести выборку данных из базы данных по запросу. Таким образом, оптимизатор по крайней мере должен суметь определить из каких таблиц выбираются данные насколько много информации в этих таблицах и каков физический порядок записи в таблицах и как они сгруппированы.

Кроме того реляционная БД выполняет и функции каталога. В каталоге хранится описание всех объектов из которых состоит база данных: таблиц, индексов, триггеров и т.п. Очевидно, что жизненно необходимо для правильной работы всей системы, такой компонент как оптимизатор. Оптимизатор использует информацию хранящуюся в каталоге. Интересен тот факт что каталог сам является набором таблиц, поэтому СУБД может манипулировать им традиционными способами, не прибегая к каким либо особым приёмам и методам.

Домены и отношения

Основные определения: Домены, виды отношений, предикаты.

Отношения имеет ряд основных свойств:

1. В самом общем случае в отношениях не бывает общих кортежей – это следует из самого определения отношений. Однако для некоторых СУБД в ряде случаев допускается отступление от этого свойства. По сколько в отношений имеет место первичный ключ, одинаковые кортежи – исключены.

2. Кортежи не упорядочены сверху вниз – в отношении просто отсутствует понятие позиционного номера. В отношений без потери информации можно с успехом расположить кортежи в любом порядке.

3. Атрибуты не упорядочены слева на право. Атрибуты в заголовке отношений можно располагаетесь в любом порядке, при этом целостность данных не нарушается. Поэтому понятие позиционного номера в отношении атрибута тоже не существует.

4. Значение атрибутов состоят из логически не делимых единиц – это следует из того, что значения берутся из доменов иначе можно сказать, что отношения не содержат групп повторений. То есть являются нормализованными.

В реляционных системах поддерживается несколько видов отношений:

1. Именованные представляют собой переменные отношения определяемые в СУБД путём операторов создания и как правило необходимые для более удобного представления информации для пользователя.

2. Базовые отношения являются непосредственно важной частью БД, поэтому при проектировании им дают собственное название.

3. Производное отношение это то которое было определено через другие, как правило базовые, отношения путём использования средств СУБД.

4. Представление это фактически является именованным производным отношением, при этом представление выражается исключительно через операторы СУБД, применённые к именованным отношениям, поэтому их физически в БД не существует.

5. Результат запросов это не именованное производное отношение содержащее данные(результат конкретного запроса). Результат в БД не хранится а существует до тех пор пока он необходим пользователю.

6. Хранимое отношение это то которое физически поддерживаются в памяти отношений, к хранимым отношениям чаше всего относятся база отношений. Исходя из вышесказанного, можно определить реляционную базу данных как набор отношений, связанных между собой.


Связь в данном случае это ассоциирование двух или более отношений.

KOD ADRES
1 1 Связь один ко многим состоит в том что в каждый момент времени каждому элементу (кортежу А) соответствует несколько элементов кортежей Б
∞ Бинарная связь
Студенты
Преподы
Расписание занятий

Студенты

Тернарные связи


Целостность данных

В реляционных моделях вопросу целостности данных отводят особое место. Напомним, что ключ или потенциальный ключ это минимальный набор атрибутов, по значениям которых можно однозначно найти требуемый кортеж, минимальность означает что исключение из набора любого атрибута не позволяет идентифицировать кортеж по оставшимся атрибутам.

Каждое отношение обладает хотя бы одним возможным ключом. Один из них принимается за первичный ключ.

При выборе первичного ключа следует отдавать предпочтение не составным ключам или ключам, составленных из минимального набора атрибутов. Нежелательно также использовать ключи с длинными текстовыми значениями (Предпочтительней использовать в качестве ключей целочисленные атрибуты) . Так для идентификации работника можно использовать либо уникальный табельный номер, или номер паспорта, либо набор из фамилий имени отчества и номера отдела. Не допускается что бы первичный ключ отношения, то есть любой атрибут участвующий в первичном ключе принимал неопределённые значения. В этом случае возникнет противоречивая ситуация (коллизия ): Появится не обладающий уникальностью элемент первичного ключа. Поэтому при проектировании базы данных за этим следует тщательно следить.

О внешних ключах. Стоит отметить ввиду что отношение С связывает отношения B и А, то оно должно включать внешние ключи, соответствующий первичным ключам отношениям А и В.

Внешний ключ таблицы формируется с помощью нескольких первичных ключей других таблиц.

Таким образом при рассмотрении проблемы выбора способа связи отношения в базе данных возникает вопрос о том каковы же должны быть внешние ключи. При этом для каждого внешнего ключа необходимо решить проблему связанную с возможностью (или невозможностью) появления во внешних ключах неопределённых значений(NULL – значений- значение атрибута для отсутствующей информации). Другими словами может ли существовать некоторый кортеж в отношений, для которого не известен кортеж в связанных с ним отношении?

С другой стороны необходимо заранее обдумать вопрос о том что произойдёт при удаления кортежей из отношения на который ссылается внешний ключ. При этом существуют следующие вероятные возможности:

· Операция каскадируется – то есть удаление кортежей в отношениях приводит к удалению кортежей связанных отношением. Например удаление информации о фамилии имени и т.п. сотрудника в одном отношении приводит к удалению о его заработной плате в другом отношении;

· Операция ограничивается - то есть удаляются лишь те кортежи для которых связанной информации в другом отношении нет. Не вся информация удаляется (не во всех отношениях) так как она может быть использована в другом отношении, удаление информации в котором ведёт к нарушению целостности данных. Если такова информация имеется то удаление осуществить нельзя, например, удаление информации о имени, фамилии и т.п. сотрудника возможно лишь в том случае если информация в связанном отношении о его заработной плате отсутствует.

Нужно предусмотреть технологию того что будет происходить при попытке обновления первичного ключа отношения, на которые ссылается некоторый внешний ключ. Здесь имеются те же возможности как и при удалении:

· Операция каскадируется то есть при обновлении первичного ключа происходит обновление внешнего ключа в связанном отношении. Например обновление первичного ключа в отношении, где хранится информация о сотруднике приводит к обновлению внешнего ключа в отношении с информацией о заработной плате.

· Операция ограничивается то есть обновляются лишь те первичные ключи для которых связанной информации в другом отношении нет. Если таковая информация имеется то обновление сделать нельзя. Например обновление первичного ключа в отношении, где хранится информация о сотруднике, возможна лишь в том случае, если информация о его заработной плате в связанном отношении отсутсвует.1


Реляционная алгебра

Формальной основой базы реляционной модели БД является реляционная алгебра, основанное на теории множеств и рассматривающая специальный оператор над отношениями, и реляционное исчисление базирующиеся на математической логике.

Произведение

А А А Б В В Г Г Д
Г Д
А
А Б В Г Г Д Ж Ж З

Надо отметить что реляционная алгебра обладает большой мощностью - сложные запросы к базе данных могут быть выражены с помощью одного выражения. Именно по этой причине эти механизмы включены в реляционную модель данных. Любой запрос выражаемый с помощью одного выражения реляционной алгебры, или одной формулой реляционного исчисления, может быть выражен с помощью одного оператора этого языка.

Реляционная алгебра обладает важным свойством - она замкнута относительно понятия отношения. Это означает что выражение реляционной алгебры выполняется над отношениями реляционных баз данных и результаты их вычисления также представляют собой отношения.

Основная идея реляционной алгебры состоит в том что средства манипулирования отношениями, рассматриваемыми как множество основаны на традиционных множественных операциях дополненных некоторыми специфическими операциями для БД.

Опишем вариант алгебры который был предложен КОДДОМ. Операция состоит из 8 основных операторов:

· Выборка отношения (унарная операция)

· Проекция отношения (унарная операция)

· Объединения отношений

· Пересечение отношений(бинарная операция)

· Вычитание отношений

· Произведение отношений

· Соединение отношений

· Деление отношений

Эти операции можно объяснить следующим образом:

· Результатом выборки отношения по некоторому условию является отношение который включает только те кортежи первоначального отношения которые удовлетворяют этому условию.

· При осуществлении проекции отношения на заданный набор его атрибутов будет получено отношение кортежи которого взяты из соответствующих кортежей первого отношения.

· При выполнении операции объединения двух отношений будет получено отношение включающее все кортежи входящие в хотя бы одно из участвующих в операции отношений.

· При выполнении операции пересечения двух отношений будет получено отношение включающее все кортежи входящие в оба первоначальных отношения.

· При выполнении операции вычитания двух отношений будет получено отношение включающее все кортежи входящие в первое отношение, кроме тех которые также входят и во второе отношение.

· При выполнении прямого произведения двух отношений получается отношение кортежи которого являются сочетанием кортежей первого и второго отношения.

· При соединении двух отношений по некоторому условию образуется результирующее отношение кортежей которого является сочетанием кортежей первого и второго отношений, удовлетворяющим этому условию.

· Операция реляционного деления имеет два операнда – бинарная то есть (состоящее из двух атрибутов) и унарная (состоящая из одного атрибута) отношения. Результат операции является отношение состоящее из кортежей включающие отношение первого атрибута кортежей первого отношения, причем таких что множество значений второго атрибута совпадает со множеством значений второго отношения.

Помимо выше перечисленных есть ряд особых операций характерных для работы с базами данных:

· В результате операции переименования получается отношение набор кортежей, которого совпадает с телом первоначального отношения, но имена атрибутов изменены.

Отсюда следует что результатом реляционной операции является некоторое отношение то имеется возможность образовывать реляционные выражения в которых вместо первоначального отношения (операнда), будет использоваться вложенное реляционное выражение. Это происходит благодаря тому факту что операция реляционной алгебры действительно замкнуты относительно понятия отношения. Начнём с операции объединения отношений , однако это в равной мере относится и к операциям пересечения и сочетания, то есть в реляционной алгебры результатом операции объединения является отношение. Если допустить в реляционной алгебре возможность объединения произвольных двух отношений с разными наборами атрибутов, то результатом такой операции будет множество, однако множество разнотипных кортежей, то есть вообще говоря не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения то такая операция объединения является бессмысленной. Это приводит к появлению понятия совместимости отношений по объединению : два отношения совместимы только в том случае, когда обладают одинаковыми заголовками, то есть имеет тот же набор имён атрибутов, и одноимённые атрибуты определены в том же домене.

При условии что два отношения совместимы по объединению, при обычном выполнении над ними операции объединения пересечения вычитания результатом операции является отношение с корректно определённым заголовком совпадающим с заголовком каждого из отношений – операндов. Если же два отношения не полностью совместимы по объединению, то есть совместимы во всем кроме имён атрибутов, то до выполнения операции типа соединения, эти отношения можно сделать полностью совместимыми по объединению путём применения операции переименования.

Операция прямого произведения двух отношений вызывает новые проблемы. В Теории множеств прямое произведение может быть получено для любых множеств. Элементы результирующего множества будут являться пары, составленные из элементов первого и второго множества. Поскольку отношения являются множествами то для любых двух отношений возможно получение прямого произведения. Однако результат не будет отношением. Элементами результата будут являться не кортежи, а пары кортежей. Поэтому в реляционной алгебре используется специальная форма операции взятия прямого произведения - расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, формирующийся при слиянии одного кортежа первого отношения, и одного кортежа второго отношения. Тут же возникает вторая проблема, связанная с получением корректно сформированного заголовка результирующего отношения, это приводит к необходимости ввода понятия совместимости отношений, по взятию расширенного прямого произведения.

Два отношения совместимы по взятию прямого произведения только в том случае, если множество имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть преобразованы к совместимому виду по взятию прямого произведения путём применения операции переименования к одному из этих отношений.

Операция выборки требует наличия двух отношений: первоначального отношения – операнда, и простого условия ограничения. В результате выполнения операции выборки производится отношение заголовок которого совпадает с заголовком отношения операнда, а в тело входят те кортежи отношения операнда, которые удовлетворяют значениям условия ограничения.

Введём ряд операторов.

Пусть union означает операцию объединения, intersect – операция пересечение, minus – операция вычитания. Для обозначения операции выборки будем использовать конструкцию A where B , где А – отношение операнд, а В простое условие сравнения. Пусть С1 и С2 два простых условия выборки

A where C1 AND C2 идентично (A where C1) intersect (A where C2)

A where C1 OR C2 идентично (A where C1) union (A where C2)

A where C1 not C2 идентично (A where C1) minus (A where C2)

С использованием этих определений можно реализовать операции выборки, в которых условием выборки является произвольное логическое выражение составленное из простых условий с использованием логических связей (and, or, not) . Операция взятия проекций отношение А оп списку атрибутов а1, а2,…,an будет отношение заголовком которого является множество атрибутов, а1,а2,…,an. Тело результата будет состоять из кортежей для которых в отношении А имеется кортеж, атрибут а1 имеет значение b1, атрибут а2 значение b2< и так далее атрибут an – bn. По сути при выполнении операции проекции определяется «Вертикальная» вырезка отношения - операнда с удалением возникающих кортежей –дубликатов.

Операция соединения, называемая иногда соединением по условию требует наличия двух операндов – соединяемых отношений, и третьего операнда – простое условие. Пусть соединяется отношение А и В. Как и в случае операции выборки, условие соединения С имеет вид, (а comp –op b) либо (а comp –op const) где А и В имена атрибутов отношений А и В, const- литерально заданная константа. Comp-op – допустимая в данном контексте операция сравнения. Тогда по определению результатом операции соединения является отношение, получаемое путём, выполнения операции ограничения, по условию С прямого произведения отношения А и В.

Имеется важный частный случай соединения, естественное соединение. Операция соединения называется операцией естественного соединения, если условия соединения имеет вид (а=в) где а и в атрибуты разных операндов соединения. Этот случай важен потому что он особо часто встречается на практике и для него существуют эффективные алгоритмы реализации в СУБД. Операция естественного соединения применяется к паре отношений А и В, обладающих общим атрибутом Р, то есть атрибутом с одним и тем же именем и определённым на одном и том же домене. Пусть ав обозначает объединение заголовков отношений А и В. Тогда естественное соединение это спроецированный на ав результат соединения А и В. Операции естественного соединения не включается прямо в состав набора операций реляционной алгебры, но она имеет очень важное практическое значение.

Операция деления отношений нуждается в более подробном объяснении поскольку трудна для понимания. Пусть заданы два отношение А {a1,a2,..,an,b1,b2,…,bm}

B {b1,b2,…,bn} Будем полагать что атрибут b1 отношения A и атрибут b1 отношения B определены на одном и том же домене. Назавём множество атрибутов {aj} составным атрибутом а, множество {bj} cсоставным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения А (а,b) на унарное отношение B (b).

Результатом деления А на В является унарное отношение С (а), состоящее из таких кортежей v что в отношении А имеются кортежи которые во множестве значений {w} включают множество значений b в отношении B.

Поскольку деление наиболее трудная операция поясним её примером. Пусть в БД студентов имеется два отношения: СТУДЕНТЫ (ФИО, НОМЕР) и ИМЕНА (ФИО), причем унарное отношение ИМЕНА содержит все фамилии которыми обладают студенты института. Тогда после выполнения операции реляционного деления отношения СТУДЕНТЫ на отношения ИМЕНА, будет получено унарное отношение содержащее номера студенческих билетов принадлежащих студентам со всеми возможными в этом институте фамилиями.


Реляционное счисление

Допустим имеется база данных обладающая структурой СТУДЕНТЫ (номер, имя, стипендия, код группы), и отношение ГРУППЫ(гр_ном, гр_кол, гр стар) Предположим что необходимо узнать имена и номера студ. билетов у студентов являющимися старостами групп с количеством человек больше 25. В реляционной алгебре нужно предпринять следующие действия для такого запроса:

1. Выполнить соединение отношений СТУДЕНТЫ и ГРУППЫ, по условию «студ_ номер =гр_стар»;

2. Ограничить полученное отношение по условию гр_кол>25.

3. Cпроецировать результат предыдущей операции на атрибут студ_имя, студ_номер.

Здесь пошагово сформулирована последовательность выполнения запроса в базе данных, каждый из которых соответствует одной реляционной операции. если же сформулировать тот же запрос с использование реляционного исчисления То мы получили бы формулу которую можно прочитать: Выдать СТУД_ИМЯ и СТУД_НОМЕР для таких студентов чтобы сосуществовала такая группа ГР_СТАР и значением ГР_КОЛ>25. Во второй формулировке мы указали лишь характеристики результирующего отношения но ничего не сказали о способе его формирования. В этом случае СУБД должна сама решить что за операции и в каком порядке нужно выполнить над отношениями СТУДЕНТЫ и ГРУППЫ. Оба рассмотренных в примере способа на самом деле эквиваленты и существует не очень сложные преобразования из одного в другой.

Базисными понятиями реляционного счисления являются понятия переменной с определённой область её значения, и понятия правильно построенной формулы, опирающиеся на переменные и спец. Функции. Что является областью определения переменной различаются исчисление кортежей, и исчисления доменов то есть вдоль или поперёк. В исчислении кортежей областями определения переменных является отношение баз данных, то есть допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены на которых определены атрибуты отношений баз данных то есть допустимым значением каждой переменной является значение каждой переменной.

Byte Integer String Char
M
N
K

Для определения кортежи используется команда RANGE. Например чтобы определить переменную СТУДЕНТ областью определения которой является СТУДЕНТЫ нужно употребить конструкцию RANGE СТУДЕНТ IS СТУДЕНТЫ. Из этого определения следует что в любой момент времени переменная студент представляет некоторый кортеж отношения СТУДЕНТЫ. При использовании кортежных переменных в формулах можно ссылать на значения атрибута переменных. Например для того чтобы сослаться на значение атрибута СТУД_ИМЯ переменной СТУДЕНТ нужно употребить конструкцию СТУДЕНТ.СТУД_ИМЯ.

Правильно построенные формулы служат для выражения условий, накладываемых на кортежные переменные. В основе таких формул лежат простые сравнения, представляющие собой, операции сравнения значений атрибутов переменных и литерально заданных констант. Например конструкция СТУДЕНТ.СТУД_НОМ=123456. Является простым сравнением. Более сложным вариантом составных формул является с помощью логических связей AND, OR, NOT, IF…THEN. Наконец допускается построение правильно построенных формул с помощью кванторов. Если F это правильно построенная формула в которой участвует переменная var то конструкция EXIST (квантор существования) var (F) и FORALL(для всех кортежей) var (F) являются правильными.

Переменные, входящие в правильно построенные формулы могут быть свободными или связанными. Все переменные входящие в их состав при построение которых не использовались кванторы являются свободными. Это означает что если для какого то набора значений свободных кортежных переменных при вычислении формул получено значение «истина», то эти значения могут входить в результирующие отношение. Если же при построении формул используется квантор то переменные являются связанными. При вычислении значения такой правильно построенной формулы используется ни одно значение связанной переменной а вся её область определения.

1)EXISTS СТУД2 (CТУД.1СТУД_СТИП> СТУД2.СТУД_СТИП)

2)FORALL СТУД2 (CТУД.1СТУД_СТИП> СТУД2.СТУД_СТИП)

Пусть СТУД1 и СТУД2 две кортежные переменные определённые на отношение студенты, тогда формула, для текущего кортежа переменной СТУД1 принимает значение истина только в том случае если во всём отношении студенты найдётся такой кортеж связанный с переменной СТУД2 что значение его атрибута СТУД_СТИП удовлетворяет внутреннему условию сравнения. Правильно построенная формула №2 для построенного кортежа СТУД 1 принимает значение истина если для всех кортежей отношение СТУДЕНТЫ связанных с переменной СТУД 2 значение атрибута СТУД.СТИП удовлетворяет внутреннему условию.

Таким образом правильно построенные формулы обеспечивают средства выражения условия выборки из отношения баз данных. Чтобы можно было использовать реляционное исчисление для реальной работы с БД, требуется ещё один компонент который определяет набор и имена столбцов результирующего отношения. Этот компонент называется целевым списком.

Целевой список имеет вид:

· Var.attr –имя свободной переменной, атр имя атрибута отношения на котором определена переменная var.

· Var что эквивалентно отношению от списка, Var.attr1, Var.attr1… Var.attr№ включает имена всех атрибутов определяющего отношения.

· New_name = var.attr; новое имя соответствующего атрибута результирующего отношения.

Последний вариант требуется в тех случаях кода в формуле используется несколько свободных переменных с одинаковой областью определения. В исчислении доменов областью определения доменов являются не отношения а домены. Применительно к бд СТУДЕНТЫ ГРУППЫ можно говорить о доменных переменных ИМЯ (Значения домена – допустимые имена или НОМ СТУД). (Значения домена допустимые номера студентов).

Основным отличием исчисления доменов от исчисления кортежей является наличие дополнительного набора предикатов, позволяющих выражать так называемые условия членства. Если R это n- арное отношение с атрибутами (a1, a2, … an) то условие членства имеет вид R(ai1:Vi1,ai2:Vi2,…aim:Vim) где (m<=n). Где в Vij это либо литерально заданная константа либо имя кортежной переменной. Условие членства принимает значение истина, только в том случае если в отношении R существует кортеж, содержащий следующие значения указанных атрибутов. Если от Vij константа то на атрибут aij накладывается жёсткое условие независящее от текущих доменных переменных. Если же Vij имя доменной переменной то условие членства может принимать различные значения при разных значениях этой переменной.

Предикатом называют логическую функцию, которая для некоторого аргумента возвращает значение истина или ложь. Отношение может быть рассмотрено как предикат с аргументами, являющимися атрибутами рассматриваемого отношения. Если заданный конкретный набор кортежей присутствует в отношении, то предикат выдаст истинный результат в противном случае – ложный.

Вов всех остальных отношениях формулы и выражения исчисление доменов выглядит похожими на формулы и выражения исчисления кортежей. Реляционное счисление доменов положено в основу большинства языковых запросов, основанных на использовании форм.


Похожая информация.


2. Принципы реляционной модели

Принципы реляционной модели баз данных, отношение (relation), таблица (table), набор результатов (result set), кортеж, мощность, атрибут, размерность, заголовок, тело, домен

Реляционная модель была разработана в конце 1960-х годов Е.Ф.Коддом (сотрудник IBM) и опубликованы в 1970 г. Она определяет способ представления данных (структуру данных), методы защиты данных (целостность данных), и операции, которые можно выполнять с данными (манипулирование данными).

Реляционная модель - не единственная, которую можно использовать при работе с данными. Существуют также иерархическая модель, сетевая модель, звездообразная модель и т.п. Однако реляционная модель оказалась наиболее удобной и поэтому используется сейчас наиболее широко.

Основные принципы реляционных баз данных можно сформулировать так:

· все данные на концептуальном уровне представляются в виде упорядоченной организации, определенной в виде строк и столбцов и называемой отношением (relation). Более распространенный синоним слова "отношение" - таблица (или "набор записей", или набор результатов - result set. Именно от этого и происходит термин "реляционные базы данных", а вовсе не от отношений между таблицами;

· все значения являются скалярами. Это значит, что для любой строки и столбца любого отношения существует одно и только одно значение;

· все операции выполняются над целым отношением и результатом этих операций также является целое отношение. Этот принцип называется замыканием. Поэтому результаты одной операции (например, запроса), можно использовать в качестве исходных данных для выполнения другой операции (подзапроса).

Теперь - про формальную терминологию:

· отношение (relation ) - это вся структура целиком, набор записей (в обычном понимании - таблица).

· кортеж - это каждая строка, содержащая данные. Более распространенный, но менее формальный термин - запись.

· мощность - число кортежей в отношении (проще говоря, число записей);

· атрибут - это столбец в отношении;

· размерность - это число атрибутов в отношении (в данном случае - 3);

· каждое отношение можно разделить на две части - заголовок и тело . На простом языке заголовок отношения - это список столбцов, а тело - это сами записи (кортежи).

· в нашем примере название каждого столбца (атрибута) состоит из двух слов, разделенных двоеточием. Согласно формальным определениям, первая часть - это имя атрибута (название столбца), а вторая часть - это домен (вид данных, которые представляет данных столбец). Понятия "домен" и "тип данных" не эквиваленты друг другу. На практике домен обычно опускается.

· тело отношения состоит из неупорядоченного набора кортежей (его число может быть любым - от 0 до бесконечно большого).



Рекомендуем почитать

Наверх