Сетевая архитектура звезда рисунок соединение по сетке. Топологии сетей

Электроника 15.06.2019
Электроника

Термин «топология» имеет достаточно много значений, одно из которых применяется в компьютерном мире для описания сетей. Что такое топология далее и будет рассмотрено. Но, несколько забегая вперед, в самом простом случае это понятие можно рассматривать как описание конфигурации (расположения) компьютеров, подключенных к сети. Иными словами, все сводится к пониманию даже не самих соединений, а геометрических фигур, которые соответствуют каждому типу расположения терминалов.

Что понимается под топологией локальной сети?

Как уже понятно, компьютеры, объединяемые в единые сети, подключаются к ним не хаотично, а в строго определенном порядке. Для описания этой схемы и было введено понимание топологии.

По сути, что такое топология? Карта, схема, диаграмма, карта. Описательный процесс, как уже понятно, в чем-то сродни элементарным знаниям по геометрии. Однако только чисто с геометрической точки зрения этот термин рассматривать нельзя. Поскольку речь идет не только о подключениях, а еще и о передаче информации, в связи с этим следует учитывать и этот фактор.

Основные виды сетей и их топологий

Вообще, единого понятия компьютерной топологии не существует. Принято считать, что может быть несколько видов топологий, в совокупности описывающих ту или иную организацию сети. Собственно, и сети могут быть совершенно разными.

Например, самой простой формой организации соединения нескольких компьютерных терминалов в единое целое можно назвать локальную сеть. Существуют еще промежуточные типы сетей (городские, региональные и т. д.).

Наконец, самыми большим являются глобальные сети, которые затрагивают большие географические регионы и включают в себя все остальные типы сетей, а также компьютеры и телекоммуникационное оборудование.

Но что понимается под топологией локальной сети, как одной из самых простых форм организации соединения нескольких компьютеров между собой, в данном случае?

По признаку описываемых процессов и структур их разделяют на несколько типов:

  • физическая - описание реально существующей структуры расположения компьютеров и узлов сети с учетом связей между ними;
  • логическая - описание прохождения сигнала по сети;
  • информационная - описание движения, направления и перенаправления данных внутри сети;
  • управление обменом - описание принципа использования или передачи прав на пользование сетью.

Топология сети: типы

Теперь несколько слов об общепринятой классификации типов топологий по связям. В контексте того, что такое топология, отдельно стоит отметить еще один тип классификации, описывающий исключительно способ подключения компьютера к сети или принципа его взаимодействия с другими терминалами или основными узлами. В этом случае актуальными становятся понятия полносвязанной и неполносвязанной топологий.

Полносвязанная структура (и это признано во всем мире) является чрезвычайно громоздкой по причине того, что каждый единичный терминал, входящий в единую сетевую структуру, связан со всеми остальными. Неудобство в данном случае заключается в том, что для каждого компьютера необходимо устанавливать дополнительное оборудование связи, а сам терминал должен быть оснащен достаточно большим количеством коммуникационных портов. И как правило, такие структуры если и применяются, то крайне редко.

Неполносвязанная топология в этом плане выглядит намного предпочтительнее, поскольку каждый отдельно взятый терминал не соединяется со всеми остальными компьютерами, а получает или передает информацию через определенные сетевые узлы или обращается напрямую к центральному концентратору или хабу. Яркий тому пример - топология сети «звезда».

Поскольку речь зашла об основных методах объединения терминалов в единое целое (сеть), следует остановиться на основных топологиях всех основных типов, среди которых главными являются «шина», «звезда» и «кольцо», хотя существуют и некоторые смешанные типы.

Топология сети «шина» (bus)

Данный тип объединения терминалов в сеть является достаточно популярным, хотя и имеет весьма серьезные недостатки.

Рассмотреть, что собой представляет топология «шина», можно на простом примере. Представьте себе кабель с несколькими ответвлениями по обе стороны. На конце каждого такого ответвления находится компьютерный терминал. Между собой они напрямую не связаны, а информацию получают и передают через единую магистраль, на обоих концах которой установлены специальные терминаторы, препятствующие отражению сигнала. Это стандартная линейная топология сети.

Преимущество такого соединения состоит в том, что длина основной магистрали существенно уменьшается, и выход единичного терминала из строя на работу сети в целом не оказывает никакого влияния. Главным же недостатком является то, что при нарушениях в работе самой магистрали, неработоспособной оказывается вся сеть. К тому же топология «шина» ограничена в количестве подключаемых рабочих станций и обладает достаточно низкой производительностью ввиду распределения ресурсов между всеми терминалами в сети. Распределение может равномерным или неравномерным.

Топология «звезда» (star)

Топология сети «звезда» в некотором смысле напоминает «шину», с той лишь разницей, что подключение всех терминалов производится не к единой магистрали, а к центральному распределительному устройству (концентратор, хаб).

Как раз через концентратор все компьютеры могут взаимодействовать между собой. Информация передается с хаба на все устройства, но принимается, только теми, которым она предназначается. К преимуществам такого подключения относят возможность централизованного управления всеми терминалами сети, а также подключение новых. Однако, как и в случае с «шиной», выход из строя центрального коммутирующего устройства чреват последствиями для всей сети.

Топология «кольцо» (ring)

Наконец, перед нами еще один тип соединения - кольцевая топология сети. Как, наверное, уже понятно из названия, подключение компьютеров осуществляется последовательно от одного к другому через промежуточные узлы, в результате чего и образуется замкнутый круг (естественно, круг в данном случае - понятие условное).

При передаче информация из начальной точки проходит через все терминалы, которые стоят перед конечным получателем. Но распознавание конечного бенефициара производится на основе маркерного доступа. То есть информацию получает только помеченный в информационном потоке терминал. Такая схема практически нигде не используется в силу того, что выход из строя одного компьютера автоматически влечет за собой нарушение в работе всей сети.

Ячеистая и смешанная топология

Этот тип подключений можно получить, если убрать из вышеприведенных соединений некоторые связи или добавить их дополнительно. В большинстве случаев такая схема используется в крупных сетях.

В связи с этим можно определить несколько основных производных. Самыми распространенными считаются схемы типа «двойное кольцо», «дерево», «решетка», «снежинка», «сеть Клоза» и т. д. Как можно видеть даже из названий, все это вариации на тему основных видов соединений, которые и взяты за основу.

Есть еще и смешанный тип топологии, который может объединять в себе несколько других (подсети), сгруппированных по каким-то характерным признакам.

Заключение

Теперь уже, наверное, понятно, что такое топология. Если сделать некий общий итог, данное понятие представляет собой описание способов соединения компьютеров в сети и взаимодействия между ними. Как это производится, зависит исключительно от метода объединения терминалов в одно целое. И сказать, что сегодня можно выделить какой-то один универсальный вариант подключения, нельзя. В каждом конкретном случае и в зависимости от нужд может использоваться тот или иной тип подключений. Но в локальных сетях, если говорить именно о них, наиболее распространенной является схема «звезда», хотя и «шина» все еще используется достаточно широко.

Остается добавить, что в можно встретить еще понятия централизации и децентрализации, но они большей частью связаны не с подключениями, а с системой управления сетевыми терминалами и осуществлением контроля над ними. Централизация явно выражена в подключениях типа «звезда», но для этого типа применима и децентрализация, обеспечивающая ввод дополнительных элементов с целью повышения надежности сети при выходе центрального коммутатора из строя. Достаточно эффективной разработкой в этом плане является схема «гиперкуб», однако она весьма сложна в разработке.

Одной из важных технологий любой серьезной системы мониторинга сетей является метод обнаружения связей сетевых элементов на 2-м и 3-м уровне модели OSI.

С точки зрения алгоритмов эта задача является одной из самых интересных встреченных нами во время разработки нашей системы.

Для описания топологии удобно рассматривать OSI-модель сети как многоэтажное здание в основе которого лежит фундамент - это физический уровень, а этажи образуют канальный и сетевой уровни, каждый последующий уровень надстраивает здание и таким образом обеспечивает целостность и функциональность всей конструкции. Задача всего здания обеспечить его жителей, то есть различные приложения, связью друг с другом.

В Network Manager реализован алгоритм поиска связей между разнородными устройствами, поддерживающие различные протоколы конфигурации топологии сети, протокол связующего дерева (STP, Spanning Tree Protocol), протоколы LLDP (Link Layer Discovery Protocol) и CDP (Cisco Discovery Protocol). Архитектура программной системы позволяет реализовать поддержку новых протоколов для обнаружения как связей на 2-м и 3-м уровне модели OSI, так и любых других логических связей между элементами ИТ-инфраструктуры.

На канальном уровне связи между устройствами называются связями второго уровня (или L2-связи). Они могут быть заданы указанием пары портов двух непосредственно связанных коммутаторов, или коммутатора и конечной станции, или коммутатора и маршрутизатора.

Коммутаторы поддерживают динамическую таблицу переадресации (AFT, address forwarding table), хранящую соответствие MAC адреса узла порту коммутатора. Эта информация доступна через динамические таблицы доступные по SNMP в BRIDGE-MIB коммутатора (dot1dBasePortTable , dot1dTpFdbTable ).

Будем говорить, что коммутатор видит на данном порту данное сетевое устройство, если в его динамической таблице переадресации содержится запись, которая указывает перенаправлять дейтаграммы предназначенные этому сетевому устройству через данный порт.

Для коммутатора с поддержкой базы данных BRIDGE-MIB можно, считывая dot1dBasePortTable , определить соответствие между номером интерфейса и номером порта, а доступные интерфейсы определяются базой данных MIB-II (таблица ifTable ). Это позволяет единым образом рассматривать данные о связях 2-го и 3-го уровня.

Для хранения промежуточных результатов в Network Manager используется топологическая база данных, которая предоставляет общий интерфейс для работы с графом сети и его специализациями, предназначенными для работы на канальном и сетевом уровнях.

Автоматическое определение топологии сети разбивается на две фазы: сбор данных и их последующий анализ. Данные с сетевых устройств собираются в топологической базе данных, с помощью SNMP запросов к базам данных сетевых устройств, и определяются типы устройств и их сетевые интерфейсы.

На втором этапе, происходит анализ доступных данных по выбранным протоколам определения топологии сети, для реализации алгоритмов используются доступные в Интернет сети статьи 1, 2 и 5.

Сложность определения топологии разнородной сети состоит в том, что таблицы переадресации коммутаторов динамические, хранят запись соответствия МАС адреса назначения и соответствующего ему порта некоторое ограниченное время, заданное в конфигурации устройства и в общем случае, на момент исследования не все сетевые устройства обменялись дейтаграммами и как результат маршрутизаторы не могут иметь полной информации о всех доступных сетевых устройствах и их связях. Кроме того, во многих корпоративных сетях встречаются неуправляемые коммутаторы, а некоторые коммутаторы могут быть не подключены к системе мониторинга или некорректно поддерживать нужные SNMP MIBы. Однако, если существует сетевое устройство, видимое на всех коммутаторах сети, то по неполным таблицам переадресации можно однозначно восстановить конфигурацию сети (3).

Разнородность сети также влияет на интерпретацию данных полученных от коммутаторов, на которых настроена поддержка протоколов LLDP и CDP, потому что для их корректной работы необходимо, чтобы все ближайшие сетевые устройства поддерживали или LLDP, или CDP протокол. В итоге, информация, полученная из этих протоколов даёт лишь возможность заключить, что два данных сетевых устройства видят друг друга на определённых портах, но не даёт возможности непосредственно определить их как ближайших «соседей».

Алгоритм поиска топологии разнородной сети, реализованный в AggreGate Network Manager, в первую очередь определяет связи между коммутаторами. Общую суть алгоритма можно описать следующим образом:

Рассмотрим два коммутатора «А» и «Б», расположенные в одной подсети. Если коммутатор «А» видит на порту «а» коммутатор «Б», а коммутатор «Б» видит на порту «б» коммутатор «А» и в их таблицах нет другого сетевого устройства, которое одновременно видимо на портах «а» и «б», то коммутаторы «А» и «Б» соединены напрямую на канальном уровне (см. 1, 3 и 5). После нахождения связи мы убираем соответствующие ей интерфейсы из кэша таблиц форвардинга и продолжаем анализ оставшейся в таблицах информации, постепенно находя методом исключения остальные связи.

На следующем этапе определяются возможные связи между коммутаторами и конечными станциями. Для этого используется поиск ближайшего коммутатора: если коммутатор видит на данном порту конечную станцию и на том же самом порту он видит другой коммутатор, то, при отсутствие сетевых концентраторов, данный коммутатор не может быть ближайшим (см. 4). С другой стороны, если коммутатор на исследуемом порту видит только одну конечную станцию, то этот коммутатор и станция ближайшие соседи в нашей сети.

С топологией IP-уровня (L3) дела обстоят значительно проще. Линки 3-го уровня достаточно легко определяются по таблицам маршрутизации (ipRouteTable ), также доступным по SNMP.

Понимая, что универсальность нашего продукта заставит нас в будущем иметь дело с самыми разными видами топологии, мы спроектировали визуальный компонент «граф топологии» таким образом, чтобы он мог работать с произвольными таблицами, содержащими описания узлов и ребер графа топологии. И, как обычно, при наличии инструмента быстро нашлись ему новые применения:

  • Топология маршрутов EIGRP, OSPF, BPG и т.п.
  • Визуализация путей в облаке MPLS
  • SDH/PDH топология
  • Визуализация связей между гипервизорами и работающими на них виртуальными машинами
  • Добавленные вручную parent-child связи между узлами
  • Граф зависимости компонентов ИТ-сервиса от элементов инфраструктуры

Все технологии, описанные в данной статье, протестированы и внедрены в нашем продукте AggreGate Network Manager . Работа алгоритмов определения связей в условиях недостаточности данных (не все коммутаторы и маршрутизаторы подключены по SNMP, некорректная поддержка нужных MIBов и т.д.) далеко не тривиальна, поэтому мы и по сей день продолжаем совершенствовать их.

Топологии локальных вычислительных сетей

Глава 1. Базовые понятия сетевых технологий.

При создании компьютерной сети передачи данных, когда соединяются все компьютеры сети и другие сетевые устройства, формируется топология компьютерной сети .

Сетевая топология (от греч. τоπος, - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Физическая топология сети передачи данных

Исторически сложились определённые типы физических топологий сети. Рассмотрим некоторые, наиболее часто встречающиеся топологии.

«Общая шина»

Общая шина являлась до недавнего времени самой распространенной топологией для локальных сетей. В этом случае компьютеры подключаются к одному коаксиальному кабелю по схеме «монтажного ИЛИ». Передаваемая информация, в этом случае, распространяется в обе стороны.

Применение топологии «общая шина» снижает стоимость кабельной прокладки, унифицирует подключение различных модулей, обеспечивает возможность почти мгновенного широковещательного обращения ко всем станциям сети. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть.

Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

Рисунок 5. Схема подключения компьютеров по схеме «общая шина».

Топология «звезда»

В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому коммутатором (концентратором, хабом) который находится в центре сети. В функции коммутатора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной - значительно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность коммутатора может вывести из строя всю сеть. Кроме того, коммутатор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи.

Сетевой концентратор илиХаб (жарг. от англ. hub - центр деятельности)- сетевое устройство, предназначенное для объединения нескольких устройствEthernetв общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Термин концентратор (хаб)применим также к другим технологиям передачи данных:USB, FireWire и пр.

В настоящее время сетевые хабы не выпускаются- им на смену пришли сетевые коммутаторы (switch), выделяющие каждое подключённое устройство в отдельный сегмент.

Рисунок 6. Схема подключения компьютеров по схеме «звезда»

Топология «кольцо»

В информационно вычислительных сетях с кольцевой конфигурацией данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении. Если компьютер распознает данные как «свои», то он копирует их себе во внутренний буфер. Кольцо представляет собой очень удобную конфигурацию для организации обратной связи - данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому этот узел может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связности сети и поиска узла, работающего некорректно. Для этого в сеть посылаются специальные тестовые сообщения.

В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями.

Поскольку такое дублирование повышает надёжность системы, данный стандарт с успехом применяется в магистральных каналах связи.

Данная физическая топология с успехом реализуется в сетях, созданных с использованием технологии FDDI.

FDDI(англ. Fiber Distributed Data Interface - распределённый волоконный интерфейс данных) - стандарт передачи данных в локальной сети, протяжённостью до 200 километров. Стандарт основан на протоколеToken Bus . В качестве среды передачи данных вFDDIрекомендуется использовать волоконно-оптический кабель, однако можно использовать и медный кабель, в таком случае используется сокращениеCDDI(Copper Distributed Data Interface). В качестве топологии используется схемадвойного кольца , при этом данные в кольцах циркулируют в разных направлениях. Одно кольцо считается основным, по нему передаётся информация в обычном состоянии; второе - вспомогательным, по нему данные передаются в случае обрыва на первом кольце. Для контроля за состоянием кольца используется сетевой маркер, как и в технологииToken Ring.

Рисунок 7. Схема подключения компьютеров по схеме «кольцо»

Полносвязная топология

Полносвязная топология соответствует сети, в которой каждый компьютер сети связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров сети. Для каждой пары компьютеров должна быть выделена отдельная электрическая линия связи. Полносвязные топологии применяются редко, так как не удовлетворяют ни одному из приведенных выше требований. Чаще этот вид топологии используется в многомашинных комплексах или глобальных сетях при небольшом количестве компьютеров.

Рисунок 8.Схема подключения компьютеров по схеме «полносвязная топология»

Ячеистая топология

Ячеистая топология (англ. mesh-ячейка сети ) получается из полносвязной путем удаления некоторых возможных связей. В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей.

Рисунок 9. Схема подключения компьютеров по схеме «ячеистая топология»

В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерен симбиоз различных топологий. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.

Топология «дерево»

Такая топология является смешанной, здесь взаимодействуют системы с различными топологиями. Такой способ смешанной топологии чаще всего применяется при построении ЛВСс небольшим количеством сетевых устройств, а также при создании корпоративныхЛВС. Данная топология совмещает в себе относительно низкую себестоимость и достаточно высокое быстродействие, особенно при использовании различных сред передачи данных - сочетании медных кабельных систем,ВОЛС, а также применяя управляемые коммутаторы.

Рисунок 10. Схема подключения компьютеров по схеме «дерево»

В топологиях типа «общая шина» и «кольцо» линии связи, соединяющие элементы сети (компьютеры, сетевые устройства и пр.), являются распределёнными (англ. shared) . При совместном использовании ресурс линии делится между сетевыми устройствами, т.е. они являются линиями связи общего использования.

Помимо распределённых , существуютиндивидуальные линии связи , когда каждый элемент сети имеет свою собственную (не всегда единственную) линию связи. Пример - сеть, построенная по топологии «звезда», когда в центре располагается устройство типа коммутатор, а каждый компьютер подключён отдельной линией связи.

Общая стоимость сети построенной с применением распределённых линий связи будет гораздо ниже, однако и производительность такой сети будет ниже, потому что сеть с распределённой средой при большом количестве узлов будет работать всегда медленнее, чем аналогичная сеть с индивидуальными линиями связи, так как пропускная способность индивидуальной линии связи достается одному компьютеру, а при ее совместном использовании - делится на все компьютеры сети.

В современных сетях, в том числе глобальных, индивидуальными являются только линии связи между конечными узлами и коммутаторами сети, а связи между коммутаторами (маршрутизаторами) остаются распределёнными, так как по ним передаются сообщения разных конечных узлов.

Рисунок 11. Индивидуальные и распределённые линии связи в сетях на основе коммутаторов

Логическая топология сети передачи данных

Помимо физической топологии сети передачи данных, предполагается и логическая топология сети . Логическая топология определяет маршруты передачи данных в сети. Существуют такие конфигурации, в которых логическая топология отличается от физической. Например, сеть с физической топологией «звезда» может иметь логическую топологию «шина» – все зависит от того, каким образом устроен сетевой коммутатор или интернет-шлюз, маршрутизатор (VLAN, наличиеVPN, и т.п.).

Чтобы определить логическую топологию сети, необходимо понять, как в ней принимаются сигналы:

    в логических шинных топологиях каждый сигнал принимается всеми устройствами;

    в логических кольцевых топологиях каждое устройство получает только те сигналы, которые были посланы конкретно ему.

Кроме того, важно знать, каким образом сетевые устройства получают доступ к среде передачи информации.

Топология компьютерной сети это схема соединения и физическое расположение сетевых устройств, включая компьютеры, по отношению к друг другу.

Топология компьютерной сети позволяет увидеть всю сеть, вернее ее структуру, а также проанализировать связь всех устройств входящих в сеть. Теория Интернет технологий выделяет несколько видов топологий сети: физическую, информационную, логическую и топологию управления обменом. В этой статье нас будет интересовать только физическая топология сети.

Нужно понимать, что теоретически количество способов соединения устройств в сети может быть бесконечно много. И чем больше устройств будет входить в сеть, тем больше будет способов соединения. Но это не значит, что нельзя классифицировать типы физических соединений, а, следовательно, выделить основные типы топологии сети.

Различают три основных и два дополнительных вида топологии :

  1. Топология сети типа Звезда;
  2. Кольцевая топология;
  3. Шинная топология сети;
  4. Ячеистая топология;
  5. Смешанная топология сети.

Рассмотрим все типы топологий.

Топология компьютерной сети — основные виды

Топология компьютерной сети типа Звезда

В центре топологии «Звезда», находится сервер. Все устройства сети (компьютеры) подключены к серверу. Запросы от устройств направляются на сервер, где и обрабатываются. Выход из строя сервера, «убивает» всю сеть. Выход из строя одного устройства, не влияет на работу сети.

Кольцевая топология компьютерной сети

Кольцевая топология компьютерной сети предполагает замкнутое соединение устройств. Выход одного устройства соединяется с входом следующего. Данные двигаются по кругу. Отличается такая топология ненадобностью сервера, но выход одного устройства сети, «убивает» всю сеть.

Шинная топология сети

Шинная топология сети это параллельное подключение устройств сети к общему кабелю. Выход одного устройства из строя не влияет на работу сети, однако обрыв кабеля (шины) «вырубает» всю сеть.

Ячеистая топология

Ячеистая топология характерна для крупных сетей. Данную топологию можно охарактеризовать так, «все соединяются со всеми». То есть, каждая рабочая станция соединятся со всеми устройствами сети.

Смешанная топология сети

Принцип работы смешанной топологии понятен из названия. Характерно такая топология, для очень крупных компаний.

Может сложиться впечатление, что понятие топология сети применима только для локальных сетей. Это, конечно же, не так. И как пример, в общем виде разберем топологию глобальной сети сетей – Интернет.

Топология Интернет

Начнем разбор топологии Интернет с «низшего» звена – компьютера пользователя.

Компьютер пользователя, через модем или напрямую, связывается с местным интернет — провайдером. Точка соединения компьютера пользователя с сервером провайдера, называют точкой присутствия или POP — Point of Presence.

В свою очередь, провайдер владеет своей местной сетью, состоящую из линий связи и маршрутизаторов. Пакеты данных получаемые провайдером передаются либо на хост провайдера, либо оператору сетевой магистрали.

В свою очередь, операторы магистралей владеют своими международными магистральными сетями (высокоскоростными). Эти сети связывают между собой местных провайдеров.

Хостинговые компании и крупные Интернет корпорации устраивают свои серверные фермы (дата центры), которые напрямую подключены к магистралям.

Эти центры обрабатывают десятки тысяч запросов к веб-страницам в секунду. Как правило, дата-центры устраиваются в арендуемых помещениях магистральных операторов, где и располагаются магистральные маршрутизаторы.

Все магистрали между собой связаны. Точки соединения называют точками входа в сеть или Network Access Point – NAP. Это допускает перекидывать передаваемый пакет информации с магистрали на магистраль.

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.



Рекомендуем почитать

Наверх