Сети транкинговой связи. Обзор и сравнительный анализ стандартов цифровой транкинговой радиосвязи

Детские товары 19.06.2020
Детские товары

Абонентские терминалы iDEN, подобно системе GSM, используют SIM-карты. В части интерконнекта используются алгоритмы управления сигналлинга GSM, что значительно упрощает роуминг с сотовыми сетями. Выпускаются профессиональные (индустриальные) терминалы (R370, R470, R765, R765IS) и коммерческие, серии «i». Есть дуалмодовые модели iDEN/GSM, iDEN/CDMA. В некоторых терминалах реализована функция «Direct Connect», позволяющая соединять абонентов сети напрямую, минуя базовые станции, на локальных территориях в частотном диапазоне SMR (Specialized Mobile Radio) 800 МГц. В настоящий момент производством терминалов заняты две компании Motorola и RIM. В 2010 году был презентован Android терминал с сенсорным экраном i1.

Это чудо — то же работает как радио.

В 2005 году представлено дальнейшее развитие стандарта, позволяющее, комбинируя тайм-слоты четырёх физических каналов, получить скорость передачи данных до 100 кБит/с. Апгрейд получил название WiDEN (Wideband Integrated Digital Enhanced Network).
По состоянию на 2010 г., наряду с системами

IDEN: одна за всех...

Идея интегрированной системы, сочетающей в себе возможности групповой и диспетчерской радиосвязи, мобильной телефонной связи, а также передачи алфавитно-цифровых сообщений (пейджинг) и беспроводной передачи данных, нашла воплощение в технологии iDEN.

Предисловие

АО "ВымпелКом", оператор сети "БиЛайн", объявил о введении международного межстандартного роуминга iDEN/GSM. Новая технология значительно расширит возможности предоставления роуминговых услуг абонентам "БиЛайн" по всему миру. Начиная с середины сентября 2000 года, в сети "БиЛайн GSM" начато предоставление услуг международного автоматического роуминга в Аргентине, Перу, Арабских Эмиратах и Туркмении. Общее количество стран, где данная услуга стала доступна абонентам "БиЛайн GSM" достигло 87. Роуминг действует с 171 оператором. В ближайшее время планируется ввод в действие роуминга в Бразилии, Мексике и Македонии. Таким образом, компания вышла на первое место среди операторов московского региона по числу стран, с которыми действуют роуминговые соглашения. Заметный рост числа новых стран, где данная услуга стала доступна абонентам "Би Лайн GSM", связан с запуском международного межстандартного роуминга iDEN/GSM между сетями "Би Лайн GSM" и американского оператора Nextel, владеющего сетями стандарта iDEN в нескольких регионах мира. В ряде стран, таких как Аргентина, Бразилия, Перу, Мексика сети GSM либо не получили распространения, либо полностью отсутствуют. При этом, например, в Латинской Америке широкое развитие получили сети, построенные на базе цифровой транкинговой технологии iDEN.

В настоящее время вполне определенно обозначились три различные сферы применения систем мобильной радиосвязи: это системы типа Public Safety (полиция, пожарная охрана, скорая помощь и т.п.), частные, т.е. принадлежащие организациям и оперируемые ими системы (PMR, Private Mobile Radio), и коммерческие системы общего пользования (SMR, Shared Mobile Radio).
Для систем первого типа характерно сравнительно небольшое число абонентов (не более 500-1000), повышенные требования к обеспечению надежности и конфиденциальности и наличие специальных функций типа Emergency Call. Отличительной особенностью таких систем является высокая стоимость абонентских терминалов, которая в цифровых системах может достигать $4000. К категории Public Safety/PMR относятся стандарты Smartnet/Smartzone, EDACS и APCO25, а также разрабатываемый в настоящее время европейский цифровой стандарт TETRA.
Коммерческие системы типа SMR характеризуются значительно большей емкостью (число абонентов цифровых систем может достигать десятков тысяч), возможностью предоставления дополнительных информационных услуг, а также умеренной стоимостью абонентских терминалов. К категории SMR относятся стандарты MPT1327, LTR/ESAS и GeoNet.
Отметим, что большинство существующих аналоговых систем SMR имеют ограниченные возможности по повторному использованию частот и переключению каналов, автоматической идентификации абонентов при их перемещении из одного сайта в другой и т.п., а также не предоставляют в полном объеме услуги мобильной телефонной связи на современном уровне.

Мобильная телефонная (сотовая) связь

Мобильная телефонная связь предназначена в первую очередь для обеспечения персональной мобильной голосовой связи “один на один” в дуплексном режиме. Технологии сотовой связи прошли примерно тот же путь развития, что и транкинговые системы. Первое поколение сотовых технологий, появившееся в начале 80-х годов, базировалось на аналоговых стандартах. Наибольшее распространение в мире получили североамериканский стандарт AMPS, британский TACS и скандинавский NMT-450. Все аналоговые стандарты сотовой связи обеспечивают хорошее качество передачи голоса. Их основным недостатком, так же как и в случае аналоговых транкинговых систем, является ограниченная емкость. Кроме того, в аналоговых системах сотовой связи также сохраняется проблема несанкционированного доступа к системе.
В начале 90-х годов повсеместно начался переход на цифровые стандарты сотовой связи. Наибольшее распространение в мире получил западноевропейский стандарт GSM, принятый в настоящее время более чем в ста странах. Среди других цифровых стандартов достаточно широкое признание получил D-AMPS, а в последние годы все большую популярность приобретает CDMA. Следует отметить, что в мобильной телефонной связи применение цифровых технологий далеко не всегда обеспечивает более высокое качество звука по сравнению с аналоговыми системами. Например, общепризнанно, что качество звука в системах стандарта GSM несколько ниже, чем в аналоговых системах. Основные преимущества цифровых стандартов мобильной телефонной связи - большая емкость системы, полная конфиденциальность переговоров и устойчивость к различного рода радиопомехам.
Как цифровые, так и большинство аналоговых стандартов мобильной телефонной связи также предоставляют возможность передачи текстовых сообщений и данных.
Итак, мобильная радиосвязь и сотовая связь ориентированы на обеспечение, соответственно, групповой полудуплексной и персональной дуплексной мобильной связи (рис. 1). Однако с развитием цифровых технологий к середине 90-х годов стало очевидно, что эти два первоначально разных вида мобильной голосовой связи имеют между собой немало общего с точки зрения территориальной организации системы, инфраструктуры, выхода на ТФОП (телефонная сеть общего пользования) и т. п. В то же время, существовавшие технологии SMR не были способны обеспечить тот же уровень сервиса, который предоставляли системы мобильной телефонной связи.

В связи с этим возникла идея разработки интегрированной системы, сочетающей в себе возможности групповой и диспетчерской радиосвязи, мобильной телефонной связи, а также передачи алфавитно-цифровых сообщений (пейджинг) и беспроводной передачи данных. Предлагаемая система должна была обеспечить современный уровень сервиса для всех видов связи. Именно эта идея и была реализована в технологии iDEN (integrated Digital Enhanced Network), разработанной компанией Motorola в середине 90-х годов.

Интегрированные услуги

Технология iDEN представляет собой интегрированную систему (рис. 2), обеспечивающую пользователям все основные виды мобильной связи

Рис. 2. Географическая структура групп в iDEN

Мобильная радиосвязь

iDEN обеспечивает возможности, характерные для современных цифровых систем транкинговой радиосвязи, а именно:

  • групповой вызов (group call) - абонент системы (как мобильный, так и находящийся в офисе диспетчер) может осуществлять групповой вызов в режиме полудуплексной связи. Вызов осуществляется одним нажатием кнопки, и время установления связи не превышает 0,5 сек. Важно отметить, что при таком вызове задействуется лишь один голосовой канал связи в каждой ячейке системы вне зависимости от числа абонентов в группе. Число возможных групп в iDEN практически неограниченно, точнее, равно 2550000, что избавляет от необходимости иметь в системе функцию динамического переконфигурирования групп. Все возможные конфигурации групп могут быть запрограммированы заранее, и при необходимости абоненты просто переходят в соответствующие группы. Члены группы могут находиться в разных городах на расстоянии в десятки и сотни километров (разумеется, в пределах зоны покрытия системы) и разговаривать в режиме группового вызова так, как будто они находятся на соседних улицах;
  • персональный вызов (private call) - также вызов в полудуплексном режиме, однако в разговоре участвуют только два абонента, при этом обеспечивается полная секретность переговоров. Как в режиме группового, так и в режиме индивидуального вызова на дисплее абонентского терминала вызываемого абонента появляется имя (либо цифровой идентификатор) вызывающего абонента;
  • сигнализация вызова (call alert) - используется при необходимости вызвать абонента (или группу абонентов), который либо ведет разговор в режиме мобильного телефона, либо находится вне зоны действия системы, либо выключил свой абонентский терминал. Вызов запоминается в системе, и в тот момент, когда абонент становится доступен, он получает звуковой сигнал, а на экране терминала появляется идентификатор вызывающего абонента. Одновременно вызывающий абонент получает подтверждение получения вызова.

Мобильная телефонная связь

Система iDEN предоставляет все возможности современных систем мобильной телефонной связи: абоненты могут звонить как на другие мобильные телефоны, так и на стационарные телефоны ТФОП, а также принимать звонки и от тех, и от других. Телефонная связь полностью дуплексная. iDEN имеет такие функции, как хранение в памяти телефона до 100 номеров и вызов по имени, автоматический набор номера, режим ожидания, различные режимы переадресации звонка, идентификация звонящего. На абонента можно наложить следующие ограничения: только входящие звонки, только местные звонки, запрет международных звонков, ограничение на время разговоров. В системе также имеется голосовая почта (voice mail).

Передача текстовых сообщений

Абоненты системы iDEN могут принимать алфавитно-цифровые сообщения, которые затем появляются на экране абонентского терминала. Терминалы iDEN могут хранить до 16 сообщений по 140 символов в каждом. Сообщения передаются, как в обычной системе пейджинговой связи: либо через оператора, либо с компьютера. Сообщение может быть передано как одному абоненту, так и группе абонентов.

Передача данных

Портативные терминалы iDEN имеют встроенные модемы и могут подключаться к портативным компьютерам с помощью RS-232С адаптера (последовательный интерфейс). При этом нет необходимости иметь модем в компьютере. В режиме коммутации каналов обеспечивается скорость передачи факсов и данных до 9600 бит/с, а в пакетном режиме - до 32 кбит/с при использовании всего частотного канала для передачи данных. Схема коррекции ошибок с опережением обеспечивает надежную передачу данных. Функция передачи данных позволяет мобильным абонентам принимать и посылать факсы и электронную почту, обмениваться данными с компьютерами в офисе и работать с сетью Интернет. Пакетный режим передачи данных поддерживает протокол TCP/IP.
Отметим, что добавление услуг передачи данных к существующей системе iDEN не требует установки никакого дополнительного оборудования на базовых станциях. Необходимо лишь установить дополнительные блоки центральной инфраструктуры и инсталлировать программное обеспечение на базовых станциях и в центральной инфраструктуре.

Радиоинтерфейс и кодирование голоса в iDEN


Система iDEN базируется на технологии TDMA (Time Division Multiple Access). В каждом частотном канале шириной 25 кГц передается одновременно 6 голосовых сигналов (рис. 3). Передача оцифрованного голосового сигнала как в режиме радио, так и в режиме сотового телефона осуществляется следующим образом. Внутри временного интервала 90 мс выделено 6 временных слотов продолжительностью по 15 мс. В каждом из этих слотов передается один голосовой сигнал (при этом неважно, к какому виду связи он относится), а каждый шестнадцатый временной слот отведен под управляющие сигналы. За счет применения модуляции радиосигнала по методу M16-QAM (Quadrature Amplitude Modulation) обеспечивается суммарная скорость передачи данных по одному частотному каналу в 64 кбит/с. При этом скорость передачи одного голосового сигнала составляет 7.2 кбит/с.
Адекватное воспроизведение человеческого голоса и других звуков при столь невысокой скорости передачи оцифрованного голосового сигнала достигается за счет использования усовершенствованной схемы кодирования голосового сигнала, базирующейся на использовании алгоритма VSELP. Не вдаваясь в технические подробности, отметим, что комбинация технологий TDMA/VSELP обеспечивает более высокое качество передачи голоса, чем в стандарте GSM, и не хуже, чем последние версии стандарта CDMA.

Используемый спектр

При разработке технологии iDEN изначально была поставлена задача добиться максимально эффективного использования частотного ресурса, по крайней мере не уступающего существующим реализациям стандарта CDMA.
Как уже было сказано, система iDEN обеспечивает передачу в каждом частотном канале шириной 25 кГц одновременно 6 голосовых сигналов. В результате в спектре шириной 1 МГц можно разместить 240 голосовых каналов. Для сравнения укажем, что аналоговые и цифровые системы транкинговой связи предоставляют не более 80 голосовых каналов на 1 МГц, аналоговые системы сотовой связи - 30-40 голосовых каналов, стандарт GSM - 40 голосовых каналов (рис. 4).

Рис. 4. Эффективность использования спектра

Система iDEN работает в стандартном для Америки и Азии транкинговом диапазоне 806-825/851-870 МГц. Часть этого диапазона отведена под системы транкинговой радиосвязи в странах СНГ.
Отметим, что система iDEN не требует, чтобы все частотные каналы были смежными.

IDEN Micro Lite

К середине 1999 г. компания Motorola планирует завершить разработку системы iDEN MicroLite, которая представляет собой уменьшенный вариант iDEN и ориентирована на обслуживание систем с числом абонентов от нескольких сотен до 5 тысяч. Максимальное количество базовых станций - 8.
Система iDEN MicroLite базируется на тех же технологических решениях, что и система iDEN: та же схема модуляции радиосигнала M16-QAM, вокодер VSELP, технология временного разделения голосовых каналов TDMA с размещением 6 голосовых каналов в одном частотном канале шириной 25 кГц.
Абонентские терминалы и базовые станции iDEN MicroLite и iDEN идентичны.
Основное технологическое отличие iDEN MicroLite от iDEN состоит в организации центральной инфраструктуры системы. В системе iDEN MicroLite вся центральная инфраструктура реализована на двух компьютерах, один из которых выполняет функции DAP (см. Архитектура системы iDEN), а другой - всех остальных компонентов центральной инфраструктуры (включая коммутатор). Первоначальная версия iDEN MicroLite обеспечивает два вида связи - групповую и индивидуальную радиосвязь и мобильную телефонную связь. Последующие версии будут также поддерживать передачу коротких сообщений и данных.
Следует отметить, что при росте числа абонентов выше максимальной емкости iDEN MicroLite возникает необходимость перехода к полной системе iDEN. При таком переходе необходимо установить центральную инфраструктуру системы iDEN, однако можно использовать абонентские терминалы и имеющееся оборудование базовых станций, проведя необходимую модификацию программного обеспечения.
Поставки системы iDEN MicroLite начнутся во второй половине 1999 г.

Абонентское оборудование

Все абонентское оборудование для системы iDEN представлено аппаратами компании Motorola. Среди них есть как автомобильные, так и портативные терминалы, ни в чем не уступающие собратьям из сотовой связи: многоуровневое меню, настройки вызывных сигналов, записная книжка, многоязыковая поддержка и многое другое делает их столь же удобными в обращении. др. В 2000г. выпущена модель, представляющая новое поколение аппаратов iDEN - это Motorola Timeport i2000. Этот аппарат работает не только в "родной" сети iDEN, но и в GSM-900. Таким образом, абоненту предоставляется более широкий спектр услуг и он может использовать преимущества обеих сетей. Более подробно ознакомиться с абонентскими аппаратами iDEN, можно по адресу: http://www.motorola.com/LMPS/iDEN/product_features/phone.html

Области применения

Как уже было сказано, iDEN относится к системам типа SMR (Shared Mobile Radio), то есть ориентирована на создание коммерческих систем, предоставляющих интегрированные пакеты услуг мобильной связи как, в первую очередь, организациям, так и частным лицам. Система ориентирована прежде всего на использование организациями различного профиля и размеров, заинтересованными в обеспечении надежной мобильной связи между отдельными подразделениями и группами сотрудников.
Для каждого корпоративного пользователя системы создается так называемый «флот», который представляет собой ни что иное, как виртуальную частную сеть данной организации. Одна система может иметь до 10000 флотов, в каждом флоте может быть максимум 65-500 абонентов. Внутри флота могут создаваться различные группы, соответствующие подразделениям этой компании, максимально возможное число групп в одном флоте равно 255. Абсолютно исключена возможность как нечаянного, так и преднамеренного несанкционированного вторжения абонентов в чужие флоты. Члены флота могут находиться в разных городах, перемещаться из одного города в другой и при этом пользоваться всеми услугами как групповой, так и персональной связи. В результате, в распоряжении организации оказывается мобильная телекоммуникационная система, полностью эквивалентная собственной сети данной организации. В то же время ей не нужно приобретать оборудование и строить антенны, а также тратить несколько месяцев на установку и отладку системы. Все, что необходимо сделать, - это стать корпоративным пользователем существующей системы iDEN и сконфигурировать требуемые группы.
Подчеркнем, что предоставляемые системой iDEN интегрированные услуги покрывают практически весь спектр потребностей компаний и организаций в мобильной связи. Связь внутри подразделений (групп) и между ними осуществляется в режиме радиосвязи, а для связи с внешними организациями (поставщики, клиенты) используется режим мобильного телефона. Тем самым, во-первых, обеспечивается мгновенная индивидуальная и групповая связь внутри организации и, во-вторых, существенно снижаются расходы на мобильную связь по сравнению с вариантом, когда для связи внутри организаций используются мобильные телефоны.
Возможно также и создание комбинированных частно-коммерческих систем на базе iDEN. В этом случае организация создает сначала сеть для своих внутренних нужд, а затем за счет избыточной емкости начинает предоставлять коммерческие услуги связи. Никаких проблем с секретностью и конфиденциальностью также не возникает.
Благодаря модульному принципу организации системы, можно создавать различные ее реализации в зависимости от нужд клиента. Например, первоначально сеть iDEN может быть развернута как чисто транкинговая система, а затем по мере необходимости к ней можно добавить возможности мобильной телефонии и передачи текстовых сообщений и данных.

Признание iDEN в мире

Первая коммерческая система на базе технологии iDEN была развернута в США компанией NEXTEL в середине 1994 г., и в настоящее время эта сеть является общенациональной. Она насчитывает около 5500 сайтов и имела на декабрь 1998 г. около 2,7 миллиона абонентов. В юго-западных штатах США имеется другая сеть, оператором которой является энергетическая компания Southern Co. В Канаде сетью iDEN оперирует компания Clearnet. Что касается Латинской Америки, то сети iDEN имеются в Колумбии и Аргентине (две системы), недавно запущены в коммерческую эксплуатацию сети в Сан-Пауло и Рио-де-Жанейро (Бразилия) и Мехико (Мексика). Кроме того, в 1998 г. началось развертывание систем iDEN в Перу, Венесуэле и Чили.
В Азии система iDEN более двух лет работает в Токио и Осаке (Япония), в апреле 1997 г. запущена система в Сингапуре, имеются такие системы в Китае, Южной Корее и на Филиппинах. Ведется строительство еще 3 систем в Китае и одной - в Индонезии. На Ближнем Востоке имеется общенациональная сеть iDEN в Израиле.
Каждая из вышеперечисленных систем рассчитана на обслуживание десятков тысяч абонентов. Общее число абонентов систем iDEN в мире на конец 1998 г. достигло трех миллионов. iDEN - открытая архитектура. Компания Motorola предоставляет лицензии на производство компонентов системы iDEN различным производителям.
Подводя итоги, отметим, что на сегодня iDEN является единственной отработанной в коммерческой эксплуатации технологией, обеспечивающей предоставление всего комплекса услуг мобильной связи.

Статья подготовлена с использованием материалов сайта www.trunk.ru

Фил Питерсен
директор по региону Европы и Ближнего Востока
группы iDEN компании Motorola,

Андрей Денисов
региональный менеджер по Восточной Европе и бывшему СССР
группы iDEN компании Motorola

Глоссарий

BCS (Base Site Controller) - контроллер базовых станций;
DACS (Digital Access Crossconnect Switch) - коммутатор цифровых каналов;
DAP (Dispatch Application Processor) - процессор транкинговой связи;
EBTS (Enhanced Base Transceiver System) - усовершенствованная базовая станция;
HLR/VLR (Home/Vehicle Location Register) - регистратор местоположения абонентов;
IWF (Interworking Function) - интерфейс передачи данных/факсов;
MDG (Mobile Data Gateway) - шлюз пакетной передачи данных;
MPS (Metro Packet Switch) - пакетный коммутатор;
MSC (Mobile Switching Center) - коммутатор телефонной связи;
OMC (Operations Maintenance Center) - центр управления;
SMS (Short Message Service) - система передачи текстовых сообщений;
VMS (Voice Mail System) - голосовая почта;
XCDR Transcoder - блок преобразования речевых пакетов из формата VSELP в формат PCM и наоборот

Транкинговые системы связи классифицируются по следующим признакам [ 1 ].

По методу передачи речевой информации: аналоговые и цифровые. Передача речи в радиоканале аналоговых систем осуществляется с использованием частотной модуляции, шаг сетки частот обычно составляет 12,5 кГц или 25 кГц. Для передачи речи в цифровых системах используются различные типы вокодеров, преобразующих аналоговый речевой сигнал в цифровой со скоростью не более 4,8кбит/с;

В зависимости от количества базовых станций (БС) и общей архитектуры: однозоновые или многозоновые системы. В системах первого типа имеется одна БС, в системах второго типа – несколько БС с возможностью роуминга;

По методу объединения БС в многозоновых системах. БС могут объединяться с помощью единого коммутатора (системы с централизованной коммутацией), или соединяться друг с другом непосредственно, или через системы с распределенной коммутацией;

По способу поиска и назначения канала: системы с децентрализованным (СДУ) и централизованным (СЦУ) управлением. В СДУ процедуру поиска свободного канала выполняют абонентские радиостанции (АР). В этих системах ретрансляторы (РТ) БС обычно не связаны друг с другом и работают независимо. Ретрансляторы представляют собой приемопередающее устройство, работающее в дуплексном режиме. В транкинговых системах с частотным разделением каналов на каждый рабочий канал приходится один ретранслятор, приемник и передатчик работают на разных частотах. Особенностью СДУ является относительно большое время установления соединения между абонентами, растущее с увеличением числа РТ. Такая зависимость вызвана тем, что АР вынуждены непрерывно последовательно сканировать каналы в поисках вызывного сигнала (последний может поступить от любого РТ) или свободного канала (если абонент сам посылает вызов). Представителями данного класса являются системы стандарта SMARTRUNK I I

В СЦУ поиск и назначение свободного канала производится на БС. Для обеспечения нормального функционирования таких систем организуется канал управления. Его основная функция – установление соединения между двумя абонентами сети. Все запросы на предоставление связи направляются по каналу управления, по этому же каналу БС извещает абонентские устройства о назначении канала, отклонении запроса, или о постановке запроса в очередь. Каналы управления являются цифровыми, в которых передача данных производится со скоростью до 9,6 кбит/с.

4. Принципы построения транкинговых сетей

На рис.1 представлена обобщенная структурная схема однозоновой транкинговой системы связи.

Структурная схема однозоновой транкинговой системы.

Рисунок 1

В состав БС, кроме радиочастотного оборудования (ретрансляторы, устройство объединения радиосигналов антенны) входят также коммутатор, устройство управления (УУ) и интерфейсы к различным внешним сетям.

Ретранслятор (РТ) – набор приемопередающего оборудования, обслуживающего одну пару несущих частот. В большинстве транкинговых систем связи одна пара несущих означает один канал трафика (КТ). С появлением цифровых стандартов, предусматривающих временное уплотнение один РТ может обеспечить два или четыре КТ.

Антенны БС, как правило, имеют круговую диаграмму направленности. При расположении БС на краю зоны применяют направленные антенны. БС может располагать как единой приемопередающей антенной, так и раздельными антеннами для приема и передачи. В некоторых случаях на одной мачте может размещаться несколько приемных антенн для борьбы с замираниями, вызванными многолучевым распространением.

Устройство объединения радиосигналов позволяет использовать одно и то же антенное оборудование для одновременной работы приемников и передатчиков на нескольких частотных каналах.

Коммутатор в однозоновой транкинговой системе связи обслуживает весь ее трафик, включая соединение мобильных абонентов (МА) с телефонной сетью общего пользования (ТФОП) и все вызовы, связанные с передачей данных.

Устройство управления (УУ) обеспечивает взаимодействие всех узлов БС. Оно также обрабатывает вызовы, осуществляет аудентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в блок данных (БД) повременной оплаты. В некоторых системах УУ регулирует максимально допустимую продолжительность соединения с телефонной сетью. Как правило, используются два варианта регулировки: уменьшение продолжительности соединения в заранее заданные часы наибольшей нагрузки, или адаптивное изменение в зависимости от текущей нагрузки.

Интерфейс к ТФОП реализуется в транкинговых системах связи различными способами. В некоторых системах (например, SMARTRUNK I I) подключение производится по двух проводной коммутируемой линии. Более современные транкинговые системы связи имеют в составе интерфейса к ТФОП аппаратуру прямого набора номера (DID), обеспечивающую доступ к абонентам транкинговой сети с использованием стандартной нумерации АТС.

Соединение с ТФОП является традиционным для транкинговых систем связи, но в последнее время все более возрастает число приложений, предполагающих передачу данных, в связи с чем наличие интерфейса к сетям с коммутацией пакетов (СКП) также становится обязательным.

Терминал технического обслуживания и эксплуатации (ТОЭ) располагается, как правило, на БС. Терминал предназначен для контроля за состоянием системы, проведения диагностики неисправностей, тарификации, внесения изменений в базу данных (БД) абонентов. Обязательными элементами транкинговых систем связи являются диспетчерские пульты(ДП). Трангинковые системы связи используются в первую очередь потребителями служб и управлений железных дорог, работа которых требует наличия диспетчера ПЧ, ЭЧ, ТЧ. ШЧ, а также службы охраны, скорой медицинской помощи,пожарной охраны, муниципальные службы. ДП могут включаться в систему по абонентским радиоканалам, или подключаться по выделенным каналам непосредственно к коммутатору БС. В рамках одной транкинговой системе связи может быть организованно несколько независимых сетей связи. Пользователи каждой из таких сетей не будут замечать работу соседей и не смогут вмешиваться в работу других сетей. Поэтому в одной транкинговой системе связи могут работать несколько ДП, различным образом подключенных к ней.

Абонентское оборудование трангиковых систем связи включают в себя широкий набор устройств.. Как правило, наиболее многочисленными являются полудуплексные РС,так как они в наибольшей степени подходят для работы в замкнутых группах. В основном это функционально ограниченные устройства, не имеющие цифровой клавиатуры. Их пользователи имеют возможность связываться лишь с абонентами внутри своей рабочей группы, а также посылать экстренные вызовы диспетчеру. Как правило, этого вполне достаточно для большинства потребителей услуг связи транкинговых систем радиосвязи. Существуют и полудуплексные РС с широким набором функций и цифровой клавиатурой, но они, будучи существенно дороже, предназначены для более узкого круга абонентов.

В транкинговых системах связи постепенно находят применение находят применение новый класс абонентских устройств – дуплексные РС, напоминающие сотовые телефоны, но обладающие значительно большей функциональностью по сравнению с дуплексными РС. Дуплексные радиостанции транкинговых систем связи обеспечивают пользователям не только соединение с ТФОП, но и возможность групповой работы в полудуплексном режиме.

Как полудуплексные, так и дуплексные транкинговые РС выпускаются не только в портативном, но и в мобильном исполнении. Выходная мощность передатчиков мобильных РС выше.

Относительно новым классом устройств для транкинговых систем связи являются терминалы передачи данных (ПД). В аналоговых тренгинговых системах связи терминалы ПД – это специализированные радиомодемы, поддерживающие соответствующий протокол радиоинтерфейса. Для цифровых систем более характерно встраивание интерфейса ПД в АР различных классов. В состав мобильного терминала ПД часто включают спутниковый навигационный приемник системы Global Position System (GPS), предназначенный для определения текущих координат и последующей передачи их диспетчеру на пульт.

В транкинговых системах связи используются также стационарные РС, преимущественно для подключения ДП. Выходная мощность передатчиков стационарных РС приблизительно такая же, как у мобильных РС.

Архитектура многозоновых транкинговых систем связи может строиться по двум принципам. Если определяющим фактором является стоимость оборудования, используется межзональная коммутация (рис.2).

Структурная схема транкинговой сети с распределенной межзональной коммутацией

Рисунок 2

Каждая БС в такой системе имеет свое собственное подключение к ТФОП. При необходимости вызова из одной зоны в другую он производится через интерфейс ТФОП, включая процедуру телефонного номера. Кроме того, БС могут непосредственно соединены с помощью физических выделенных линий связи.

Использование распределенной межзональной коммутацией целесообразно лишь для систем с небольшим количеством зон и с невысокими требованиями к оперативности межзональных вызовов (особенно в случае соединения через коммутируемые каналы ТФОП). В системах с высоким качеством обслуживания используется архитектура с центральным коммутатором (ЦК). Структура многозоновой транкинговоц системой связи с ЦК изображена на рис. 3.

Структурная схема транкинговой сети с централизованной межзональной коммутацией

Рисунок 3

Основной элемент этой схемы – межзональный коммутатор. Он обрабатывает виды межзональных вызовов, т.е. весь межзональный трафик проходит через один коммутатор, соединенный с БС по выделенным линиям. Это обеспечивает быструю обработку вызовов, возможность подключения централизованных ДП. Информация о местонахождении абонентов системы с ЦК хранится в единственном месте, поэтому ее легче защитить. Кроме того, межзональный коммутатор осуществляет также функции централизованного интерфейса к ТФОП и СКП, что позволяет при необходимости полнлстью контролировать как речевой трафик телефонной сети, так и трафик всех приложений ПД, связанный с внешними СКП, например Интернет. Таким образом, система с ЦК обладает более высокой управляемостью.

Министерство РФ по связи и информатизации.

Сибирский государственный университет

телекоммуникаций и информатики.

Доклад на тему:

«Транкинговые системы связи»

Выполнила

Студентка гр. М-81

Михайлова О.И.

Проверил

Буров П.Н.

Новосибирск 2001 г.
Содержание.

1.Применение транкинговых систем радиотелефонной связи.

2.Принципы построения транкинговых систем.

а) Включение сети радиотелефонной связи на правах УПАТС.

б). Включение сети транкинговой связи на правах абонента РАТС.

в). Включение сети транкинговой связи на правах РАТС.

3. Использование радиочастот.

4.Заключение.

5.Список литературы.


ПРИМЕНЕНИЕ ТРАНКИНГОВЫХ СИСТЕМ РАДИОТЕЛЕФОННОЙ СВЯЗИ НА ФЕДЕРАЛЬНОЙ ВЗАИМОУВЯЗАННОЙ СЕТИ СВЯЗИ РОССИИ.

Сегодня в России наибольшее распространение получили два вида сетей подвижной связи (СПС) - сети траикинговой радио­телефонной связи и сети сотовой подвижной связи. Трацкниговые сети строят на основе стандартов МРТ1327, Smar frank П (Германия), сотовые - на базе стандартов GSM, DSC1800 (европейские страны), NMT-450 (страны Северной Европы), AMPS (США), HCMTS (Япония), TACS (Великобритания) и др.

Под термином "транкинг" ("tmnking") подразумевается авто­матическое распределение каналов (АРК) и предоставление пользователям любого радиоканала из числа свободных. Метод АРК позволяет эффективно использовать радиоканалы и тем самым существенно снизить их перегруженность. Особенно это необходимо в зонах с большим графиком, где метод АРК позволяет повысить, без каких-либо потерь, пропускную способ­ность каждого радиоканала.

В радиосистемах типа «Транкинг» используют несколь­ко радиоканалов одновременно. Каждому абоненту систе­мы может быть предоставлен для связи любой из свобод­ных каналов. Все радиоканалы связаны общей системой управления. Она следит за их состоянием и сразу предос­тавляет освобождающиеся каналы очередным абонентам. Именно поэтому в системе «Транкинг» вероятность отказа в обслуживании гораздо ниже, чем в одноканальной систе­ме с одним ретранслятором. Для одноканальной системы количество абонентов не должно превышать 30. Четырех­канальная система позволяет обслужить по различным оценкам от 40 до 80 абонентов на канал, т.е. до 300 пользователей. При числе каналов меньше четырех систе­ма типа «Транкинг» еще не проявляет полностью прису­щей ей эффективности. Именно поэтому для системы с двумя или тремя каналами нужно исходить из средней загрузки в 30...50 абонентов.

Принципы построения транкинговых систем.

Первоначально транкинговые системы предназначались для ведомственного использования в составе выделенных сетей и не имели выхода па телефонную сеть общего пользования (ТфОП). Со временем эти системы получили несколько иное развитиеи стали использоваться для организации коммерческих сетей.

Транкинговые сети позволяют объединять абонентов сети в группы и, таким образом, основная нагрузка (80...90 %) распределяется внутри сети, поскольку абоненты данных групп - работники служб скорой помощи, пожарной охраны, город­ских организаций и т. п. - либо имеют ограниченный доступ к ТфОП, либо не имеют его вообще. Наряду с группами пользователей к сети могут быть подключены и отдельные мобильные абоненты, имеющие возможность выхода на местную, междугородную и международную сети связи. Такая структура открывает возможность для "коммерциализации" ведомственных сетей.

Как известно, федеральная сеть подвижной сотовой связи России строится на основе систем международных стандартов, принятых в большинстве стран Европы - NMT-450 и GSM. Кроме основных услуг, предоставляемых абонентам сотовых сетей, их главная особенность состоит в возможности органи­зации автоматического национального и международного роуминга - обслуживания абонентов одной сети в другой аналогичной сети. Транкинговые сети связи работают только на региональном уровне, т. е. обслуживают подвижных и фиксированных абонентов внутри границ регионов (междуго­родных зон); такое включение сетей в ТфОП будет осуществля­ться на местном уровне поскольку, в отличие от сотовых сетей, в трапкинговых, в основном, отсутствует возможность роуминга.

Транкинговые сети строятся в соответствии с двумя принципами - радиальным и зоновым. Первый предусматри­вает обеспечение связи в пределах зоны действия центральной (базовой) станции, второй - в пределах действия нескольких базовых (зоновых) станций (БС). Базовые станции распола­гаются в определенном регионе и подключаются к единому центру коммутации пучками соединительных линий. Данные принципы построения сети не всегда могут гарантировать непрерывную связь при переходе из одной зоны в другую в пределах действия нескольких БС (так называемую функцию handover). Упрощенная классификация наземных сетей подвиж­ной связи РФ представлена на рис. 1.

Структура транкипговой сети показана на рис. 2. Радио­связь осуществляется через БС, которые подключаются к контроллеру радиоканала (КР), обеспечивающему управление одним радиоканалом [при" управлении несколькими радио­каналами используется транкинговый контроллер (ТК)], вы­полнение всех системных функций и работу интерфейсов с БС, пультами управления, ТфОП и другими КР. В случае построе­ния крупной сети, охватывающей большую территорию, используются несколько КР и один центральпный контроллер системы (ЦКС), который объединяет несколько КР и служит общим центром коммутации и управления сети, причем остаются возможными коммутация и управление в каждой отдельной зоне, включая выход на ТфОП. Кроме того, ЦКС позволяет организовать централизованное техническое обслу­живание транкинговой сети. Связь между стационарными и подвижными абонентами (ПА) осуществляетсячерез сеть, в которую входят КР и ЦКС.


Подключение транкинговой сети к ТфОП .

Альтернативой сотовым сетям могут быть транкинговые коммуникационные системы. Данные технологические решения активно используются по всему миру. Многие российские организации, как частные, так и государственные, отдают предпочтение как раз таки транкинговой связи. В чем ее специфика? Каковы преимущества соответствующих решений перед иными популярными коммуникационными стандартами, внедряемыми в РФ и за рубежом?

Что представляют собой транкинговые системы?

Транкинговая связь — разновидность наземной подвижной инфраструктуры коммуникаций радиально-зонового типа. Функционирует за счет ретрансляторов между абонентами в автоматическом режиме. Кроме того, термин «транкинговая связь» соответствует способу доступа пользователей к выделенной совокупности каналов, в рамках которой свободный ресурс выделяется для конкретного абонента на период подключения.

Транкинговая инфраструктура чаще всего представлена:

Наземным оборудованием;

Абонентскими станциями.

В состав первого элемента транкинговой инфраструктуры входят базовые станции и контроллеры. Современные виды оборудования соответствующего типа позволяют обеспечивать пользование связью в рамках индивидуальных, групповых или же широковещательных типов вызова. В некоторых случаях возможно подключение одной абонентской станции к другой без обращения к ресурсам базовой станции.

Рассматриваемый тип коммуникаций применим для решения широкого спектра задач государственных силовых структур. Важно при этом, чтобы соблюдались технические требования СОРМ в системах транкинговой связи. Таковые, как правило, закреплены в ведомственных правовых актах.

Принципы работы транкинговой связи

Рассмотрим основные принципы построения транкинговых систем связи.

Соответствующая технология предполагает использование ультракоротких волн, как и сотовая связь. Для увеличения дальности сигналов в транкинговой инфраструктуре задействуются ретрансляторы. Выше мы отметили, что в ее составе присутствуют базовые станции. Она может быть представлена как одним, так и несколькими объектами — в первом случае сеть будет классифицирована как однозоновая, во втором — как многозоновая.

Первые сети транкинговой связи позволяли организовывать взаимодействие нескольких сотен абонентов. Сейчас за счет включения в нужного количества базовых станций можно обеспечивать связь фактически между любым числом абонентов. Оператор транкинговой связи может распределять приоритеты вызовов, обеспечивать коммуникации в разных режимах — симплексном, дуплексном. Современная инфраструктура соответствующего типа может обеспечивать защиту каналов от несанкционированного доступа, прослушивания, позволяет выводить устройства в интернет. Транкинговые системы связи бывают цифровыми и аналоговыми.

Кто использует транкинговые системы?

Транкинговые системы, которые являются, как мы отметили выше, радиально-зоновыми элементами сетевой инфраструктуры и функционирующие в ультра-коротком диапазоне, ориентированы главным образом на корпоративных заказчиков, на силовые ведомства. В то время как основные клиенты сотовых операторов — частные лица. Транкинг более всего подходит для организации оперативной связи в рамках групп специалистов — например, при несении дежурства, выполнении заданий, оказании помощи другим людям, если речь идет об экстренных службах.

Выше мы отметили, что рассматриваемый востребован государственными службами. Фактически соответствующие структуры являются основными пользователями данной разновидности связи. Это обусловлено рядом принципиальных отличий транкинговых коммуникаций, в частности, от сотовых — привычных обычным гражданам. А именно:

Возможностью практически моментального — в пределах 0,5 секунды, подключения одного абонента к другому;

Определением приоритетных ;

Возможностью связи абонентов друг с другом без использования базовой станции;

Наличием ресурсов для конфигурирования сети в соответствии с задачами пользователя;

Возможностью организации групповых, широковещательных, аварийных, задержанных вызовов;

Наличием ресурсов для шифрования связи, возможностью прослушивания разговоров сторонним абонентом.

Указанные опции не характерны для обычной сотовой связи. Некоторой схожестью с транкинговыми технологиями обладает мобильный стандарт Push To Talk. Но по многим критериям он не подходит для государственных служб.

Чем сотовая связь лучше транкинговой? Прежде всего возможностью передавать файловые данные с высокой скоростью — современные стандарты 4G позволяют достигать показателя в десятки мегабит в секунду. Однако стоит отметить, что представленная в стандарте TETRA транкинговая связь (если говорить о технологии в версии R2), в принципе, также способна к высокоскоростной передаче данных.

TETRA — это цифровая технология рассматриваемых коммуникаций. Но стоит отметить, что транкинговая связь «ТЕТРА» в версии RI несколько уступает стандарту R2 — в частности, по скорости передачи данных. Хотя по основным опциям возможности обеих технологий в целом сопоставимы. Полезно будет сопоставить с ними другие распространенные стандарты транкинговой связи.

Основные стандарты транкинговых коммуникаций

К самым распространенным технологиям можно отнести, прежде всего, те, что классифицируются как цифровые. Аналоговая транкинговая инфраструктура сейчас не слишком востребована. Наиболее популярные стандарты связи рассматриваемого типа:

Рассмотрим особенности каждого из них подробнее.

Стандарт EDACS

Стандарт EDACS был разработан известной шведской корпорацией Ericsson. Классифицируется он как закрытый. Данный стандарт предполагает передачу данных по каналам с использованием широкого спектра частот (но в пределах 870 МГц). В рамках одной транкинговой сети он позволяет обеспечить связь между 16 тыс. абонентов.

Рассматриваемый стандарт в достаточной мере надежный, но считается устаревшим, поскольку фактически предполагает передачу аналоговых сигналов, хоть и с использованием цифровой инфраструктуры. Кроме того, он, как мы отметили выше, закрытый. Оборудование транкинговой связи, адаптированное для него, может выпускать только фирма-разработчик.

Стандарт iDEN

Данный стандарт — также закрытый. Разработан он корпорацией Motorola. Наибольшую востребованность имеет в Северной Америке, некоторых государствах Южной Америки, в Азии. Рассматриваемая технология позволяет реализовать в рамках транкинговой сети привычные абонентам сотовых операторов сервисы — например, отправку SMS, факсов, связь с интернетом.

В России соответствующий стандарт не получил распространения, как считают эксперты, это связано с тем, что используемые в рамках него частоты — 805-821 МГц или же 855-866 МГц не слишком оптимальны с точки зрения решения задач основными пользователями транкинговых систем связи, к которым, как мы отметили выше, относятся государственные службы. К слову, фирма Motorola выпустила ряд решений, совместимых одновременно как с транкинговыми, так и с сотовыми технологиями связи.

Tetrapol PAS

Данный коммуникационный стандарт был разработан во Франции, компанией Matra Communication по заказу французских спецслужб. Характеризуется задействованием довольно низких частот — от 70 до 520 МГЦ, использование которых не слишком популярно в других странах. Однако, в России предпринимались попытки тестирования соответствующего стандарта транкинговых коммуникаций.

TETRA

Выше мы рассмотрели некоторые аспекты технологии TETRA. Изучим ее специфику подробнее.

Транкинговая связь «ТЕТРА» - это, в свою очередь, открытый стандарт коммуникаций, разработанный европейскими специалистами. За пределами Европы долгое время был не слишком распространен, однако, теперь используется многими российскими, азиатскими компаниями, африканскими и южноамериканскими фирмами.

Открытость рассматриваемого стандарта позволяет обеспечивать совместимость с ним разным производителям оборудования для транкинговой связи. Компании, планирующей выпускать соответствующий девайсов, необходимо, вместе с тем, стать членом организации MoU TETRA, тем самым подтвердив свою готовность содействовать развитию данной технологии. Многие современные бренды, производящие оборудование для транкинговых сетей, вступили в данную организацию.

Выше мы отметили, что стандарт R2 позволяет осуществлять передачу данных на высокой скорости. Это возможно, в частности, благодаря тому, что транкинговая связь по соответствующей технологии объединяется с широкополосными сотовыми каналами.

В России стандарт «ТЕТРА» известен под брендом «Тетрарус». Так, он использовался для выстраивания телекоммуникационной инфраструктуры во время Олимпиады в Сочи.

APCO 25

Еще одна популярная технология транкинговой связи — APCO 25. Разработана Ассоциацией коммуникационных служб структур безопасности. Штаб-квартиры данной структуры располагаются в США, в штатах Вирджиния и Флорида.

Преимущество данного стандарта — в возможности обеспечения связи по каналам с высоким уровнем защищенности, достигаемым за счет применения различных технологий шифрования. Еще одна примечательная особенность APCO в том, что он позволяет задействовать широкий диапазон частот — от 139 до 869 МГц. Высокий уровень защищенности, который обеспечивают соответствующие транкинговые системы связи, предопределяет достаточно высокую его востребованность у российских спецслужб.

Стоит отметить, что в РФ распространены собственные стандарты коммуникаций, функционирующих по транкинговым принципам. Их использование обусловлено необходимостью создания исключительно надежной и защищенной инфраструктуры связи. При задействовании подобного подхода применяется транкинговая система связи в вооруженных силахРФ. Многие из технологий связи, используемых в российской армии, разработаны специально для нужд обороны и не рассчитаны на массовое примнение.

Основные поставщики услуг транкинговой связи в РФ

Рассмотрим то, какие бренды в РФ поставляют услуги с использованием технологий, о которых идет речь.

Известный российский оператор транкинговой связи — компания «РадиоТел». Обладает инфраструктурой, позволяющей объединять с городскими станциями. Поставляет решения для экстренных служб, МЧС, частных заказчиков.

Один из крупнейших транкинговых операторов РФ — компания «Тетрасвязь». Специализируется на внедрении решений в рамках стандарта TETRA в самых разных регионах России. Поставляет широкий спектр сервисов — от проектирования транкинговой сети до ввода ее в эксплуатацию.

Другой крупный бренд на рынке транкинговых решений - «Регионтранк». Фирма оказывает услуги в основном в Москве и области, а также в некоторых регионах Центра РФ. Бренд позиционирует себя как поставщик решений, адаптированных под спецификацию бизнес-процессов конкретных организаций-заказчиков.

Еще одна известная компания, которая ведет деятельность в сегменте транкинговых технологий - «Центр-Телко». Можно отметить, что в ее инфраструктуре применены решения, функционирующие в рамках стандарта EDACS.

Перспективы развития транкинговых решений в РФ

Итак, мы изучили, что такое транкинговая связь, принцип построения коммуникаций с использованием ее стандартов. Посмотрим теперь, что говорят эксперты относительно перспектив развития соответствующих решений в России. Данная проблематика является темой для крупнейших конференций с участием представителей телекоммуникационной индустрии РФ — ведомств, поставщиков сервисов, их заказчиков.

В сообществе обсуждаются преимущества собственно транкинговых решений прежде всего перед сотовыми технологиями, а также применимость существующих стандартов данных коммуникаций в РФ. Так, в среде экспертов в области решений, о которых идет речь, распространена точка зрения, по которой для России оптимальной будет как раз таки технология TETRA — с учетом особенностей развития услуг связи в РФ.

Выше мы отметили, что именно стандарт «ТЕТРА» был выбран для выстраивания коммуникационной инфраструктуры на Олимпиаде в Сочи. Но в России, так или иначе, представлено большинство технологий транкинговой связи из тех, что где-либо применяются в мире — и это не считая специальных военных разработок. Большое количество решений соответствующего типа, внедренных в РФ, обусловлено, прежде всего, отсутствием единых, принятых в федеральном масштабе, критериев выбора оптимальных технологических платформ для выстраивания транкинговой инфраструктуры.

Развитие соответствующего типа связи в России может быть затруднено неоднозначным восприятием преимуществ данных решений руководителями ведомств, которые являются основными пользователями рассматриваемых технологий. Для них не всегда очевидно превосходство транкинговой инфраструктуры над сотовыми сетями. Это обусловлено разными причинами.

Прежде всего тем, что аппаратура аналоговых систем транкинговой связи, цифровых решений соответствующего типа стоит, как правило, ощутимо дороже, чем девайсы для пользования сотовыми технологиями. При этом ведомства часто не берут в расчет очевидных преимуществ транкинговой связи — заключающихся, прежде всего, в оперативности и защищенности переговоров и передачи информации. Кроме того, фактические расходы, связанные с пользованием связью, при задействовании транкинговых решений могут быть существенно ниже, чем в случае с сотовыми коммуникациями — при грамотном проектировании данного типа инфраструктуры связи.

Стоит отметить, что принцип транкинговой связи применим не только для обеспечения оперативных переговоров между абонентами. На базе соответствующих технологий могут быть реализованы системы определения местонахождения объекта — в сочетании с его GPS-координатами, а также его отслеживания мониторинговыми центрами. При этом при выстраивании соответствующей инфраструктуры может не потребоваться внедрения относительно дорогих дуплексных решений — вполне может оказаться достаточно и симплексных девайсов. Данный способ применения транкинговой связи — еще один фактор роста интереса к ней со стороны различных российских фирм и ведомств.

Резюме

Итак, мы изучили, что такое транкинговые технологии, рассмотрели основные коммуникационные стандарты, соответствующие им. Основные пользователи соответствующих решений — российские спецслужбы, ведомственные структуры, крупные бизнесы. В подразделениях армии РФ применяются транкинговые системы связи, разработанные специально для решения военных задач — закрытого типа.

Основные преимущества, которыми характеризуются рассматриваемые технологии: оперативность обмена данными, защищенность информации, высокая скорость передачи данных (если речь идет о современных цифровых стандартах), возможность выстраивания сетей в большом масштабе — при условии использования высокопроизводительных и представленных в достаточном количестве базовых станций.

У транкинговых сетей много общего с сотовыми — функционирование в ультра-коротком диапазоне, возможность передачи текстовых сообщений между девайсами, а также получения доступа в интернет при задействовании соответствующих устройств. Аппаратные решения, используемые в рамках транкинговой инфраструктуры, стоят, как правило, дороже. Но при оптимизированном их внедрении компания-заказчик может существенно сэкономить — прежде всего, на трафике.

В мире принято довольно большое количество стандартов транкинговой связи. В России и Европе наибольшей популярностью характеризуется технология «ТЕТРА», в США — APCO. Хотя в РФ с той или иной степенью активности задействуется большинство существующих в мире транкинговых стандартов.

Перспективы соответствующего типа связи в РФ во многом зависят от того, какие из технологий будут приняты в качестве ведущих — хотя бы в большинстве регионов страны. Есть основания говорить о том, что главным стандартом все же будет «ТЕТРА» - как наиболее подходящий для России исходя из специфики развития телекоммуникационного рынка страны.

Другое значимое условие успешного развития такого технологического направления, как транкинговая связь в РФ — повышение уровня знаний и компетенций руководства ведомств, являющихся фактическими и потенциальными пользователями соответствующих решений. Пока для многих структур власти преимущества рассматриваемых технологических концепций — не вполне очевидны. Но, безусловно, у транкинговых решений в РФ — есть свой потребитель, и они уже сейчас самым активным образом используются. В России приняты нормативно-правовые акты, регулирующие использование соответствующих технологий спецслужбами. Таким образом, уже на уровне законодательного регулирования в РФ созданы условия для развития транкинговой связи.

Безусловно, может потребоваться разработка и принятия дополнительных правовых актов, действие которых будет распространяться также и на гражданские сферы — но в случае заинтересованности делового сообщества и крупнейших ведомств, можно ожидать появления соответствующих инициатив на уровне регулирующих структур власти.

Развитие рассматриваемых технологий в РФ может прослеживаться в расширении областей его применения, а также в совершенствовании аппаратных компонентов и ПО, задействуемых в целях обеспечения функционирования транкинговой инфраструктуры.



Рекомендуем почитать

Наверх