Схемы включения операционных усилителей. Идеальный ОУ — Неинвертирующий усилитель

Инструмент 19.08.2019
Инструмент

Неинвертирующий усилитель является базовой схемой с ОУ. Выглядит он до боли просто:

В этой схеме сигнал подается на НЕинвертирующий вход ОУ.

Итак, для того, чтобы понять принцип работы этой схемы, запомните самое важное правило, которое используется для анализа схем с ОУ: выходное напряжение ОУ стремится к тому, чтобы разность напряжения между его входами была равна нулю .

Принцип работы

Итак, давайте инвертирующий вход обозначим, буквой A:


Следуя главному правилу ОУ, получаем, что напряжение на инвертирующем входе равняется входному напряжению: U A =U вх. U A снимается с , который образован резисторами R1 и R2. Следовательно:

U A = U вых R1/(R1+R2)

Так как U A =U вх , получаем что U вх = U вых R1/(R1+R2) .

Коэффициент усиления по напряжению высчитывается как K U = U вых /U вх .

Подставляем сюда ранее полученные значения и получаем, что K U = 1+R2/R1 .

Проверка работы в Proteus

Это также можно легко проверить с помощью программы Proteus. Схема будет выглядеть вот так:


Давайте рассчитаем коэффициент усиления K U. K U = 1+R2/R1=1+90к/10к=10. Значит, наш усилитель должен ровно в 10 раз увеличивать входной сигнал. Давайте проверим, так ли это. Подаем на неинвертирующий вход синусоиду с частотой в 1кГц и смотрим, что имеем на выходе. Для этого нам потребуется виртуальный осциллограф:


Входной сигнал — это желтая осциллограмма, а выходной сигнал — это розовая осциллограмма:


Как вы видите, входной сигнал усилился ровно в 10 раз. Фаза выходного сигнала осталась такой же. Поэтому такой усилитель называют НЕинвертирующим .

Но, как говорится, есть одно «НО». На самом же деле в реальном ОУ имеются конструктивные недостатки. Так как Proteus старается эмулировать компоненты, приближенные к реальным, давайте рассмотрим амплитудно-частотную характеристику (АЧХ), а также фазо-частотную характеристику (ФЧХ) нашего операционника LM358.

АЧХ и ФЧХ неинвертирующего усилителя на LM358

На практике, для того, чтобы снять АЧХ, нам надо на вход нашего усилителя подать частоту от 0 Герц и до какого-то конечного значения, а на выходе в это время следить за изменением амплитуды сигнала. В Proteus все это делается с помощью функции Frequency Responce:


По оси Y у нас коэффициент усиления, а по оси Х — частота. Как вы могли заметить, коэффициент усиления почти не изменялся до частоты 10 кГц, потом стал стремительно падать с ростом частоты. На частоте в 1МегаГерц коэффициент усиления был равен единице. Этот параметр в ОУ называется частотой единичного усиления и обозначается как f 1 . То есть по сути на этой частоте усилитель не усиливает сигнал. Что подали на вход, то и вышло на выходе.

В проектировании усилителей важен такой параметр, как граничная частота среза f гр . Для того, чтобы ее вычислить, нам надо знать коэффициент усиления на частоте K гр:

K гр = K Uo / √2 либо = K Uo х 0,707 , где K Uo — это коэффициент усиления на частоте в 0 Герц (постоянный ток).

Если смотреть на АЧХ, мы увидим, что на нулевой частоте (на постоянном токе) у нас коэффициент усиления равен 10. Вычисляем K гр .

K гр = 10 х 0,707 = 7,07

Теперь проводим горизонтальную линию на уровне 7,07 и смотрим пересечение с графиком. У меня получилось около 104 кГц. Строить усилитель с частотой среза, более, чем f гр не имеет смысла, так как в этом случае выходной сигнал усилителя будет сильно затухать.


Также очень просто определить граничную частоту, если построить график в . Граничная частота будет находиться на уровне K Uo -3dB . То есть в нашем случае на уровне в 17dB. Как вы видите, в этом случае мы также получили частоту среза в 104 кГц.


Ну ладно, с частотой среза вроде бы разобрались. Теперь нам важен такой параметр, как ФЧХ. В нашем случае мы вроде бы как получили НЕинвертирующий усилитель. То есть сдвиг фаз между входным и выходным сигналом должен быть равен нулю. Но как поведет себя усилитель на высоких частотах (ВЧ)?

Берем такой же диапазон частот от 0 и до 100 МГц и смотрим на ФЧХ:


Как вы видите, до частоты в 1 кГц неинвертирующий усилитель действительно работает как надо. То есть входной и выходной сигнал двигаются синфазно. Но после частоты в 1 кГц, мы видим, что фаза выходного сигнала начинает отставать. На частоте в 100 кГц она уже отстает примерно на 40 градусов.

Для наглядности АЧХ и ФЧХ можно разместить на одном графике:


Также в схемах с неинвертирующим усилителем часто вводят компенсирующий резистор R K .


Он определяется по формуле:

и служит для того, чтобы обеспечить равенство сопротивлений между каждым из входов и землей. Более подробно мы это разберем в следующей статье.

При участии Jeer

В статье будет рассмотрена стандартная на операционном усилителе, а также приведены примеры различных режимов работы этого прибора. На сегодняшний день ни одно устройство управления не обходится без усилителей. Это поистине универсальные приборы, которые позволяют выполнять различные функции с сигналом. О том, как работает и что конкретно позволяет сделать этот прибор, вы и узнаете далее.

Инвертирующие усилители

Схема инвертирующего усилителя на ОУ достаточно проста, вы ее можете увидеть на изображении. В ее основе находится операционный усилитель (схемы включения его рассмотрены в данной статье). Кроме этого, здесь:

  1. На резисторе R1 падение напряжения присутствует, по своему значению оно такое же, как входное.
  2. На резисторе R2 также имеется - оно такое же, как выходное.

При этом отношение выходного напряжения к сопротивлению R2 равно по значению отношению входного к R1, но обратно ему по знаку. Зная значения сопротивления и напряжения, можно вычислить коэффициент усиления. Для этого необходимо разделить выходное напряжение на входное. При этом операционный усилитель (схемы включения у него могут быть любыми) может иметь одинаковый коэффициент усиления независимо от типа.

Работа обратной связи

Теперь нужно более детально разобрать один ключевой момент - работу обратной связи. Допустим, на входе имеется некоторое напряжение. Для простоты расчетов примем его значение равным 1 В. Допустим также, что R1=10 кОм, R2=100 кОм.

А теперь предположим, что возникла какая-то непредвиденная ситуация, из-за которой на выходе каскада напряжение установилось на значении 0 В. Далее наблюдается интересная картина - два сопротивления начинают работать в паре, совместно они создают из себя делитель напряжения. На выходе инвертирующего каскада оно поддерживается на уровне 0,91 В. При этом ОУ позволяет фиксировать рассогласование по входам, а на выходе происходит уменьшение напряжения. Поэтому очень просто спроектировать схему на операционных усилителях, реализующую функцию усилителя сигнала от датчика, например.

И продолжаться это изменение будет до той самой поры, покуда не установится на выходе значение стабильное в 10 В. Именно в этот миг на входах операционного усилителя потенциалы окажутся равными. И они будут такими же, как потенциал земли. С другой стороны, если на выходе устройства продолжит уменьшаться напряжение, и оно будет меньше, чем -10 В, на входе потенциал станет ниже, нежели у земли. Следствие этого - на выходе начинает увеличиваться напряжение.

У такой схемы имеется большой недостаток - входной импеданс очень маленький, в особенности у усилителей с большим значением коэффициента усиления по напряжению, в том случае, если цепь обратной связи замкнута. А конструкция, рассмотренная дальше, лишена всех этих недостатков.

Неинвертирующий усилитель

На рисунке приведена схема неинвертирующего усилителя на операционном усилителе. Проанализировав ее, можно сделать несколько выводов:

  1. Значение напряжения UA равно входному.
  2. С делителя снимается напряжение UA, которое равно отношению произведения выходного напряжения и R1 к сумме сопротивлений R1 и R2.
  3. В случае, когда UA по значению равен входному напряжению, коэффициент усиления равен отношению выходного напряжения к входному (или же можно к отношению сопротивлений R2 и R1 прибавить единицу).

Называется данная конструкция неинвертирующим усилителем, у него практически бесконечный входной импеданс. Например, для операционных усилителей 411 серии его значение - 1012 Ом, минимум. А для операционных усилителей на биполярных полупроводниковых транзисторах, как правило, свыше 108 Ом. А вот выходной импеданс каскада, равно как и в ранее рассмотренной схеме, очень мал - доли ома. И это нужно учитывать, когда производится расчет схем на операционных усилителях.

Схема усилителя переменного тока

Обе схемы, рассмотренные в статье ранее, работают на Но вот если в качестве связи источника входного сигнала и усилителя выступает переменный ток, то придется предусматривать заземление для тока на входе устройства. Причем нужно обратить внимание на то, что значение тока крайне мало по величине.

В том случае, когда происходит усиление сигналов переменного тока, необходимо уменьшать коэффициент усиления сигнала постоянного до единицы. В особенности это актуально для случаев, когда коэффициент усиления по напряжению очень большой. Благодаря этому имеется возможность значительно снизить влияние напряжения сдвига, которое приводится к входу устройства.

Второй пример схемы для работы с переменным напряжением

В данной схеме на уровне -3 дБ можно видеть соответствие частоте 17 Гц. На ней у конденсатора импеданс оказывается на уровне двух килоом. Поэтому конденсатор должен быть достаточно большим.

Чтобы построить усилитель переменного тока, необходимо использовать неинвертирующий тип схемы на операционных усилителях. И у него должен быть достаточно большой коэффициент усиления по напряжению. Но вот конденсатор может быть чересчур большим, поэтому лучше всего отказаться от его использования. Правда, придется правильно подобрать напряжение сдвига, приравняв его по значению к нулю. А можно применить Т-образный делитель и увеличить значения сопротивлений обоих резисторов в схеме.

Какую схему предпочтительнее использовать

Большинство разработчиков отдают свое предпочтение неинвертирующим усилителям, так как у них очень высокий импеданс на входе. И пренебрегают схемам инвертирующего типа. Зато у последнего имеется огромное преимущество - он не требователен к самому операционному усилителю, который является его «сердцем».

Кроме того, характеристики, на поверку, у него значительно лучше. И с помощью мнимого заземления можно без особого труда все сигналы комбинировать, причем они не будут оказывать друг на друга какое-то влияние. Может использоваться в конструкциях и схема усилителя постоянного тока на операционном усилителе. Все зависит от потребностей.

И самое последнее - случай, если вся схема, рассмотренная здесь, подключается к стабильному выходу другого операционного усилителя. В этом случае значение импеданса на входе не играет существенной роли - хоть 1 кОм, хоть 10, хоть бесконечность. В этом случае первый каскад всегда выполняет свою функцию по отношению к следующему.

Схема повторителя

Работает повторитель на операционном усилителе аналогично эмиттерному, построенному на биполярном транзисторе. И выполняет аналогичные функции. По сути, это неинвертирующий усилитель, в котором у первого резистора сопротивление бесконечно большое, а у второго равно нулю. При этом коэффициент усиления равен единице.

Имеются специальные типы операционных усилителей, которые используются в технике лишь для схем повторителей. У них значительно лучшие характеристики - как правило, это высокое быстродействие. В качестве примера можно привести такие операционные усилители как OPA633, LM310, TL068. Последний имеет корпус, как у транзистора, а также три вывода. Очень часто такие усилители называют просто буферами. Дело в том, что они обладают свойствами изолятора (очень большой входной импеданс и крайне низкий выходной). Примерно по такому принципу строится и схема усилителя тока на операционном усилителе.

Активный режим работы

По сути, это такой режим работы, при котором выходы и входы операционного усилителя не перегружаются. Если на вход схемы подать очень большой сигнал, то на выходе его просто начнет резать по уровню напряжения коллектора или эмиттера. А вот когда на выходе напряжение фиксируется на уровне среза - на входах ОУ напряжение не меняется. При этом размах не может оказаться большим, нежели напряжение питания

Большая часть схем на операционных усилителях рассчитывается таким образом, что этот размах меньше питающего напряжения на 2 В. Но все зависит от того, какая используется конкретно схема усилителя на операционном усилителе. Такое же имеется ограничение на устойчивость на базе операционного усилителя.

Допустим, есть в источнике с плавающей нагрузкой некое падение по напряжению. В случае если ток имеет нормальное направление движения, можно встретить странную на первый взгляд нагрузку. Например, несколько переполюсованных батарей питания. Такая конструкция может применяться для того, чтобы получить прямой ток заряда.

Некоторые предосторожности

Простой усилитель напряжения на операционном усилителе (схема может быть выбрана любая) можно изготовить буквально "на коленке". Но потребуется учитывать некоторые особенности. Обязательно нужно удостовериться, что обратная связь в схеме отрицательная. Это также говорит о том, что недопустимо путать неинвертирующий и инвертирующий входы усилителя. Кроме того, должна присутствовать цепочка обратной связи для постоянного тока. Иначе операционный усилитель начнет быстро переходить в режим насыщения.

У большинства операционных усилителей входное дифференциальное напряжение очень маленькое по значению. При этом максимальная разность неинвертирующего и инвертирующего входов может ограничиваться значением 5 В при любом подключении источника питания. Если пренебречь данным условием, появятся на входе довольно большие значения токов, которые приведут к тому, что все характеристики схемы ухудшатся.

Самое страшное в этом - физическое разрушение самого операционного усилителя. В результате перестает работать схема усилителя на операционном усилителе полностью.

Следует учитывать

И, конечно же, нужно рассказать о правилах, которые стоит соблюдать, чтобы обеспечить стабильную и долговечную работу операционного усилителя.

Самое главное - ОУ обладает очень высоким коэффициентом усиления по напряжению. И если между входами напряжения изменятся на долю милливольт, на выходе его значение может измениться существенно. Поэтому важно знать: у операционного усилителя выход старается стремиться к тому, чтоб между входами разница напряжений оказалась близка (в идеале равна) к нулю.

Второе правило - потребление тока операционным усилителем крайне малое, буквально наноамперы. Если же на входах установлены полевые транзисторы, то оно исчисляется пикоамперами. Отсюда можно сделать вывод, что входы не потребляют ток, независимо от того, какой используется операционный усилитель, схема - принцип работы остается тем же.

Но не стоит думать, что ОУ действительно постоянно меняет на входах напряжение. Физически это осуществить почти нереально, так как не было бы соответствия со вторым правилом. Благодаря операционному усилителю происходит оценка состояния всех входов. При помощи схемы обратной внешней связи передается напряжение на вход с выхода. Результат - между входами операционного усилителя разница напряжений находится на уровне нуля.

Понятие обратной связи

Это распространенное понятие, и оно уже применяется в широких смыслах во всех областях техники. В любой системе управления имеется обратная связь, которая сравнивает выходной сигнал и заданное значение (эталонное). В зависимости от того, какое значение текущее - происходит корректировка в нужную сторону. Причем системой управления может быть что угодно, даже автомобиль, которые едет по дороге.

Водитель жмет на тормоза, и обратная связь здесь - начало замедления. Проведя аналогию с таким простым примером, можно лучше разобраться с обратной связью в электронных схемах. А отрицательная обратная связь - это если бы при нажимании педали тормоза автомобиль ускорялся.

В электронике обратной связью называют процесс, во время которого происходит передача сигнала с выхода на вход. При этом происходит также погашение сигнала на входе. С одной стороны, это не очень разумная идея, ведь может показаться со стороны, что значительно уменьшится коэффициент усиления. Такие отзывы, кстати, получали основоположники разработки обратной связи в электронике. Но стоит разобраться детальнее в ее влиянии на операционные усилители - практические схемы рассмотреть. И станет ясно, что она и правда немного уменьшает коэффициент усиления, но зато позволяет несколько улучшить остальные параметры:

  1. Сгладить частотные характеристики (приводит их к необходимой).
  2. Позволяет предсказывать поведение усилителя.
  3. Способна устранить нелинейность и искажения сигнала.

Чем глубже обратная связь (речь идет про отрицательную), тем меньшее влияние оказывают на усилитель характеристики с разомкнутой ОС. Результат - все его параметры зависят только от того, какие свойства имеет схема.

Стоит обратить внимание на то, что все операционные усилители работают в режиме с очень глубокой обратной связью. А коэффициент усиления по напряжению (с ее разомкнутой петлей) может достигать даже нескольких миллионов. Поэтому схема усилителя на операционном усилителе крайне требовательна к соблюдению всех параметров по питанию и уровню входного сигнала.

Приветствую вас дорогие друзья! Вот наконец добрался я до своего компьютера, приготовил себе чайку с печеньками и понеслась…

Для тех кто впервые на моем блоге и не совсем понимает что здесь происходит спешу напомнить, меня зовут Владимир Васильев и на этих страницах я делюсь со своими читателями сакральными знаниями из области электроники и не только электроники. Так что может быть и вы здесь найдете для себя что-то полезное, по крайней мере я на это надеюсь. Обязательно подпишитесь , тогда вы ничего не пропустите.

А сегодня речь пойдет о таком электронном устройстве как операционный усилитель. Эти усилители применяются повсеместно, везде где требуется усилить сигнал по мощности найдется работенка для операционника.

Особенно распространено применение операционных усилителей в аудиотехнике. Каждый аудиофилл стремится усилить звучание своих музыкальных колонок и поэтому старается прикрутить усилитель по мощнее. Вот здесь мы и сталкиваемся с операционными усилителями, ведь многие аудиосистемы просто нашпигованы ими. Благодаря свойству операционного усилителя усиливать сигнал по мощности мы ощущаем более мощное давление на свои барабанные перепонки когда слушаем композиции на своих аудио колонках. Вот так вот в быту мы оцениваем качество работы операционного усилителя на слух.

В этой статье на слух мы оценивать ничего не будем но постараемся рассмотреть все детально и разложим все по полочкам чтобы стало понятно даже самому самоварному чайнику.

Что такое операционный усилитель?

Операционные усилители представляют собой микросхемы которые могут выглядеть по-разному.

Например на этой картинке изображены два операционных усилителя российского производства. Слева операционный усилитель К544УД2АР в пластмассовом DIP корпусе а справа изображен операционник в металлическом корпусе.

По началу, до знакомства с операционниками, микросхемы в таких металлических корпусах я постоянно путал с транзисторами. Думал что это такие хитромудрые многоэмиттерные транзисторы 🙂

Условное графическое обозначение (УГО)

Условное обозначение операционного усилителя выглядит следующим образом.

Итак операционный усилитель (ОУ) имеет два входа и один выход. Также имеются выводы для подключения питания но на условных графических обозначениях их обычно не указывают.

Для такого усилителя есть два правила которые помогут понять принцип работы:

  1. Выход операционника стремится к тому, чтобы разность напряжений на его входах была равна нулю
  2. Входы операционного усилителя ток не потребляют

Вход 1 обозначается знаком «+» и называется неинвертирующим а вход 2 обозначается как «-» и является инвертирующим.

Входы операционника обладают высоким входным сопротивлением или иначе говорят высоким импедансом.

Это говорит о том, что входы операционного усилителя ток почти не потребляют (буквально какие-то наноамперы). Усилитель просто оценивает величину напряжений на входах и в зависимости от этого выдает сигнал на выходе усиливая его.

Коэффициент усиления операционного усилителя имеет просто огромное значение, может достигать миллиона, а это очень большое значение! Значит это то, что если мы ко входу приложим небольшое напряжение, хотябы 1 мВ, то на выходе получим сразу максимум, напряжение почти равное напряжению источника питания ОУ. Из-за этого свойства операционники практически никогда не используют без обратной связи (ОС). Действительно какой смысл во входном сигнале если на выходе мы всегда получим максимальное напряжение, но об этом поговорим чуть позже.

Входы ОУ работают так, что если величина на неинвертирующем входе окажется больше чем на инвертирующем, то на выходе будет максимальное положительное значение +15В. Если на инвертирующем входе величина напряжения окажется более положительной то на выходе будем наблюдать максимум отрицательной величины, где-то -15В.

Действительно операционный усилитель может выдавать значения напряжений как положительной так и отрицательной полярности. У новичка может возникнуть вопрос о том как же такое возможно? Но такое действительно возможно и это связано с применением источника питания с расщепленным напряжением, так называемым двуполярным питанием. Давайте рассмотрим питание операционника чуток подробнее.

Правильное питание ОУ

Наверное не будет секретом, что для того, чтобы операционник работал, его нужно запитать, т.е. подключить его к источнику питания. Но есть интересный момент, как мы убедились чуток ранее операционный усилитель может выдавать на выход напряжения как положительной так и отрицательной полярности. Как такое может быть?

А такое быть может! Это связано с применением двуполярного источника питания, конечно возможно использование и однополярного источника но в этом случае возможности операционного усилителя будут ограничены.

Вообще в работе с источниками питания многое зависит от того что мы взяли за точку отсчета т.е. за 0 (ноль). Давайте с этим разберемся.

Пример на батарейках

Обычно примеры проще всего приводить на пальцах но в электронике думаю подойдут и пальчиковые батарейки 🙂

Допустим у нас есть обычная пальчиковая батарейка (батарейка типа АА). У нее есть два полюса плюсовой и минусовой. Когда минусовой полюс мы принимаем за ноль, считаем нулевой точкой отсчета то соответственно плюсовой полюс батарейки будет у нас показывать + 5В (значение с плюсом).

Это мы можем увидеть с помощью мультиметра (кстати в помощь), достаточно подключить минусовой черный щуп к минусу батарейки а красный щуп к плюсу и вуаля. Здесь все просто и логично.

Теперь немножко усложним задачу и возьмем точно такую же вторую батарейку. Подключим батарейки последовательно и рассмотрим как меняются показания измерительных приборов (мультиметров или вольтметров) в зависимости от различных точек приложения щупов.

Если мы за ноль приняли минусовой полюс крайней батарейки а измеряющий щуп подключим к плюсу батарейки то мультиметр нам покажет значение в +10 В.

Если за точку отсчета будет принят положительный полюс батарейки а измеряющий щуп был подключен к минусу то любой вольтметр нам покажет -10 В.

Но если за точку отсчета будет принята точка между двумя батарейками то в результате мы сможем плучить простой источник двуполярного питания. И вы можете в этом убедиться, мультиметр нам подтвердит что так оно и есть. У нас в наличии будет напряжение как положительной полярности +5В так и напряжение отрицательной полярности -5В.

Схемы источников двуполярного питания

Примеры на батарейках я привел для примера, чтобы было более понятно. Теперь давайте рассмотрим несколько примеров простых схем источников расщепленного питания которые можно применять в своих радиолюбительских конструкциях.

Схема с трансформатором, с отводом от «средней» точки

И первая схема источника питания для ОУ перед вами. Она достаточно простая но я немножко поясню принцип ее работы.

Схема питается от привычной нам домашней сети поэтому нет ничего удивительного что на первичную обмотку трансформатора приходит переменный ток в 220В. Затем трансформатор преобразует переменный ток 220В в такой же переменный но уже в 30В. Вот такую вот нам захотелось произвести трансформацию.

Да на вторичной обмотке будет переменное напряжение в 30В но обратите внимание на отвод от средней точки вторичной обмотки. На вторичной обмотке сделано ответвление, причем количество витков до этого ответвления равно числу витков после ответвления.

Благодаря этому ответвлению мы можем получить на выходе вторичной обмотки переменное напряжение как в 30 В так и переменку в 15В. Это знание мы берем на вооружение.

Далее нам нужно переменку выпрямить и превратить в постоянку поэтому . Диодный мост с этой задачей справился и на выходе мы получили не очень стабильную постоянку в 30В. Это напряжение будет нам показывать мультиметр если мы подключим шупы к выходу диодного моста, но нам нужно помнить про ответвление на вторичной обмотке.

Мы добились нулевой точки отсчета между полюсами потенциалов положительной и отрицательной полярности. В результате на выходе мы имеем достаточно стабильное напряжение как +15В так и -15В. Эту схему конечно можно еще более улучшить если добавить стабилитроны или интегральные стабилизаторы но тем не менее приведенная схема уже вполне может справиться с задачей питания операционных усилителей.

Эта схема на мой взгляд проще, проще в том ключе, что нет необходимости искать трансформатор с ответвлением от середины или формировать вторичную обмотку самостоятельно. Но здесь придется раскошелиться на второй диодный мост.

Диодные мосты включены так, что положительный потенциал формируется с катодов диодиков первого моста, а отрицательный потенциал выходит с анодов диодов второго моста. Здесь нулевая точка отсчета выводится между двумя мостами. Упомяну также, что здесь используются разделительные конденсаторы, они оберегают один диодный мост от воздействий со стороны второго.

Эта схема также легко подвергается различным улучшениям, но самое главное она решает основную задачу — с помощью нее можно запитать операционный усилитель.

Обратная связь ОУ

Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.

С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде 🙂 Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.

Если на дороге стало скользко? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно.

В операционном усилителе все происходит подобным образом.

Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?

Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом и как его контролировать, но для этого нам нужно знать некоторые детали.

Положительная обратная связь, отрицательная обратная связь

Да, в операционных усилителях применяют обратную связь и очень широко. Но обратная связь может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.

Положительная обратная связь это когда часть выходного сигнала поступает обратно на вход причем она (часть выходного) суммируется с входным.

Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать. Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.

С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые используют в АЦП (Аналого-цифровых преобразователях).

Отрицательная обратная связь это такая связь когда часть выходного сигнала поступает обратно на вход но при этом она вычитается из входного

А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость. В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.

При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.

Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.

Схемы включения операционных усилителей

Схемы включения операционных усилителей могут быть весьма разнообразны поэтому мне врятля удастся рассказать о каждой но я постараюсь рассмотреть основные.

Компаратор на ОУ

Формулы для компараторной схемы будут следующие:

Т.е. в результате будет напряжение соответствующее логической единице.

Т.е. в результате будет напряжение соответствующее логическому нулю.

Схема компаратора обладает высоким входным сопротивлением (импедансом) и низким выходным.

Рассмотрим для начала вот такую схему включения операционника в режиме компаратора. Эта схема включения лишена обратной связи. Такие схемы применяются в цифровой схемотехнике когда нужно оценить сигналы на входе, выяснить какой больше и выдать результат в цифровой форме. В итоге на выходе будет логическая 1 или логический ноль (к примеру 5В это 1 а 0В это ноль).

Допустим напряжение стабилизации стабилитрона 5В, на вход один мы приложили 3В а к входу 2 мы приложили 1В. Далее в компараторе происходит следующее, напряжение на прямом входе 1 используется как есть (просто потому что это неинвертирующий вход) а напряжение на инверсном входе 2 инвертируется. В результате где было 3В так и остается 3В а где был 1В будет -1В.

В результате 3В-1В =2В, но благодаря коэффициенту усиления операционника на выход пойдет напряжение равное напряжению источника питания, т.е. порядка 15В. Но стабилитрон отработает и на выход пойдет 5В что соответствует логической единице.

Теперь представили, что на вход 2 мы кинули 3В а на вход 1 приложили 1В. Операционник все это прожует, прямой вход оставит без изменений, а инверсный (инвертирующий) изменит на противоположный из 3В сделает -3В.

В результате 1В-3В=-2В, но согласно логике работы на выход пойдет минус источника питания т.е. -15В. Но у нас стоит стабилитрон и он это не пропустит и на выходе у нас будет величина близкая нулю. Это и будет логический ноль для цифровой схемы.

Триггер Шмитта на ОУ

Чуть ранее мы рассматривали такую схему включения ОУ как компаратор. В компараторе сравниваются два напряжения на входе и выдается результат на выходе. Но чтобы сравнивать входное напряжение с нулем нужно воспользоваться схемой представленной чуть выше.

Здесь сигнал подается на инвертирующий вход а прямой вход посажен на землю, на ноль.

Если на входе у нас напряжение больше нуля то на выходе будем иметь -15В. Если напряжение меньше нуля то на выходе будет+15В.

Но что случится если мы захотим подать напряжение равное нулю? Такое напряжение никогда не получится сделать, ведь идеального нуля не бывает и сигнал на входе хоть на доли микровольт но обязательно будет меняться в ту или другую сторону. В результате на выходе будут полный хаос, выходное напряжение будет многократно скакать максимума до минимума что на практике совершенно не удобно.

Для избавления от подобного хаоса вводит гистерезист — это некий зазор в пределах которого сигнал на выходе не будет меняться.

Этот зазор позволяет реализовать данная схема посредством положительной обратной связи.

Представим, что на вход мы подали 5В, на выходе в первое мгновение получится сигнал напряжением в -15В. Далее начинает отрабатывать положительная обратная связь. Обратная связь образует делитель напряжения в результате чего на прямом входе операционника появится напряжение -1,36В.

На инверсном входе у нас сигнал более положительный поэтому операционный усилитель отработает следующим образом. Внутри него сигнал в 5В инвертируется и становится -5В, далее два сигнала складываются и получается отрицательное значение. Отрицательное значение благодаря коэффициенту усиления станет -15В. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В.

Пусть сигнал на входе изменился и стал -2В. В нутрях это -2В инвертируется и станет +2В, а -1,36В как был так и останется. Далее все это складывается и получается положительное значение которое на выходе превратится в +15В. На прямом входе значение -1,36В благодаря обратной связи превратится в +1,36В. Теперь чтобы изменить значение на выходе на противоположное нужно подать сигнал более 1,36В.

Таким образом у нас появилась зона с нулевой чувствительностью с диапазоном от -1,36В до +1,36В. Такая зона нечувствительности носит название гистерезис.

Повторитель

Наиболее простой обладатель отрицательной обратной связи это повторитель.

Повторитель выдает на выходе то напряжение, которое было подано на его вход. Казалось бы для чего это нужно ведь от этого ничего не меняется. Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. В схемах повторители выступают в роли буфера, который оберегает от перегрузок хилые выходы.

Чтобы понять как он работает отмотаете чуток назад, там где мы обсуждали отрицательную обратную связь. Там я упоминал, что в случае с отрицательной обратной связью операционник всеми возможными способами стремится к равному потенциалу по своим входам. Для этого он подстраивает напряжение на своем выходе так, чтобы разность потенциалов на его входах равнялась нулю.

Так допустим на входе у нас 1В. Чтобы потенциалы на входах были раны на инвертирующем входе должен быть также 1В. На то он и повторитель.

Схема неинвертирующего усилителя очень похожа на схему повторителя, только здесь обратная связь представлена делителем напряжения и посажена на землю.

Посмотрим как все это работает. Допустим на вход подано 5В, резистор R1 = 10Ом, резистор R2 = 10Ом. Чтобы напряжение на входах были равны, операционник вынужден поднять напряжение на выходе так, чтобы потенциал на инверсном входе сравнялся с прямым. В данном случае делитель напряжения делит пополам, получается, что напряжение на выходе должно быть в два раза больше напряжения на входе.

Вообще чтобы применять эту схему включения даже не нужно ничего ворошить в голове, достаточно воспользоваться формулой, где достаточно узнать коэффициент К.

И сейчас мы рассмотрим работу такой схемы включения как инвертирующий усилитель. Для инвертирующего усилителя есть такие формулы:

Инвертирующий усилитель позволяет усиливать сигнал одновременно инвертируя (меняя знак) его. Причем коэффициент усиления мы можем задать любой. Этот коэффициент усиления мы формируем посредством отрицательной обратной связи, которая представляет собой делитель напряжения.

Теперь попробуем его в работе, допустим на входе у нас сигнал в 1В, резистор R2 = 100Ом, резистор R1 = 10Ом. Сигнал со входа идет через R1, затем R2 и на выход. Допустим сигнал на выходе невероятным образом стал 0В. Рассчитаем делитель напряжения.

1В/110=Х/100, отсюда Х = 0,91В

Получается что в точке А потенциал равен 0,91В, но это противоречит правилу операционного усилителя. Ведь операционник стремится уравнять потенциалы на своих входах. Поэтому потенциал в точке А будет равен нулю и равен потенциалу в точке B.

Как сделать так чтобы на входе был 1В а в точке А был 0В?

Для этого нужно уменьшать напряжение на выходе. И в результате мы получаем

К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.

А эта схема включения позволяет складывать множество входных напряжений. Причем напряжения могут быть как положительными так и отрицательными. По истине на операционниках можно строить аналоговые компьютеры. Так чтож давайте разбираться.

Основой сумматора служит все тот же инвертирующий усилитель только с одним отличием, вместо одного входа он может иметь этих входов сколько угодно. Вспомним формулку и инвертирующего усилка.Потенциал точки Х будет равен нулю поэтому сумма токов входящих с каждого входа будет выглядеть вот так:Если нашей целью является чистое сложение входных напряжений то все резисторы в этой схеме выбираются одного номинала. Это приводит также что коэффициент усиления для каждого входа будет равен 1. Тогда формула для инвертирующего усилителя принимает вид:

Ну чтож, я думаю что с работой сумматора и других схем включения на операционниках разобраться не трудно. Достаточно немножко попрактиковаться и попробовать собрать эти схемы и посмотреть что происходит с входными и выходными сигналами.

А я на этом пожалуй остановлюсь ведь в работе с операционными усилителями применяются очень много различных схем включения, это различные преобразователи ток-напряжение, сумматоры, интеграторы и логарифмирующие усилители и все их рассматривать можно очень долго.

Если вас заинтересовали другие схемы включения и хотите с ними разобраться то советую полистать , все обязательно встанет на свои места.

А на этом я буду завершать, тем более статья получилась достаточно объемной и после написания ее нужно чутка подшлифовать и навести марафет.

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления тем больше я понимаю что делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Кстати друзья, у меня возникла одна классная идея и мне очень важно слышать ваше мнение. Я подумываю выпустить обучающий материал по операционным усилителям, этот материал будет в виде обычной pdf книжки или видеокурса, еще не решил. Мне кажется что несмотря на большое обилие информации в интернете и в литературе все=таки не хватает наглядной практической информации, такой, которую сможет понять каждый.

Так вот, напишите пожалуйста в комментариях какую информацию вы хотели бы видеть в этом обучающем материале чтобы я мог выдавать не просто полезную информацию а информацию которая действительно востребована.

А на этом у меня все, поэтому я желаю вам удачи, успехов и прекрасного настроения, даже не смотря на то что за окном зима!

С н/п Владимир Васильев.

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Всем доброго времени суток. В прошлой статье я рассказывал о питания. В данной статье я расскажу о применении ОУ в линейных схемах .

Повторитель напряжения

Первая схема, о которой я расскажу, является схема усилителя с единичным усилением (единичный усилитель) или так называемый . Схема данного усилителя показана ниже

Усилитель с единичным усилением (повторитель напряжения).

Данная схема представляет собой модификацию , отличие состоит в том, что отсутствуют резистор обратной связи и резистор на инвертирующем входе. Таким образом, напряжение с выхода ОУ полностью поступает на инвертирующий вход ОУ, а, следовательно, коэффициент передачи обратной связи равен единице (β = 1).

Как известно, входное сопротивление ОУ с обратной связью определяется следующим выражением


  • где R BX – входное сопротивление ОУ без ОС,

Тогда для повторителя напряжения входное сопротивление будет иметь вид

Выходное сопротивление ОУ с обратной связью представляет собой следующее выражение


  • где R BЫX – входное сопротивление ОУ без ОС,
  • β – коэффициент передачи цепи ОС,
  • К – коэффициент усиления ОУ без ОС.

Так как у повторителя напряжения коэффициент передачи обратной связи равен единице (β = 1), то выходное сопротивление будет иметь следующий вид


Пример расчёта параметров повторителя напряжения

Для примера рассчитаем повторитель напряжения на ОУ, который имеет на требуемой частоте коэффициент усиления К У = 80 (38 дБ), входное сопротивление R BX = 500 кОм, выходное сопротивление R BЫX = 300 Ом.

Входное сопротивление повторителя напряжения составит

Выходное сопротивление повторителя напряжения составит


Недостатки простейшей схемы повторителя напряжения

Вследствие того, что усиление ОУ с разомкнутой цепью ОС изменяется с частотой (с ростом частоты происходит уменьшение коэффициента усиления), поэтому входное и выходное сопротивления также зависят от частоты (с ростом частоты входное сопротивление уменьшается, а выходное – возрастает).

Если входной сигнал имеет достаточно большую постоянную составляющую и значительный размах амплитуды, то может возникнуть ситуация, когда будет превышен предел синфазных входных напряжений. Для устранения данной проблемы сигнал на неивертирующий вход необходимо подавать, через разделительный конденсатор, а между неинвертирующим входом и «землёй» включить резистор, однако этот резистор будет влиять на входное сопротивление повторителя.

Ещё одним способом улучшения параметров повторителя напряжения, который рекомендуют производители ОУ является включение в цепь ОС и между неинвертирующим входом и «землёй» резисторов с одинаковым сопротивлением. При этом коэффициент усиления ОУ будет также равен единице, но входное и выходное сопротивление будут зависеть от внешних резисторов, а не от параметров ОУ.

Наиболее действенным способом улучшения параметров единичного усилителя является схема, в которой после схемы повторителя напряжения включить усилитель мощности, обеспечивающий большой выходной ток. В этом случае коэффициент усиления напряжения составит примерно единицу, а ток ОС определяется характеристика усилителя мощности (входное и выходное сопротивление умножаются на коэффициенты усиления обоих усилителей).

Неинвертирующий усилитель

После разбора повторителя напряжения, который, по сути, является неинвертирующим усилителем с коэффициентом усиления равным единице, перейдём к рассмотрению схемы неинвертирующего усилителя с произвольным коэффициентом усиления. Такой тип усилителя характеризуется тем, что имеет высокое входное и низкое выходное сопротивление, схема усилителя приведена ниже


Схема неинвертирующего усилителя.

Данная схема является одной из стандартных схем включения операционных усилителей и содержит ОУ DA1, резистор смещения R1 и резистор обратной связи R2. Операционный усилитель в данной схеме охвачен последовательной обратной связью по напряжению, коэффициент передачи цепи обратной связи составит


Тогда входное сопротивление неинвертирующего усилителя составит

R BX.ОУ – входное сопротивление ОУ при разомкнутой цепи ОС,

К ОУ – коэффициент усиления ОУ при разомкнутой цепи ОС.

Выходное сопротивление неинвертирующего усилителя можно вычислить из следующего выражения


R ВЫХ.ОУ – выходное сопротивление ОУ при разомкнутой цепи ОС.

Коэффициент усиления неинвертирующего усилителя


В данном типе усилителя присутствует некоторый уровень напряжения смещения UСМ на входе, поэтому данная схема может быть применена там где уровень смещения напряжения на входе не имеет существенного влияния. Уровень напряжения смещения на входе составит


Пример расчёта неинвертирующего усилителя

Рассчитаем неинвертирующий усилитель, который должен обеспечить коэффициент усиления К = 10. В качестве ОУ применим К157УД2, имеющий следующие параметры: коэффициент усиления (на частоте 1 кГц) К = 1800 (65 дБ), входное сопротивление R BX.ОУ = 500 кОм, выходное сопротивление R BЫX.ОУ = 300 Ом, напряжение смещения U CM = 10 мВ, входной ток I ВХ ≤ 500 нА. Входной сигнал имеет уровень U ВХ = 40 мВ.

Неинвертирующий сумматор

В продолжение темы неинвертрующих усилителей расскажу о неинвертирующем сумматоре, который выполняет функцию сложения входных сигналов и находит своё применение в качестве линейных смесителей сигналов (микшеров), например, когда сигналы из нескольких источников необходимо скомбинировать и подать на вход усилителя мощности. Схема неинвертирующего сумматора представлена ниже



Данная схема представляет собой неинвертирующий усилитель с двумя входами и состоит из ОУ DA1, токоограничительных входных резисторов R1 и R2, резистора смещения R3 и резистора обратной связи R4.

Для данной схемы основные соотношения соответствуют схеме простого неинвертирующего усилителя, с учётом того что входное напряжение в схеме соответствует среднему напряжению входных выводов


А сопротивление резисторов должны соответствовать следующему условию


Коэффициенты усиления по разным каналам определяются следующим выражением


R N – сопротивление входного резистора,

K N – коэффициент усиления соответствующего канала усиления.

Основным недостатком схемы неинвертирующего сумматора является отсутствие точки нулевого потенциала, поэтому коэффициент усиления по различным входам не являются независимыми. Данный недостаток проявляет себя в тех случаях, когда внутреннее сопротивление источников входных напряжений или только одного из них известно приблизительно или изменяется в процессе работы.

Теория это хорошо, но без практического применения это просто слова.

В курсе электроники есть много важных тем. Сегодня мы попытаемся разобраться с операционными усилителями.
Начнем сначала. Операционный усилитель - это такая «штука», которая позволяет всячески оперировать аналоговыми сигналами. Самые простейшие и основные - это усиление, ослабление, сложение, вычитание и много других (например, дифференцирование или логарифмирование). Абсолютное большинство операций на операционных усилителях (далее ОУ) выполняются с помощью положительных и отрицательных обратных связей.
В данной статье будем рассматривать некий «идеал» ОУ, т.к. переходить на конкретную модель не имеет смысла. Под идеалом подразумевается, что входное сопротивление будет стремиться к бесконечности (следовательно, входной ток будет стремиться к нулю), а выходное сопротивление - наоборот, будет стремиться к нулю (это означает, что нагрузка не должна влиять на выходное напряжение). Также, любой идеальный ОУ должен усиливать сигналы любых частот. Ну, и самое важное, коэффициент усиления при отсутствующей обратной связи должен также стремиться к бесконечности.

Ближе к делу
Операционный усилитель на схемах очень часто обозначается равносторонним треугольничком. Слева расположены входы, которые обозначены "-" и "+", справа - выход. Напряжение можно подавать на любой из входов, один из которых меняет полярность напряжения (поэтому его назвали инвертирующим), другой - не меняет (логично предположить, что он называется неинвертирующий). Питание ОУ, чаще всего, двуполярное. Обычно, положительное и отрицательное напряжение питания имеет одинаковое значение (но разный знак!).
В простейшем случае можно подключить источники напряжения прямо ко входам ОУ. И тогда напряжение на выходе будет расчитываться по формуле:
, где - напряжение на неинвертирующем входе, - напряжение на инвертирующем входе, - напряжение на выходе и - коэффициент усиления без обратной связи.
Посмотрим на идеальный ОУ с точки зрения Proteus.


Предлагаю «поиграть» с ним. На неинвертирующий вход подали напряжение в 1В. На инвертирующий 3В. Используем «идеальный» ОУ. Итак, получаем: . Но тут у нас есть ограничитель, т.к. мы не сможем усилить сигнал выше нашего напряжения питания. Таким образом, на выходе все равно получим -15В. Итог:


Изменим коэффициент усиления (чтобы Вы мне поверили). Пусть параметр Voltage Gain станет равным двум. Та же задача наглядно решается.

Реальное применение ОУ на примере инвертирующего и неинвертирующего усилителей
Есть два таких основных правила:
I. Выход операционного усилителя стремится к тому, чтобы дифференциальное напряжение (разность между напряжением на инвертирующем и неинвертирующем входах) было равно нулю.
II. Входы ОУ не потребляют тока.
Первое правило реализуется за счет обратной связи. Т.е. напряжение передается с выхода на вход таким образом, что разность потенциалов становится равной нулю.
Это, так сказать, «священные каноны» в теме ОУ.
А теперь, конкретнее. Инвертирующий усилитель выглядит именно так (обращаем внимание на то, как расположены входы):


Исходя из первого «канона» получаем пропорцию:
, и немного «поколдовав» с формулой выводим значение для коэффициента усиления инвертирующего ОУ:

Приведенный выше скрин в комментариях не нуждается. Просто сами все подставьте и проверьте.

Следующий этап - неинвертирующий усилитель.
Тут все также просто. Напряжение подается непосредственно на неинвертирующий вход. На инвертирующий вход подводится обратная связь. Напряжение на инвертирующем входе будет:
, но применяя первое правило, можно утверждать, что

И снова «грандиозные» познания в области высшей математики позволяют перейти к формуле:
Приведу исчерпывающий скрин, который можете перепроверить, если хотите:

Напоследок, приведу парочку интересных схем, чтобы у Вас не сложилось впечатления, что операционные усилители могут только усиливать напряжение.

Повторитель напряжения (буферный усилитель). Принцип действия такой же, как и у транзисторного повторителя. Используется в цепях с большой нагрузкой. Также, с его помощью можно решить задачку с согласованием импедансов, если в схеме есть нежелательные делители напряжения. Схема проста до гениальности:

Суммирующий усилитель. Его можно использовать, если требуется сложить (отнять) несколько сигналов. Для наглядности - схема (снова обращаем внимание на расположение входов):


Также, обращаем внимание на то, что R1 = R2 = R3 = R4, а R5 = R6. Формула расчета в данном случае будет: (знакомо, не так ли?)
Таким образом, видим, что значения напряжений, которые подаются на неинвертирующий вход «обретают» знак плюс. На инвертирующий - минус.

Заключение
Схемы на операционных усилителях чрезвычайно разнообразны. В более сложных случаях Вы можете встретить схемы активных фильтров, АЦП и устройств выборки хранения, усилители мощности, преобразователи тока в напряжение и многие многие другие схемы.
Список источников
Краткий список источников, который поможет Вам быстрее освоится как в ОУ, так и в электронике в целом:
Википедия
П. Хоровиц, У. Хилл. «Искусство схемотехники»
Б. Бейкер. «Что нужно знать цифровому разработчику об аналоговой электронике»
Конспект лекций по электронике (желательно, собственный)
UPD.: Спасибо НЛО за приглашение

Рекомендуем почитать

Наверх