Топ систем охлаждения для пк. Сравнительное тестирование различных моделей процессорных кулеров

Инструмент 03.08.2019
Инструмент

Поднимите руку те, кто хочет, чтобы установленная в компьютере, которым вы пользуетесь, система охлаждения процессора была одновременно эффективной и тихой. Давно вы заглядывали в раздел «системы охлаждения» какого-либо компьютерного интернет-магазина? Сколько там предлагается моделей? Десятки только воздушных, а ведь есть еще и жидкостные. Натолкнулся я тут на ресурсе uk.hardware.info на материал, который позволит с большой долей объективности выбрать лучший процессорный кулер – сравнительное тестирование и список моделей, которые подверглись проверке, предлагаю вашему вниманию.

Участники тестирования

Участниками проверки стали системы охлаждения башенной конструкции с тепловыми трубками.

Это наиболее популярный вид систем охлаждения, известный много лет, и за все это время постоянно совершенствовавшийся. Причем весь этот процесс улучшения привел к тому, что внешне все кулеры весьма похожи друг на друга. Различия кроются в количестве используемых тепловых трубок, количестве и размере вентиляторов.

Основные характеристики в таблице. Цена (если модель продается в России или не снята с производства) – ориентировочная, на начало февраля 2018-го года.

Название Кол-во трубок Вент. Ск. вр., об/мин Мат-ал Размеры, мм (ШхВxГ) Вес, гр Цена,
Antec A40 Pro 4 1 х 92 800-2200 Al 100x136x75 570 1525
Antec C400 4 1 х 120 800-1900 Al 125x155x76 830
Arctic Freezer i11 3 1 х 92 500-2000 Al + Cu 108x130x90 408
Arctic Freezer i32 4 1 х 120 1350 Al 150×123×95 641 3000
Be quiet! Pure Rock Slim 3 1 х 92 2200 Al 97x125x82 360 1620
Be quiet! Shadow Rock Slim 4 1 х 120 450-1500 Al + Cu 137x161x61 730 2800
Cooler Master Hyper 212 LED 4 1 х 120 600-1600 Al 120x160x84 734 1900
Cooler Master Hyper 412S 4 1 х 120 900-1300 Al 132x160x99 609 1710
Cooler Master Hyper 612 Ver. 2 6 1 х 120 800-1300 Al + Cu 139x161x127 886 2900
Cooler Master Hyper TX3i 3 1 х 92 800-2800 Al + Cu 92x139x51 470
Cooler Master MasterAir Maker 8 8 2 х 140 600-1800 Al 145x172x135 1350 7225
Cooler Master MasterAir Pro 3 3 1 х 92 650-3000 Al 117x140x78 390 2240
Cooler Master MasterAir Pro 4 4 1 х 120 350-2000 Al 129x159x84 472 2900
Cryorig H5 Ultimate 4 1 х 140 700-1300 Al 143x160x111 920 3400
Cryorig H5 Universal 4 1 х 140 700-1300 Al 143x160x98 863 3400
Cryorig H7 Quad Lumi 3 1 х 120 300-1600 Al 123x145x98 711 2334
Cryorig M9i 3 1 х 92 600-2200 Al 102x125x87 425 1520
Enermax ETS-T40F-BK 4 1 х 120 800-1800 Al 126x162x68 460 2900
Enermax ETS-T50-AXE 5 1 х 120 800-1800 Al 139x160x112 860
Gelid Antarctica 5 1 х 140 450-1500 Al 140х160х74 635 2425
Gelid Phantom 5 2 х 120 750–1600 Al 118×126×160 1000
Gelid Phantom Black 5 2 х 120 750–1600 Al 118×126×160 1000
Gelid Snowstorm 3 1 х 92 900-2200 Al + Cu 102x138x66 372 1285
Gelid Tranquillo Rev.4 3 1 х 120 750-1600 Al 128x154x87 580 2050
Gigabyte Aorus ATC700 3 2 х 120 500-1700 Al 133x158x59 670
LC Power Cosmo Cool LC-CC-120-X3 6 3 х 120 600-1800 Al 158x170x140 1483
MSI Core Frozr L 4 1 х 120 500-1800 Al 140x155x84 960
Noctua NH-D9L 4 1 х 92 400-2000 Al + Cu 95x110x95 531 3200
Noctua NH-D15 6 2 х 140 300-1500 Al + Cu 150x165x161 1320 5300
Noctua NH-U9S 6 1 х 92 400-2000 Al + Cu 95x125x95 618 3760
Noctua NH-U12S 5 1 х 120 1500 Al + Cu 125x158x71 755 3900
Noctua NH-U14S 6 1 х 140 1500 Al + Cu 150x165x78 935 4660
Phanteks PH-TC12DX White 4 2 х 120 600-1800 Al 126х157х107 868
Phanteks PH-TC14PE Black 5 2 х 120 700-1300 Al + Cu 140x171x151 1250
Raijintek Themis 3 1 х 120 100-1500 Al + Cu 122x158x75 472
Scythe Byakko 3 1 х 92 300-2300 Al 102x130x83 415 1360
Scythe Fuma 6 2 х 120 300-1400 Al 130x149x137 920 3500
Scythe Katana 4 3 1 х 92 300-1500 Al 100x143x103 480 1700
Scythe Mugen 4 PCGH Edition 6 2 х 120 800 Al + Cu 130x157x138 625 3800
Scythe Mugen 5 6 1 х 120 300-1200 Al 130x155x110 890 4200
Scythe Mugen 5 PCGH Edition 6 2 х 120 300-800 Al 133x155x130 1020
Scythe Mugen Max 6 1 х 140 500-1300 Al + Cu 145x161x111 870 3060
Spire Kepler V2 2 1 х 92 2000 Al + Cu 97x125x76 377
Thermalright Macho Direct 5 1 х 140 300-1300 Al 158x152x142 810 2500
Thermalright True Spirit 140 Direct 4 1 х 140 300-1300 Al 140x161x102 810 2400
Thermalright True Spirit 140 Power 6 1 х 140 900-1300 Al + Cu 155x172x81 1040 2850
Thermaltake Frio Extreme Silent 14 6 2 х 140 300-1200 Al 151x160x149 1320 4500
Thermaltake Frio Silent 14 3 1 х 140 300-1200 Al 150x160x65 620 2130
X2 Eclipse Advanced Black 6 1 х 120 400-1500 Al 127x156x53 740
Zalman CNPS11X Performa 4 1 х 120 1000-1600 Al 132x154x95 450 1800
Zalman CNPS9800 Max 2 1 х 120 900-2000 Cu 120x150x60 488 2230
Zalman CNPS9900 Max Blue 3 1 х 135 900-1700 Cu 135x152x94 755 2930

Впрочем, есть и различия. Так, в некоторых моделях используется конструкция, в которой с процессором контактирует металлическое (алюминиевое или медное) основание, через которое тепло отдается трубкам. Другой подход предусматривается прямой контакт тепловых трубок с крышкой CPU.

Отличается и подход к установке вентиляторов и их количеству. Наиболее часто встречающийся вариант – один «карлсон», установленный сбоку и продувающий воздух через ребра радиатора. Зачастую можно установить второй вентилятор с противоположной стороны «на выдув». Некоторые модели имеют такую пару изначально.

Есть и другой конструктив, когда вентилятор устанавливается посередине, между блоками радиатора. Имеется возможность установки еще одного вентилятора сборку, например, «на вдув».

Диаметры используемых вентиляторов – 92, 120 или 140 мм. В последнем случае общая высота системы охлаждения составляет порядка 17 см, что надо учитывать при покупке. Надо проверить, есть ли возможность установить такую систему в ваш корпус.

Методика тестирования

Для получения максимально точных результатов, отражающих возможность того или иного кулера снижать температуру, был создан специальный тестовый стенд, имитирующий процессорные разъемы 115x и 2011 с возможностью точного контроля нагрева поверхности для симуляции работы процессоров с различным TDP. В данном тесте использовались значения 65 Вт, 95 Вт и 130 Вт, характерные для CPU под указанные сокеты.

Все замеры производятся в закрытом ящике 55x55x28 см, имитирующем стандартный компьютерный корпус. На передней стенке располагаются 3 низкооборотных вдувных вентилятора, а на задней – один выдувной.

Воздуховод перед тестовым корпусом снабжен нагревательными элементами с вентиляторами, что позволяет контролировать температуру поступающего в тестовую камеру воздуха. В качестве таковой выбрана температура 35°C, которая моделирует условия, как и при работе, и, соответственно, нагреве, других компонентов компьютера – видеокарты, блока питания, и т. п.

Кулеры оценивались с точки зрения соотношения эффективности и шумности, что, думается, справедливо, т. к. отвечает главному пожеланию пользователей — качественно охлаждать, но не пытаться изображать из себя взлетающий вертолет.

В тесте на шумность замеры производились в звукоизолирующей камере с расстояния в 10 см. Проверки проводились при двух значениях питающего вентилятор(ы) напряжения: штатном 12 В и пониженном 7 В.

Эффективность проверялась также в двух режимах, при установке такой скорости вращения вентиляторов, при которой они создают шум 30 дБ (комфортный уровень, практически неслышимый в обычном корпусе), и 40 дБ (слышимый, но остающийся в допустимых пределах и не доставляющий еще дискомфорта).

Также кулеры тестировались на симуляторах сокетов 115x и 2011. В первом случае замеры проводились при имитации нагрузки в 65 Вт и 95 Вт, а для 2011 использовалось значение 130 Вт. Надо сказать, что, т. к. площадь сокета 2011 больше, а, значит, и площадь контакта с кулером, это улучшает распределение тепла и, в большинстве случаев, повышает эффективность испытываемых моделей.

Ряд кулеров отсутствует в некоторых тестах, т. к. это обуславливается объективными причинами, например, несовместимость с сокетом 2011, или изначально невозможно «добиться» от установленного вентилятора шума в 40 дБ.

Тестирование

Шум

Первая проверка включала в себя замеры шума, которые производились при подаче двух уровней напряжения — 12 В, что заставляло вентиляторы работать на максимальных оборотах, и 7 В, что соответствует минимальным оборотам.

Максимальные возможности охлаждения

В этом тесте выяснялись все возможности систем охлаждения. Обороты вентиляторов ставились на максимум, имитировалась нагрузка в 95 Вт на сокете 1150 и 130 Вт на сокете 2011.

Охлаждение при двух уровнях шума

Как было сказано выше, проверки проводились при двух уровнях издаваемого вентиляторами шума, 30 дБ и 40 дБ. Это показывает, на что можно рассчитывать от системы охлаждения в случае ее работы в комфортных для ушей пользователя условиях.





Заключение. Лучший процессорный кулер – который?

Надо сказать, что ни один из кулеров проверку не провалил. Справедливости ради уточним, что в данном случае предусматривается «штатное» использование систем охлаждения, т. е. с теми максимальными значениями тепловой мощности, на которые способны процессоры при работе без разгона.

Оверклокинг – тема отдельная, да и требования к кулеру несколько видоизменяются, т. к. при «гражданском» использовании наиболее интересен баланс между производительностью и тишиной, причем, даже с большим интересом в пользу последнего параметра. При разгоне же величина производимого шума, скорее, переходит в раздел желательных, ибо основная цель – выжать из процессора все, до последнего мегагерца, и чем-то жертвовать приходится.

Что касается протестированных моделей, то весьма привлекательной покупкой представляются Noctua NH-U14S, NH-D15, Thermaltake Frio Extreme Silent 14, Scythe Mugen 5 PCGH. Интересными вариантами могут быть также Scythe Mugen Max (подороже) или Gelid Tranquillo Rev.4 (вдвое дешевле) и ряд других. Думается, что результаты при тестировании на сокете 1150 при 30 дБ шума и нагрузке в 95 Вт позволяют понять, кто наиболее эффективно выполняет свою работу.

Несколько разочаровывающими выглядят результаты, например, Cooler Master MasterAir Maker 8. И дело не в том, что он работает плохо, нет, он охлаждает хорошо, но при своих размерах, весе и, особенно, цене, должен делать это лучше, чтобы стать привлекательным для покупки.

Данное тестирование – дополнительная информация к размышлению, которая может стать полезной при выборе охладителя для процессора, поможет найти тот вариант, который усладит слух тишиной, а процессору обеспечит комфортную работу.

Актуальность: Март 2019

Вместе с производительностью компьютеров повышаются температурные режимы, которые необходимо сдерживать для обеспечения стабильной долговечной службы всех компонентов. Для этих целей производители создают системы охлаждения, о которых детально будет рассказано в статье. Все они имеют разную структуру, фирменные технологии, эффективность, совместимы с определенными видами процессоров. В каждой ценовой категории можно найти кулеры, способные предоставить нужный набор функциональности и производительности. Помните, компьютер - это не микроволновка, не дайте ему зажариться.

Мы составили список лучших вентиляторов для процессора, основываясь на экспертных оценках специалистов и отзывах реальных покупателей. Наши рекомендации помогут вам сделать выбор, оптимальный требованиям и желаниям. На мировом рынке техники много конкурентов, но мы отобрали лучших производителей и рекомендуем обратить на них особое внимание:

Бюджетные / Недорогие

  1. Zalman
  2. Deepcool
  3. Ice Hammer
  1. Thermalright
  2. Scythe
  3. Thermaltake
  4. Zalman
  5. Cooler Master
  6. Deepcool

Дорогие/ Премиум-класс

  1. Noctua
  2. Be quiet
Подсветка Размер 120 мм Размер 140 мм Подшипник скольжения Подшипник гидродинамический Размер 135 мм Регулятор оборотов

* Цены действительны на момент публикации и могут изменяться без предварительного уведомления.

Вентиляторы для процессора: Подсветка

* из отзывов пользователей

Минимальная цена:

Основные плюсы
  • Тепловые трубки и контактная поверхность сделаны из меди. Они соединены с помощью пайки, что обеспечивает наилучшую теплопроводность
  • Общая площадь рассеивания составляет 6800 см² и является одним из лучших показателей для однобашенных систем
  • Конструкция радиатора с дополнительными вырезами позволяет устанавливать второй кулер
  • Возможность работать как в пассивном (мощность рассеивания до 125Вт), так и в активном режимах (300 Вт)
  • Встроенный контроллер автоматически поддерживает нужную температуру и скорость вращения, делая кулер практически бесшумным (12.6-31.1 дБ)
  • Нижний предел вращения составляет 300 об/мин при среднестатистическом показателе 700 об/мин
  • Рекордно низкая цена, конкурировать с которой практически некому

Показать все товары в категории «Размер 140 мм»

Вентиляторы для процессора: Подшипник скольжения

Подшипник скольжения / Размер 120 мм / Регулятор оборотов

Основные плюсы
  • Пластины радиатора имеют разную высоту торцов, что позволило снизить воздушное сопротивление и нагрузку на кулер
  • Наличие пяти теплоотводных трубок благотворно влияет на контроль температуры. Такое количество редко встречается в однобашенных системах охлаждения
  • Идеально ровное основание обеспечивает равномерное соприкосновение с процессором. У многих производителей подошва имеет небольшие выпуклости в местах прохождения трубок
  • Фирменный вентилятор способен разогнаться до внушительных 2000 об/мин. Для ограничения скорости до 1500 об/мин в комплекте имеется резистор (RC24P), если необходимо добиться абсолютной тишины

Подшипник скольжения / Размер 120 мм

Основные плюсы
  • Вентилятор относится к slim-системам, демонстрируя очень маленькую высоту - 58 мм. Это позволит разместить его в любой корпусе даже формата mini-atx
  • Уникальная конструкция обеспечивает двойной обдув каждой из пяти медных трубок, эффективней справляясь с охлаждением
  • Фирменный кулер высотой всего 12 мм способен разгоняться до приличных 2000 об/мин. До показателя 1300 об/мин он остается абсолютно бесшумным, а на максимуме демонстрирует комфортные 33 дБ
  • Теплосъемник отшлифован до зеркального состояния, хотя многие конкуренты не уделяют этому моменту должного внимания и остаются заметными следы от фрезы. В результате, могут оставаться неровности, которые приведут к точечному перегреву
  • Контакт основания с трубками обеспечивает припой, а не малоэффективный термоклей

Показать все товары в категории «Подшипник скольжения»

Вентиляторы для процессора: Подшипник с магнитным центрированием

Подшипник с магнитным центрированием / Размер 140 мм

Основные плюсы
  • Стыковочная поверхность и отводные трубы выполнены из меди, хотя многие производители используют более простой алюминий
  • Дополнительные резисторы NA-RC7 ограничивают максимальную скорость вращения до 1200 об/мин, поэтому кулеры будут оставаться бесшумными постоянно
  • Для предотвращения появления вибрации компания разработала уникальный подшипник с магнитной стабилизацией (SSO2). Рамка вентилятора дополнительно оснащена виброизолирующей накладкой
  • Все металлические элементы покрыты слоем никеля, предотвращающим коррозию
  • Помимо стандартных сокетов от AMD и Intel, производитель предоставляет крепления для установки на устаревшие LGA775 и LGA1366

Лучший процессорный кулер | Введение

Детальные спецификации и это конечно здорово, но только если есть время на их исследование. Однако всё что нужно пользователю - это лучший процессорный кулер за имеющуюся в наличии сумму. Тем, у кого нет времени просматривать многочисленные результаты тестов, тем кто не чувствует себя достаточно уверенным в выборе лучшего процессорного кулера , абсолютно нечего бояться - редакция постоянно обновляет эту статью, в которой рассказывается о выборе лучшего процессорного кулера на любой бюджет и вкус.

Лучший процессорный кулер | Обновления за март 2019 года

Из обзора удалены все устаревшие и снятые с продажи модели, и теперь в наших таблицах только актуальные системы охлаждения, которые можно найти в большинстве специализированных магазинов.

Лучший процессорный кулер | Воздушные кулеры

Более низкая температура ЦП обеспечивает повышенную стабильность, эффективность и надёжность. Она выгодна всем: от оверклокеров, стремящихся вытянуть из процессора максимальную производительность, до приверженцев эффективности, которые стараются добиться наименьшего потребления энергии. Данный материал ориентирован на тех, у кого нет времени просматривать многочисленные результаты тестов, и кто не чувствует себя достаточно уверенно в выборе лучшего процессорного кулера или лучшей системы жидкостного охлаждения. Редакция периодически обновляет эту статью, корректируя рекомендации.

Лучший процессорный кулер | Сводная таблица


Модель be quiet! Dark Rock 4 Cooler Master MasterAir MA410M Reeven RC-1001b Brontes Noctua NH-U14S
Категория Лучший большой Лучший средний Лучший низкопрофильный Лучший для AMD Threadripper

Цена, руб. 5200 4700 2800 6000
Размеры, мм 158,8 x 136,9 x 75,4 158,8 x 132,4 x 58,2 59 x 105 x 114 171,45 x 151,4 x 52,3
Высота основания, мм 41,3 37,8 17,78 25,1
Смещение при установке, мм 27,94 27,94 н.д. 27,94 (с вентилятором)
Масса, г 1471 1247 340 1035
Материалы Алюминий, медь, пластик Алюминий, медь н.д. Алюминий, медь
Вентиляторы (1) 135 x 22 мм (2) 120 x 25 мм RGB (1) 100 x 12 мм (1) 140 x 25 мм
Разъёмы (1) 4-pin (2) 4-pin ШИМ, (2) 4-pin RGB (1) ШИМ (1) 4-pin ШИМ
Совместимость с сокетами Intel FM2(+), FM1, AM2(+), AM3(+), AM4 прямоугольные, на четыре винта TR4, SP3
Совместимость с сокетами AMD 775, 115x, 1366, 2011x, 2066 115x, 1366, 2011x, 2066 115x, 1366, 775 Нет
Гарантия 3 года 5 лет 2 года 6 лет

Мы оцениваем "производительность" по соотношению эффективности охлаждения к шуму и "ценность" по соотношению производительности на потраченный рубль. Формула успеха для кулера это всегда большая площадь поверхности радиатора и увеличенный воздушный поток для поддержания низкой температуры, наряду с материалами с высокой теплопроводностью для быстрой передачи тепла от процессора к поверхности радиатора. Для достижения максимальной производительности, как правило, требуется большой радиатор, и некоторые из представленных моделей слишком громоздки, чтобы поместиться в корпусах среднего и малого размеров.

Большие кулеры, как правило, устанавливаются в широкие полноразмерные башенные корпуса, хотя есть несколько игровых корпусов формата mini–ITX, разработанных с учётом совместимости с большими кулерами. Системы охлаждения среднего размера подходят для большинства стандартных корпусов и материнских плат, но из-за более компактных радиаторов и вентиляторов менее эффективны. Тонкие кулеры высотой до 75 мм обычно предназначаются для компактных корпусов. Поскольку разные материнские платы имеют разное расположение процессорного разъёма, перед покупкой очень важно сверить параметры кулера, материнской платы и корпуса.

У вас одна из новых моделей Ryzen? Тогда вам не нужно покупать другой кулер даже для разгона. Все процессоры Ryzen 2000-й серии и некоторые более старые модели комплектуются качественными кулерами, многие из которых способны справляться с умеренным разгоном. Если вы хотите разогнать чип до максимально возможной частоты, тогда есть смысл в покупке мощного кулера, но для большинства владельцев Ryzen он просто не нужен.

Если вы хотите приобрести большой воздушный кулер, сначала промерьте, поместится ли он. Большие и низкопрофильные модели могут мешать установке высоких модулей оперативной памяти и даже упираться в радиаторы системы питания платы. При этом высокие кулеры могут мешать установке боковой стенки, даже если ваш корпус не относится к категории компактных. Перед покупкой обязательно убедитесь в точности измерений.

Помните о том, что при прочих равных, чем больше вентиляторов, тем лучше охлаждение, но выше и уровень шума. Самые эффективные кулеры чаще всего и самые и громкие. Если это для вас проблема, придётся искать оптимальный баланс.

RGB-подсветка может быть эффектный, но убедитесь в том, что её можно отключить. Многие современные системы охлаждения оснащаются RGB-подсветкой и/или вентиляторами с RGB-подсветкой, которая может придать вашему ПК эффектный внешний вид. Но убедитесь, что эту подсветку можно отключить через встроенный контроллер или через материнскую плату. Наверняка возникнут ситуации, когда подсветка будет мешать - например, при просмотре фильма в темноте.

Лучший процессорный кулер | Лучший большой воздушный кулер - be quiet! Dark Rock 4


ДОСТОИНСТВА

  • Отличная производительность
  • Отличное качество сборки и дизайн
  • Низкий уровень шума
  • Совместим с большинством современных сокетов

НЕДОСТАТКИ

  • Премиальная цена

ВЕРДИКТ

Dark Rock 4 - отличный и очень эффективный, но довольно дорогой воздушный кулер, который способен украсить любой системный блок.

  • Альтернатива: Noctua NH-D15 SE-AM4

Лучший процессорный кулер | Лучший среднеразмерный воздушный кулер - Cooler Master MasterAir MA410M


ДОСТОИНСТВА

  • Среднеразмерный кулер занимает меньше места
  • Термодатчик позволяет демонстрировать изменение температуры через RGB-подсветку

НЕДОСТАТКИ

  • Не настолько тихий, как аналоги

ВЕРДИКТ

Среднеразмерный воздушный кулер с тепловыми трубками и RGB-подсветкой Cooler Master MasterAir MA410M впечатляет превосходной производительностью охлаждения и отлично впишется в любую игровую систему.

Лучший процессорный кулер | Лучший низкопрофильный воздушный кулер - Reeven RC-1001b Brontes


ДОСТОИНСТВА

  • Низкая цена
  • Низкий уровень шума
  • По производительности не уступает более крупным моделям, но занимает меньше места

НЕДОСТАТКИ

  • Не поддерживает процессоры с теплопакетом 130 Вт, включая чипы Intel для сокетов LGA 2011x

ВЕРДИКТ

Всего за 2800 рублей Reeven RC-1001b Brontes устраняет любых конкурентов благодаря производительности, типичной для моделей гораздо больших габаритов. Благодаря небольшим размерам он также прекрасно подойдёт для самых компактных корпусов.

Лучший процессорный кулер | Лучший воздушный кулер для AMD Threadripper-Noctua NH-U14S


ДОСТОИНСТВА

  • Превосходная производительность
  • Очень низкий уровень шума
  • Простое и надёжное крепление

НЕДОСТАТКИ

  • Премиальная цена
  • Из-за высоты может не поместиться в небольшом корпусе

ВЕРДИКТ

Всем, кто ищет высококачественный, высокопроизводительный и тихий воздушный кулер для AMD Threadripper, наши однозначные рекомендации.

  • Альтернатива: Cooler Master MasterAir MA621P

Методика тестирования

Одной из главных проблем при проведении тестирования кулеров является выбор методики их тестирования, поскольку пока не выработана единая общепризнанная методика, которая бы всех устраивала. Естественно, в таких условиях каждый вправе проводить тестирование кулеров по собственной методике - главное, чтобы она имела логическое обоснование и приводила к разумным результатам.

В большинстве случаев тестирование кулеров сводится к измерению температуры процессора при различных режимах его загрузки, при этом лучшим считается кулер, который обеспечивает самую низкую температуру процессора при прочих равных условиях.

На наш взгляд, такую методику нельзя признать объективной и использовать ее можно лишь с некоторыми оговорками. Дело в том, что после установки кулера на процессор в материнской плате тестируется уже не кулер, а весь комплекс, состоящий из кулера, материнской платы и процессора. К примеру, если в ходе тестирования была определена зависимость скорости вращения кулера от текущей температуры процессора, полученная для конкретной связки материнской платы, процессора и кулера, то это вовсе не означает, что и для всех остальных материнских плат мы получим аналогичные результаты. Проблема заключается в том, что функцию изменения скорости вращения кулера реализует контроллер на материнской плате.

Существует два основных способа управления скоростью вращения кулера. Первый из них заключается в том, чтобы динамически изменять напряжение питания на кулере. То есть по мере роста температуры процессора увеличивается и напряжение питания кулера, а следовательно, возрастает скорость вращения вентилятора. Диапазон изменения напряжения составляет обычно от 6 до 12 В, однако для некоторых материнских плат нижняя граница напряжения может быть и меньше 6 В. Таблица соответствия текущей температуры процессора с напряжением питания кулера «зашита» в контроллере управления скоростью вращения кулера и не подлежит корректировке пользователем, то есть является особенностью материнской платы.

Кулеры, поддерживающие технологию динамического изменения напряжения питания, оснащаются трехконтактными разъемами: два из них используются для подачи напряжения питания, а третий служит для передачи сигнала тахометра, который позволяет контроллеру на материнской плате определять текущую скорость вращения вентилятора. Принцип действия тахометра довольно прост: за каждый оборот крыльчатки вентилятора формируются два прямоугольных импульса напряжения; зная частоту следования импульсов (сигнал тахометра), можно вычислить скорость вращения вентилятора (Rotation Per Minute, RPM).

Второй способ управления скоростью вращения вентилятора - это применение широтно­импульсной модуляции (Pulse Wide Modulation, PWM). Специальный PWM-контроллер на материнской плате формирует последовательность прямоугольных импульсов, подаваемых на контроллер вентилятора. Эти импульсы применяются как управляющие сигналы для своеобразного электронного ключа, который периодически подключает и отключает вентилятор от напряжения питания в 12 В. Частота управляющих PWM-импульсов остается неизменной, меняется лишь их скважность, определяемая как отношение времени, при котором PWM-сигнал находится при высоком напряжении, к длительности всего импульса.

Типичная частота следования PWM-импульсов составляет 23 кГц, а скважность импульсов варьируется от 40 до 100%, однако нижняя граница скважности зависит от конкретного PWM-контроллера и может быть ниже 40%.

Все кулеры, поддерживающие PWM-технологию, оснащены четырехконтактным разъемом питания и при этом обязательно поддерживают технологию динамического изменения напряжения питания.

Плюс технологии динамического изменения напряжения питания кулера всего один - это низкая стоимость решения. Например, цена трехконтактных кулеров в среднем на доллар ниже аналогичных кулеров с поддержкой PWM-технологии. Минус, кстати, тоже один, и заключается он в том, что скорость вращения вентилятора обычно может изменяться в меньшем диапазоне, чем при использовании PWM-технологии.

С учетом того обстоятельства, что контроль скорости вращения вентилятора реализуется самой материнской платой, становится понятно, что тестирование кулеров в связке с материнской платой можно считать корректным только тогда, когда в BIOS материнской платы в принудительном порядке отключается технология управления скоростью вращения вентилятора. В противном случае правильнее говорить не о тестировании кулера как такового, а о тестировании решения, состоящего из кулера, материнской платы и процессора. Причем на основании полученных результатов сравнивать кулеры друг с другом нельзя, поскольку при наличии других материнских плат результаты будут иными.

В связи с этим при тестировании кулеров мы постарались обеспечить независимость результатов испытаний от материнской платы.

Методика тестирования включала следующие этапы:

  • определение зависимости скорости вращения вентилятора от скважности PWM-импульсов и напряжения питания;
  • определение зависимости температуры процессора при его полной загрузке от скважности PWM-импульсов или напряжения питания;
  • определение уровня шума.

Определение зависимости скорости вращения вентилятора от скважности PWM-импульсов и напряжения питания

Практически все кулеры (за единственным исключением), принимавшие участие в нашем тес­тировании, были четырехконтактными, то есть поддерживали PWM-технологию управления скоростью вращения. Однако мы определяли зависимость скорости вращения вентилятора не только от скважности PWM-импульсов, но и от напряжения питания. Для формирования управляющих PWM-импульсов применялся цифровой генератор сигналов произвольной формы, а для задания нужного напряжения питания использовался специализированный блок питания MASTECH HY1802D, позволяющий регулировать напряжение питания в диапазоне от 0 до 18 В. Скорость вращения вентилятора контролировалась посредством сигнала тахометра. Частота PWM-импульсов составляла 23 кГц, а скважность варьировалась от 0 до 100%. Амплитуда PWM-импульсов была равна 4,5 В.

В ходе тестирования строилась зависимость скорости вращения вентилятора от скважности PWM-импульсов в диапазоне от 0 до 100% и от напряжения питания в диапазоне от 0 до 12 В.

Определение зависимости температуры процессора при его полной загрузке от скважности PWM-импульсов или напряжения питания

Для определения зависимости температуры процессора от скважности PWM-импульсов или напряжения питания использовался стенд, состоящий из материнской платы ASUS P8P67 на базе чипсета Intel P67 Express и четырехъ-ядерного процессора Intel Core i7-2600K c TDP 95 Вт. Отметим, что процессор Intel Core i7-?2600K имеет разблокированный коэффициент умножения и может легко разгоняться, однако при тестировании кулеров мы не загружали процессор только в штатном режиме его работы, то есть без разгона. В то же время функция динамического разгона Turbo Boost в настройках BIOS не отключалась.

В случае использования четырехконтактного кулера с PWM-управлением он подключался к генератору PWM-импульсов, что позволяло контролировать скорость его вращения, а при тестировании трехконтактного кулера он подключался к блоку питания MASTECH HY1802D, что опять же позволяло контролировать скорость его вращения.

Процессор загружался на 100% с помощью утилиты Core Damage v.0.8, а его температура контролировалась с помощью утилиты Core Temp 0.99.5.

Процессор разогревался до тех пор, пока его температура не стабилизировалась (порядка 5 мин). В ходе тестирования строилась зависимость температуры процессора при его полной загрузке от скважности PWM-импульсов или напряжения питания.

Температура окружающей среды в ходе тес­тирования поддерживалась на уровне 25 °С.

Определение зависимости уровня шума от напряжения питания

Для определения зависимости уровня шума, создаваемого кулерами, от напряжения питания использовался специальный стенд, который состоял из абсолютно бесшумного источника питания MASTECH HY1802D (с пассивной системой охлаждения), позволяющего плавно менять напряжение в пределах от 0 до 12 В и тем самым регулировать скорость вращения вентилятора. Для измерения уровня шума применялся специальный шумомер Center 322, расположенный на расстоянии 15 см над кулером. Уровень шума определялся только при двух значениях управляющего напряжения: 12 и 6 В. Первый показатель соответствует максимальной скорости вращения вентилятора кулера, а второй - это минимальное напряжение питания для кулера, задаваемое контроллером материнской платы.

Отметим, что при измерении уровня шума не использовалась стандартная методика, поэтому полученные нами цифры нельзя сравнивать с уровнем шума, указанным в технических характеристиках кулеров. Несмотря на то что мы приводим данные по уровню шума в дБА, к полученным результатам измерения стоит относиться как к своеобразным «попугаям», которые могут служить только для сравнения уровня шума протестированных кулеров.

Отметим, что нижний порог чувствительности шумомера Center 322 составляет 30 дБА, что соответствует порогу слышимости, то есть шум с уровнем 30 дБА воспринимается среднестатистическим человеком, как полная тишина.

Интегральное сравнение кулеров

Кроме измерения скорости вращения вентилятора, эффективности охлаждения и уровня шума для каждого кулера в отдельности, мы попытались провести интегральное сравнение кулеров друг с другом. Для такого интегрального сравнения нужно иметь некий числовой критерий (интегральная оценка), который учитывал бы и эффективность охлаждения кулера, и уровень создаваемого им шума.

Понятно, что любой кулер должен отвечать двум критериям: во-первых, быть достаточно эффективным для охлаждения процессора, а во-вторых, в меру тихим. Собственно, формулируя интегральную оценку кулеров, которую можно было бы использовать для их сравнения, мы исходили именно из этих критериев. Алгоритм вычисления интегральной оценки производительности кулера следующий. Первоначально для максимальной скорости вращения вентилятора вычисляется среднегеометрическое от температуры процессора T max при его полной загрузке и уровне шума N max , создаваемого кулером. Далее рассчитывается обратное значение полученной величины:

Данное значение будет тем больше, чем ниже температура процессора и чем меньше уровень шума кулера.

Затем рассчитывается аналогичное значение для температуры процессора T min при его полной загрузке в случае, когда скважность PWM-импульсов составляет 40% (для четырехконтактных кулеров) или когда напряжение питания составляет 6 В (для трехконтактных кулеров), и для уровня шума Nmin при напряжении питания 6 В:

На следующем этапе вычисляется среднегеометрическое от двух рассчитанных значений, а результат для удобства умножается на 1000:

Рассчитанное таким образом значение и является интегральной оценкой кулера, которую можно применять для их сравнения.

Отметим, что к данной величине нужно относиться как к «попугаям», которые не имеют физического смысла и могут использоваться только для численного сравнения потребительских качеств кулеров.

Результаты тестирования

Все кулеры мы условно разделили на две категории: бюджетные - стоимостью до 1000 руб., и кулеры high-end, цена которых превышает 1000 руб. Кулеры первой категории ориентированы на недорогие компьютеры, в которых применяются процессоры с TDP 95 Вт и менее в штатном режиме работы. А кулеры второй категории позволяют создавать очень тихие и производительные решения либо ориентированы на охлаждение процессоров с высоким TDP (более 95 Вт), а также могут использоваться при разгоне процессора.

Сводные результаты тестирования кулеров представлены на рис. 1-3. На рис. 1 показана температура процессора при его полной загрузке и максимальной скорости вращения вентилятора (максимальная скорость) и для случая, когда скважность PWM-импульсов составляет 40% либо напряжение питания равно 6 В для трехконтактных кулеров (минимальная скорость).

Рис. 1. Температура процессора при минимальной
и максимальной скорости вращения вентилятора

Рис. 2. Уровень шума, создаваемого кулером
при максимальной скорости вращения вентилятора (максимальный уровень шума)
и при напряжении питания 6 В (минимальный уровень шума)

Рис. 3. Интегральная оценка бюджетных кулеров стоимостью менее 1000 руб. (голубой цвет)
и кулеров класса high-end стоимостью более 1000 руб. (зеленый цвет)

Рис. 2 демонстрирует уровень шума, создаваемый кулером, при максимальной скорости вращения вентилятора (максимальный уровень шума) и напряжении питания 6 В (минимальный уровень шума).

На рис. 3 показаны интегральные оценки всех протестированных кулеров. Более подробные результаты тестирования приводятся при описании каждого кулера.

Выбор редакции

В категории кулеров стоимостью до 1000 руб. знака «Выбор редакции» были удостоены кулеры Scythe KATANA III стоимостью 770 руб., и zalman cnps7000c-alcu стоимостью 680 руб.

В категории кулеров стоимостью выше 1000 руб. знак «Выбор редакции» был присужден кулерам SCYTHE MINE 2 стоимостью 2100 руб. и Arctic Cooling Freezer 13 стоимостью 1200 руб.

Участники тестирования

ARCTIC COOLING Alpine 11 Pro Rev.2

Кулер ARCTIC COOLING Alpine 11 Pro Rev.2 от компании ARCTIC COOLING (www.arctic.ac) относится к категории бюджетных кулеров для недорогих компьютеров. Он имеет систему крепления, совместимую с разъемами LGA775/1156/1155 для процессоров Intel.

Система крепления представляет собой плас-тиковую рамку, прикрепляемую к материнской плате с помощью четырех миниатюрных дюбелей, в которые вставляются пластиковые распорки. Причем в самой рамке предусмотрены отверстия, в которые вставляются крепежные дюбели как под разъем LGA775, так и под разъем LGA1156/1155. К крепежной рамке с помощью двух болтов крепится радиатор с вентилятором. В плане монтажа и демонтажа система крепления не очень удобна: во-первых, приходится прилагать усилия, чтобы вогнать пластиковые распорки в дюбели, поэтому есть риск сломать их; во-вторых, без специальных узких плоскогубцев извлечь распорки из дюбелей просто невозможно. Другой минус такой системы крепления заключается в том, что при потере одного дюбеля или распорки весь кулер можно выбрасывать, поскольку отдельно такие аксессуары не продаются.

Радиатор в кулере ARCTIC COOLING Alpine 11 Pro Rev.2 выполнен из алюминия и представляет собой массив вертикально расположенных ребер. Сверху радиатора крепится семилепестковый 92-мм вентилятор с четырехконтактным разъемом, поддерживающий технологию изменения скорости вращения как за счет изменения напряжения питания, так и за счет широтно­импульсной модуляции напряжения (PWM).

Габариты кулера ARCTIC COOLING Alpine 11 Pro Rev.2 составляют 105,3x113,4x85 мм, а вес - 428 г (вместе с монтажной рамкой и крепежными аксессуарами).

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 500 до 2000 RPM (в случае применения PWM-технологии), при этом вентилятор на максимальных оборотах создает воздушный поток 36,7 CFM. Также указывается, что уровень создаваемого вентилятором шума составляет 0,4 Sone.

Отметим, что вентилятор выполнен на основе гидродинамического подшипника.

В ходе тестирования кулера ARCTIC COOLING Alpine 11 Pro Rev.2 выяснилось, что при использовании технологии PWM частота вращения вентилятора меняется от 360 до 2274 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 10% (рис. 4).

Рис. 4. Зависимость скорости вращения вентилятора от скважности PWM-импульсов

В случае применения технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 438 до 2250 RPM (рис. 5). Причем скорость вращения 438 RPM соответствует напряжению питания 3 В.

Рис. 5. Зависимость скорости вращения вентилятора от напряжения питания
для кулера ARCTIC COOLING Alpine 11 Pro Rev.2

Напомним, что в большинстве случаев минимальное значение напряжения питания, подаваемого на вентилятор, составляет 6 В, при этом скорость вращения равна 1149 RPM, что больше 438 RPM, которые достигались при использовании PWM-технологии. Исходя из этого можно сделать важный вывод: при применении кулера ARCTIC COOLING Alpine 11 Pro Rev.2 для управления скоростью вращения вентилятора целесообразно использовать PWM-технологию. Это позволит изменять скорость вращения вентилятора в более широком диапазоне значений и соответствующим образом снижать уровень шума при незначительной нагрузке на процессор.

По эффективности охлаждения (рис. 6) кулер ARCTIC COOLING Alpine 11 Pro Rev.2 нельзя отнести к категории производительных. То есть свои заявленные 95 Вт кулер честно отрабатывает на максимальной скорости вращения, но не более того. В случае полной загрузки процессора Intel Core i7-2600K c TDP 95 В его температура составляет 75 °С при максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 30%, при котором скорость вращения вентилятора составляет 1040 RPM, то температура процессора достигнет отметки в 92 °С, а дальнейшее снижение скважности приведет к срабатыванию тепловой защиты процессора (критическое значение температуры процессора Intel Core i7-2600K - 99 °С).

Рис. 6. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера ARCTIC COOLING Alpine 11 Pro Rev.2

Одним словом, этот кулер можно использовать для охлаждения процессора с TDP не выше 95 Вт и только в штатном режиме его работы, однако он абсолютно не подходит для разгона процессора или охлаждения процессоров с TDP выше 95 Вт.

А вот по уровню шума кулер ARCTIC COOLING Alpine 11 Pro Rev.2 выгодно отличается от своих собратьев. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 38 дБА, что можно считать очень хорошим результатом, а при напряжении питания 6 В кулер просто не слышно, то есть уровень производимого шума не превышает 30 дБА.

Конечно, то, что кулер ARCTIC COOLING Alpine 11 Pro Rev. можно отнести к категории тихих, - это хорошо. Однако в сочетании с невысокой эффективностью охлаждения его интегральная оценка производительности составила лишь 19,26 балла, и в нашем рейтинге он оказался на последнем месте (шестое место в категории кулеров стоимостью до 1000 руб.). В заключение добавим, что розничная цена этого кулера составляет 410 руб.

ARCTIC COOLING Freezer 13

ARCTIC COOLING Freezer 13 - еще один кулер от компании ARCTIC COOLING, но это уже не бюджетная, а топовая модель.

Данный кулер имеет универсальную систему крепления, совместимую с большинством процессорных разъемов: Intel LGA1366/1156/1155/775, AMD Socket AM3/AM2+/AM2/939/754. Система крепления представляет собой пластиковую рамку, прикрепляемую к материнской плате посредством четырех миниатюрных дюбелей, в которые вставляются пластиковые распорки. К самой крепежной рамке с помощью двух болтов крепится радиатор с вентилятором. В отличие от предыдущей модели, в кулере ARCTIC COOLING Freezer 13 используется куда более удобная система крепления. Пластиковые распорки вставляются в дюбели и вынимаются из них довольно просто и без использования дополнительного инструмента, при этом дюбели и распорки просто крупнее, а значит, вероятность потерять их уменьшается.

В кулере ARCTIC COOLING Freezer 13 применяется радиатор башенного типа с массивом из 45 горизонтально расположенных тонких алюминиевых пластин, насаженных на четыре U-образные тепловые трубки.

Сбоку радиатора крепится семилепестковый 92-мм вентилятор с четырехконтактным разъемом, поддерживающий технологию изменения скорости вращения как за счет изменения напряжения питания, так и за счет широтно­импульсной модуляции напряжения (габариты кулера составляют 123x96x130 мм, а вес - 722 г (вместе с монтажной рамкой и крепежными аксессуарами)).

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 600 до 2000 RPM (при использовании PWM-технологии), при этом вентилятор на максимальных оборотах создает воздушный поток 36,4 CFM. Кроме того, указывается, что данный кулер способен отвести до 200 Вт тепловой мощности, а уровень создаваемого вентилятором шума составляет 0,5 Sone.

Отметим, что вентилятор выполнен на базе гидродинамического подшипника.

В ходе тестирования кулера ARCTIC COOLING Freezer 13 выяснилось, что при использовании технологии PWM частота вращения вентилятора меняется от 522 до 2136 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 6% (рис. 7).

Рис. 7. Зависимость скорости вращения вентилятора

В случае применения технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 516 до 2145 RPM (рис. 8), причем скорость вращения 512 RPM соответствует напряжению питания 3 В. При напряжении питания 6 В (типичное минимальное значение напряжения питания, подаваемого на вентилятор) скорость вращения составляет 1191 RPM.

Рис. 8. Зависимость скорости вращения вентилятора
от напряжения питания для кулера ARCTIC COOLING Freezer 13

По эффективности охлаждения (рис. 9) кулер ARCTIC COOLING Freezer 13 можно отнести к категории производительных. При полной загрузке процессора Intel Core i7-2600K c TDP 95 В его температура составляет 59 °С в случае максимальной скорости вращения вентилятора (скважность PWM-импульсов - 100%). Если же скважность PWM-импульсов снизить до значения в 10%, при котором скорость вращения вентилятора составляет 522 RPM, то температура процессора достигнет отметки 78 °С, то есть при использовании кулера ARCTIC COOLING Freezer 13 даже минимальная скорость вращения не допускает перегрева процессора Intel Core i7-2600K.

Рис. 9. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера ARCTIC COOLING Freezer 13

Одним словом, этот кулер можно применять для охлаждения процессора с TDP даже выше 95 Вт и для разгона процессора.

По уровню шума кулер ARCTIC COOLING Freezer 13 можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 40,5 дБА, что можно считать очень хорошим результатом. При напряжении питания 6 В кулер просто не слышно, то есть уровень его шума не превышает 30 дБА.

Сочетание высокой эффективности и низкого уровня шума позволило этому кулеру получить высокую интегральную оценку, которая составила 21,61 балла, - это второй результат в категории кулеров стоимостью более 1000 руб. Итак, можно сказать, что ARCTIC COOLING Freezer 13 - это очень достойный кулер, который можно рекомендовать подавляющему большинству пользователей. Розничная цена этого кулера - 1200 руб.

SCYTHE KATANA III (Type I)

SCYTHE KATANA III - это модель относительного недорогого (розничная цена составляет 770 руб.) кулера от японской компании SCYTHE (www.scythe.com). Существуют три модификации этого кулера: собственно SCYTHE KATANA III (базовая модель), а также Type I и Type A, которые различаются лишь системой крепления.

Базовая модель SCYTHE KATANA III имеет универсальную систему крепления и совмес-тима со всеми современными процессорными разъемами процессоров Intel и AMD.

Кулер Type A снабжается только креплениями для разъемов AMD Socket 754/939/940/AM2/AM3/AM2+, а Type I предназначен только для процессоров Intel с разъемами LGA1366/1156/1155/775. В дальнейшем мы будем рассматривать только кулер SCYTHE KATANA III (Type I) для процессоров Intel.

Несмотря на поддержку одновременно трех типов разъемов процессоров Intel (разъемы LGA1155 и LGA 1156 не отличаются друг от друга), в кулере используется классическая и очень удобная клипсовая система крепления (как на боксовых кулерах). Совместимость с тремя разъемами достигается за счет того, что отверстия в монтажной рамке, в которых фиксируются клипсы, сделаны продолговатой формы и охватывают отверстия под все три разъема, а клипсы могут передвигаться в них.

Несмотря на классическую клипсовую систему крепления, в данном случае назвать ее удобной нельзя. Дело в том, что две клипсы расположены под радиатором и доступ к ним затруднен. Кроме того, поскольку положение самих клипс жестко не фиксировано и возможно их перемещение в пределах отверстий в монтажной рамке, попасть клипсами в крепежные отверстия на материнской плате совсем не просто.

В кулере SCYTHE KATANA III применяются два радиатора, связанные друг с другом тремя тепловыми трубками. Нижний радиатор является низкопрофильным и связан с теплосъемной площадкой. Попутно отметим, что сама теплосъемная подошва выполнена из никелированной меди. Каждая трубка имеет U-образный загиб в районе теплосъемной площадки, поэтому тонкие алюминиевые пластины верхнего радиатора башенного типа оказываются насаженными уже на шесть тепловых трубок. Причем эти шесть трубок расположены не строго вертикально, а под наклоном примерно в 30 °, а следовательно, и сам радиатор башенного типа имеет соответствующий наклон. В технической документации использование наклонного радиатора получило название S.P.S. (Slant Pipe Structure). Как указывает производитель, особенность данного решения заключается в том, что по высоте радиатор обладает свойствами башенного кулера, но при этом способен охлаждать часть околосокетного пространства, что при конструкции чисто башенного типа невозможно.

Сбоку от башенного радиатора с помощью двух пружинных скоб крепится семилепестковый 92-мм вентилятор с четырехконтактным разъемом, поддерживающий технологию изменения скорости вращения за счет как изменения напряжения питания, так и широтно­импульсной модуляции напряжения (PWM).

Габариты кулера SCYTHE KATANA III составляют 94x108x143 (высота) мм, а вес - 497 г.

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 300 до 2500 RPM (в случае применения PWM-технологии), при этом вентилятор создает воздушный поток от 6,7 до 55,55 CFM. Кроме того, указывается, что уровень шума, создаваемого кулером, составляет от 7,2 до 31,07 дБА.

В ходе тестирования кулера SCYTHE KATANA III выяснилось, что при использовании технологии PWM частота вращения вентилятора меняется от 234 до 2613 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 20% (рис. 10).

Рис. 10. Зависимость скорости вращения вентилятора
от скважности PWM-импульсов для кулера SCYTHE KATANA III

В случае применения технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 714 до 2571 RPM (рис. 11), причем скорость вращения 714 RPM соответствует напряжению питания 4 В. При напряжении питания 6 В (типичное минимальное значение напряжения питания, подаваемого на вентилятор) скорость вращения составляет 1236 RPM.

Рис. 11. Зависимость скорости вращения вентилятора от напряжения питания
для кулера SCYTHE KATANA III

По эффективности охлаждения (рис. 12) кулер SCYTHE KATANA III можно отнести к категории кулеров средней производительности. При полной загрузке процессора Intel Core i7-?2600K его температура составляет 59 °С при максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 20%, при котором скорость вращения вентилятора равна 234 RPM, температура процессора достигнет критической отметки 99 °С. Конечно, в этом случае процессор может перегреться, однако повышение скважности PWM-импульсов до 30% снизит максимальную температуру процессора до 85 °С и перегрева не будет.

Рис. 12. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера SCYTHE KATANA III

То есть данный кулер обеспечивает эффективность охлаждения, достаточную для процессоров с TDP 95 Вт. Но вот разгонять процессоры с использованием данного кулера не стоит, так как велика вероятность перегрева процессора. Этот кулер также нежелательно применять для охлаждения процессоров с TDP 130 Вт.

По уровню шума кулер SCYTHE KATANA III можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 43 дБА, что можно считать хорошим результатом. При напряжении питания 6 В кулер просто не слышно, то есть уровень его шума не превышает фонового уровня в 30 дБА.

Сочетание приемлемой эффективности и низкого уровня шума позволило этому кулеру получить интегральную оценку в 20,6 балла и занять в нашем рейтинге первое место в категории бюджетных кулеров. В заключение можно сказать, что это хороший кулер пр приемлемой розничной цене в 770 руб.

SCYTHE MINE 2

SCYTHE MINE 2 - это модель дорогого кулера класса high-end от японской компании SCYTHE.

Данный кулер имеет универсальную систему крепления и совместим с процессорными разъемами Intel LGA775/1155/1156/1366 и AMD Socket AM2/AM2+/AM3.

Система крепления кулера представляет собой монтажную рамку с отверстиями под все типы разъемов, которая крепится с обратной стороны материнской платы. К кулеру прикручиваются монтажные скобы, посредством которых он прикрепляется к монтажной скобе. Вообще, нужно сказать, что система крепления этого кулера к системной плате очень неудобная, а монтаж отнимает много времени.

По конструкции кулер SCYTHE MINE 2 представляет собой два радиатора башенного типа, связанных друг с другом восемью тепловыми трубками. В разрез между двумя башенными радиаторами вставляется 140-мм вентилятор Slip Stream 140 PWM & V.R. с четырехконтактным разъемом. В документации указывается, что он может работать в двух режимах: как PWM-вентилятор или с реобасом. При отключенной PWM-функции пользователь может устанавливать скорость вращения при помощи реобаса.

Действительно, кроме традиционного кабеля с четырехконтактным разъемом, вентилятор Slip Stream 140 PWM & V.R. также снабжен переключателем и реостатом, которые расположены на плашке, монтируемой на тыльной стороне корпуса. Переключатель имеет два положения: PWM и VR. Логично было бы предположить, что в положении PWM реостат отключается и не оказывает влияния на скорость вращения вентилятора, а в положении VR скорость вращения вентилятора задается исключительно реостатом.

На самом деле, всё не совсем так, как написано в руководстве. При переводе переключателя в положение PWM скорость вращения вентилятора действительно будет управляться PWM-контроллером, однако это не означает, что реостатом нельзя будет регулировать скорость вращения. Реостат работает вместе с PWM-модуляцией и тоже воздействует на скорость вращения кулера. Правда, в положении переключателя PWM диапазон изменения скорости вращения регулировкой реостата оказывается меньше, чем тот же диапазон изменения в положении переключателя VR. В частности, при скважности PWM-импульсов 100% диапазон изменения скорости вращения вентилятора за счет вращения ручки реостата составляет от 1209 до 1743 RPM при положении переключателя PWM, а при положении переключателя VR диапазон изменения скорости вращения вентилятора за счет вращения ручки реостата составляет от 609 до 1743 RPM.

А вот в положении переключателя VR скорость вращения вентилятора может регулироваться только за счет изменения напряжения питания, а изменение скважности PWM-импульсов никак не отражается на скорости вращения вентилятора.

Габариты кулера составляют 130x143x160 мм, а вес - 1170 г.

Как следует из технических характеристик, в положении переключателя PWM скорость вращения вентилятора меняется в диапазоне от 650 до 1700 RPM в случае использования PWM-управления и установки реостата в максимальное положение. Если же реостат установлен в минимальное положение, то скорость вращения вентилятора меняется в диапазоне от 500 до 1200 RPM. В положении переключателя VR скорость вращения вентилятора меняется в диапазоне от 500 до 1700 RPM за счет изменения положения реостата.

В соответствии со спецификацией, воздушный поток, создаваемый кулером, составляет от 35,36 до 92,4 CFM в положении переключателя PWM и в случае применения PWM-управления при максимальном положении реостата и от 27,2 до 65,2 CFM при минимальном положении реостата.

В положении переключателя VR воздушный поток меняется в диапазоне от 27,2 до 92,4 CFM в зависимости от положения реостата.

Уровень шума, создаваемого кулером, составляет от 12,4 до 36,4 дБА в положении переключателя PWM и при использовании PWM-управления при максимальном положении реостата и от 9,6 до 23,2 дБА при минимальном положении реостата.

В положении переключателя VR уровень шума меняется в диапазоне от 9,6 до 36,4 дБА в зависимости от положения реостата.

Кроме того, в спецификации указывается, что потребляемая вентилятором мощность составляет 4,2 Вт.

Понятно, что наличие переключателя и реостата на кулере SCYTHE MINE 2 позволяет тестировать его в различных режимах. Мы тестировали кулер SCYTHE MINE 2 при положении переключателя PWM и в двух крайних положениях реостата: максимальном (High) и минимальном (Low).

В ходе тестирования кулера SCYTHE MINE 2 выяснилось, что при применении технологии PWM частота вращения вентилятора меняется от 567 до 1743 RPM в режиме реостата High и от 537 до 1209 RPM в режиме реостата Low. Отметим, что минимальная скорость вращения в обоих случаях достигается при скважности PWM-импульсов 0% (рис. 13). Кроме того, в режиме реостата Low скорость вращения вентилятора не меняется при скважности PWM-импульсов от 0 до 50% и лишь потом начинает нарастать линейно по мере увеличения скважности.

Рис. 13. Зависимость скорости вращения вентилятора

При использовании технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 639 до 1731 RPM (рис. 14) в режиме реостата High, причем скорость вращения 639 RPM соответствует напряжению питания 4 В. При напряжении питания 6 В (типичное минимальное значение напряжения питания, подаваемого на вентилятор) скорость вращения составляет 990 RPM.

Рис. 14. Зависимость скорости вращения вентилятора от напряжения питания
для кулера SCYTHE MINE 2

В режиме реостата Low скорость вращения вентилятора меняется в диапазоне от 336 до 1206 RPM, причем скорость вращения 336 RPM соответствует напряжению питания 4 В.

Отметим также, что, согласно нашим измерениям, максимальное энергопотребление этого кулера составляет 4,2 Вт (при максимальной скорости вращения).

По эффективности охлаждения (рис. 15) кулер SCYTHE MINE 2 можно отнести к категории очень производительных. При полной загрузке процессора Intel Core i7-2600K его температура составляет 54 °С при максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%, реостат в положении High). Если же скважность PWM-импульсов понизить до значения в 0%, то в положении реостата High температура процессора составит всего 63 °С.

Рис. 15. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера SCYTHE MINE 2

В положении реостата Low температура процессора равна 57 °С при максимальной скорости вращения (скважность PWM-импульсов 100%) и повышается до 64 °С при минимальной скорости вращения (скважность импульсов 0%).

Как видите, даже на минимальной скорости этот кулер без труда охлаждает процессор с TDP 95 Вт и при этом остается большой резерв. Такой кулер оптимально использовать для разгона процессора даже со штатным TDP в 130 Вт.

По уровню шума кулер SCYTHE MINE 2 можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 47 дБА в положении реостата High и 36 дБА в положении Low, что можно считать очень хорошим результатом. При напряжении питания 6 В уровень шума кулера составил 32 дБА в положении реостата High и 30 дБА в положении Low.

Сочетание очень высокой эффективности и низкого уровня шума позволило этому кулеру получить рекордно высокую интегральную оценку: 22,53 балла в положении реостата Low и 21,56 балла в положении реостата High. В результате кулер SCYTHE MINE 2 занял первое место в нашем рейтинге кулеров high-end. Резюмируя, можно сказать, что это очень хороший кулер, который позволяет создавать тихие и одновременно высокопроизводительные компьютеры. Розничная цена кулера адекватна его возможностям и составляет 2100 руб.

GlacialTech Igloo 1100 CU PWM (E)

GlacialTech Igloo 1100 CU PWM (E) - это модель бюджетного кулера от компании GlacialTech (www.glacialtech.com), которую можно позиционировать как отличную альтернативу боксовому кулеру.

Данный кулер имеет очень удобную классическую клипсовую систему крепления, поэтому его монтаж и демонтаж не представляют никаких проблем и производятся очень просто и быстро. Естественно, при такой классической системе крепления кулер совместим только с одним типом разъема LGA1156/1155 (разъемы LGA1156 и LGA1155 одинаковые) для процессоров Intel.

Согласно спецификации, этот кулер способен отводить тепло от процессоров с TDP до 95 Вт.

В кулере GlacialTech Igloo 1100 CU PWM (E) используется алюминиевый цилиндрический радиатор с вертикально расположенными реб­рами, которые расходятся из центра. Диаметр этого радиатора составляет 95 мм, а высота - 40 мм. Теплосъемная подошва радиатора имеет цилиндрическую медную вставку, пронизывающую весь радиатор.

Сверху радиатора на четырех винтах крепится семилепестковый 80-мм вентилятор высотой 25 мм с четырехконтактным разъемом, поддерживающий технологию изменения скорости вращения за счет как изменения напряжения питания, так и широтно­импульсной модуляции напряжения (PWM).

Вес кулера GlacialTech Igloo 1100 CU PWM (E) - 454 г.

Как следует из технических характеристик, скорость вращения вентилятора составляет 3600 RPM, причем указывается только максимальная скорость вращения. При такой скорости вращения кулер создает воздушный поток 50,082 CFM. Кроме того, сообщается, что уровень шума, создаваемый кулером, составляет от 15 до 38 дБА, правда не понятно, при каких условиях достигается значение 15 дБА.

Отметим также, что в вентиляторе кулера GlacialTech Igloo 1100 CU PWM (E) применяется подшипник EBR (Enter bearing), представляющий собой разновидность жидкостного подшипника (на это указывает обозначение E в названии модели кулера). Попутно отметим, что в кулерах GlacialTech Igloo 1100 CU PWM могут использоваться и другие типы подшипников, в частности шарикоподшипник качения и подшипник скольжения (Ball Bearing+Sleeve bearing, 1B1S) или два шарикоподшипника качения (Ball Bearing+ Ball Bearing, 2BB). В зависимости от типа применяемых подшипников варь-ируется и время наработки на отказ (MTBF): в случае 1B1S MTBF оно составляет 40 тыс., в случае 2BB - 35 тыс., а в случае EBR - 50 тыс. часов.

Добавим также, что заявленное энергопотребление кулера равно 3,36 Вт при максимальной скорости вращения вентилятора, а диапазон допустимых значений напряжения на вентиляторе - от 6 до 13,8 В.

В ходе тестирования кулера GlacialTech Igloo 1100 CU PWM (E) выяснилось, что при использовании технологии PWM скорость вращения вентилятора меняется от 660 до 3540 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 0% (рис. 16).

Рис. 16. Зависимость скорости вращения вентилятора

В случае применения технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 621 до 3480 RPM (рис. 17), причем скорость вращения 621 RPM соответствует напряжению питания 3 В. При напряжении питания 6 В скорость вращения составляет 1851 RPM.

Рис. 17. Зависимость скорости вращения вентилятора
от напряжения питания для кулера GlacialTech Igloo 1100 CU PWM (E)

По эффективности охлаждения (рис. 18) кулер GlacialTech Igloo 1100 CU PWM (E) нельзя отнести к категории производительных. В случае полной загрузки процессора Intel Core i7-2600K его температура составляет 64 °С при максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 0%, при котором скорость вращения вентилятора становится минимальной, то температура процессора достигнет критического значения 99 °С.

Рис. 18. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера GlacialTech Igloo 1100 CU PWM (E)

Как видите, кулер Igloo 1100 CU PWM (E) действительно способен охладить процессор с TDP 95 Вт, но не более того. Использовать этот кулер для охлаждения процессоров с более высоким значением TDP, а также для охлаждения разогнанных процессоров не имеет смысла.

По уровню шума кулер Igloo 1100 CU PWM (E) можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 44 дБА, что можно считать нормальным результатом. Ну а при напряжении питания 6 В уровень его шума равен 31,5 дБА, то есть кулер едва слышно.

Сочетание не очень высокой эффективности и низкого уровня шума позволило этому кулеру получить интегральную оценку в 19,96 балла и занять лишь пятое место в рейтинге бюджетных кулеров. Такой кулер вполне можно применять для компьютеров начального уровня и даже среднего, особенно с учетом того, что его розничная цена составляет 410 руб.

GlacialTech ALASKA

GlacialTech ALASKA - это модель топового кулера от компании GlacialTech (www.glacialtech.com).

Данный кулер имеет универсальную систему крепления и совместим с процессорными разъемами LGA775/1155/1156/1366 для процессоров Intel и разъемами Socket 754/939/940/AM2/AM2+/AM3 для процессоров AMD. Причем данный кулер, согласно спецификации, совместим с самыми «горячими» процессорами, имеющими TDP 130 Вт.

Универсальность крепления достигается за счет использования трех типов монтажных рамок, устанавливаемых с обратной стороны материнской платы, а также за счет двух типов монтажных скоб, которые прикрепляются винтами к радиатору и позволяют с помощью крепежных болтов соединить радиатор с монтажной рамкой.

Отметим, что в комплект поставки кулера, кроме традиционной термопасты, входит даже лопатка для нанесения термопасты на поверхность процессора.

В кулере GlacialTech ALASKA применяется радиатор башенного типа с шестью U-образными тепловыми трубками. Каждая из шести тепловых трубок имеет U-образный загиб в районе теплосъемной подошвы радиатора, поэтому тонкие алюминиевые пластины радиатора башенного типа оказываются насаженными уже на 12 тепловых трубок.

Сбоку от башенного радиатора с помощью двух пружинных скоб крепится семилепестковый 120-мм вентилятор с четырехконтактным разъемом, поддерживающий технологию изменения скорости вращения за счет как изменения напряжения питания, так и широтно­импульсной модуляции напряжения (PWM).

Габариты всего кулера составляют 130x101x156 мм, а вес - 815 г (включая крепежные аксессуары).

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 700±300 до 1600±250 RPM (при использовании PWM-технологии). На максимальной скорости вращения кулер создает воздушный поток 55,7 CFM. Кроме того, указывается, что максимальный уровень шума, создаваемого кулером, составляет 30 дБА. Отметим также, что в вентиляторе кулера GlacialTech ALASKA используется подшипник скольжения.

В ходе тестирования кулера GlacialTech ALASKA выяснилось, что в случае применения технологии PWM скорость вращения вентилятора меняется от 828 до 1590 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 30% и не меняется вплоть до скважности в 0% (рис. 19).

Рис. 19. Зависимость скорости вращения вентилятора от скважности PWM-импульсов

При использовании технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 396 до 1581 RPM (рис. 20), причем скорость вращения 396 RPM соответствует напряжению питания 5 В. При напряжении питания 6 В скорость вращения составляет 555 RPM.

Рис. 20. Зависимость скорости вращения вентилятора от напряжения питания
для кулера GlacialTech ALASKA

По эффективности охлаждения (рис. 21) кулер GlacialTech ALASKA можно отнести к категории производительных. В случае полной загрузки процессора Intel Core i7-2600K его температура составляет 57 °С при максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 30%, при котором скорость вращения вентилятора становится минимальной, температура процессора составит всего 63 °С.

Рис. 21. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера GlacialTech ALASKA

Таким образом, данный кулер обеспечивает эффективное охлаждение процессора Intel Core i7-2600K при его полной загрузке и имеет хороший потенциал для разгона процессора. Кулер GlacialTech ALASKA целесообразно использовать для охлаждения процессоров с высоким значением TDP (включая и процессоры с TDP 130 Вт), а также для охлаждения разогнанных процессоров.

По уровню шума кулер GlacialTech ALASKA можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 43,5 дБА, что можно считать хорошим результатом. При напряжении питания 6 В кулер просто не слышно, то есть уровень его шума не превышает фонового уровня в 30 дБА.

Сочетание высокой эффективности и низкого уровня шума позволило этому кулеру получить высокую интегральную оценку в 21,49 балла и занять третье место в нашем рейтинге кулеров класса high-end. В результате можно сказать, что это хороший кулер по доступной розничной цене в 1350 руб.

ZALMAN CNPS7000C-AlCu

ZALMAN CNPS7000C-AlCu можно отнести к категории бюджетных кулеров от компании ZALMAN. Эту модель уже нельзя считать новой - она выпускается вместо хорошо известного кулера CNPS7000-Cu. Следует отметить, что существует несколько модификаций кулера ZALMAN CNPS7000C: CNPS7000C-AlCu, CNPS7000C-AlCu LED, CNPS7000C-Cu LED, которые различаются материалом радиатора и наличием или отсутствием светодиодной подсветки.

Кулер ZALMAN CNPS7000C-AlCu имеет универсальную систему крепления и может комплектоваться монтажной рамкой, устанавливаемой с лицевой стороны системной платы, как под разъемы LGA775/1155/1156 для процессоров Intel, так и под разъемы Socket 754/939/940/AM2/AM2+/AM3 для процессоров AMD. К самой монтажной рамке с помощью винтов крепится радиатор со встроенным вентилятором.

Радиатор с радиально расходящимися реб­рами выполнен в форме пиалы диаметром 109 мм и высотой 63 мм. Бо льшая часть ребер изготовлена из алюминия, но в двух сегментах ребра медные. Общая площадь всех ребер радиатора составляет 2890 см 2 , а вес кулера - 450 г (вместе с монтажной рамкой).

В углубление чаши радиатора встроен семилепестковый 92-мм вентилятор с трехконтактным разъемом, поддерживающий только технологию изменения скорости вращения за счет изменения напряжения питания.

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 1350±135 до 2650±265 RPM, а уровень шума, создаваемого вентилятором, составляет от 17 до 27,5 дБА.

Также в документации указывается, что в вентиляторе кулера ZALMAN CNPS7000C-AlCu применяются два подшипника качения (Ball-Bearing).

В ходе тестирования кулера ZALMAN CNPS7000C-AlCu выяснилось, что при использовании технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 822 до 2571 RPM (рис. 22), причем скорость вращения 822 RPM соответствует напряжению питания 3 В. При напряжении питания 6 В скорость вращения составляет 1590 RPM.

Рис. 22. Зависимость скорости вращения вентилятора от напряжения питания
для кулера ZALMAN CNPS7000C-AlCu

По эффективности охлаждения (рис. 23) кулер ZALMAN CNPS7000C-AlCu можно отнести к категории средних по производительных. При полной загрузке процессора Intel Core i7-2600K его температура составляет 68 °С при максимальной скорости вращения вентилятора. Если же скважность напряжения питания снизить до 6 В (минимальное значение напряжения, подаваемое на вентилятор), то температура процессора будет равна 74 °С.

Рис. 23. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера ZALMAN CNPS7000C-AlCu

Таким образом, кулер ZALMAN CNPS7000C-AlCu обеспечивает приемлемое охлаждение процессора Intel Core i7-2600K при его полной загрузке. Этот кулер вполне можно использовать для охлаждения процессоров с высоким TDP, достигающим 95 Вт, при этом даже есть некоторый потенциал для разгона процессора. Для охлаждения процессоров с TDP 130 Вт мы бы не рекомендовали применять ZALMAN CNPS7000C-AlCu.

По уровню шума кулер ZALMAN CNPS7000C-AlCu можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 39,5 дБА, что можно считать очень хорошим результатом. При напряжении питания 6 В уровень шума снижается до 30,5 дБА, то есть кулер практически не слышно.

Сочетание высокой эффективности и низкого уровня шума позволило этому кулеру получить интегральную оценку в 20,15 балла и занять второе место в рейтинге бюджетных кулеров. Резюмируя, можно сказать, что это неплохой кулер по доступной розничной цене в 680 руб.

ZALMAN CNPS5X

ZALMAN CNPS5X - это новая модель кулера от компании ZALMAN, который уже нельзя отнести к категории бюджетных кулеров, но и до класса high-end он не дотягивает. Это своего рода промежуточный вариант.

Кулер ZALMAN CNPS5X имеет универсальную систему крепления и может комплектоваться монтажной рамкой, устанавливаемой с лицевой стороны системной платы, как под разъемы LGA775/1155/1156 для процессоров Intel, так и под разъемы Socket 754/939/940/AM2/AM2+/AM3 для процессоров AMD. К самой монтажной рамке крепится радиатор со встроенным вентилятором.

Отметим, что кулер ZALMAN CNPS5X оснащен очень удобной системой крепления. Сама монтажная рамка крепится к плате с помощью дюбелей, в которые вставляются распорки. Причем дюбели не вынимаются из рамки (поэтому их невозможно потерять), а поворот дюбеля в рамке приводит к его смещению и выбору между отверстиями разъемов LGA775 и LGA1155/1156.

В кулере ZALMAN CNPS5X применяется радиатор башенного типа с тремя U-образными тепловыми трубками. То есть каждая из трех тепловых трубок имеет U-образный загиб в районе теплосъемной подошвы радиатора, по-этому тонкие алюминиевые пластины радиатора башенного типа оказываются насаженными уже на шесть тепловых трубок.

Сбоку в радиатор встроен несъемный семилепестковый 92-мм вентилятор с четырехконтактным разъемом, поддерживающий технологию изменения скорости вращения за счет как изменения напряжения питания, так и широтно­импульсной модуляции напряжения (PWM).

Габариты кулера составляют 127x 64x 134 мм, а вес - 343 г (включая монтажную рамку).

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 1400±140 до 2800±280 RPM, а уровень шума, создаваемого вентилятором, составляет от 20 до 32 дБА.

В документации также указывается, что в вентиляторе кулера ZALMAN CNPS5X используется подшипник EBR.

В ходе тестирования кулера ZALMAN CNPS5X выяснилось, что в случае применения технологии PWM скорость вращения вентилятора меняется от 1563 до 2760 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 30% и не меняется вплоть до скважности в 0% (рис. 24).

Рис. 24. Зависимость скорости вращения вентилятора

При использовании технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 381 до 2760 RPM (рис. 25), причем скорость вращения 381 RPM соответствует напряжению питания 4 В. При напряжении питания 6 В скорость вращения составляет 1347 RPM.

Рис. 25. Зависимость скорости вращения вентилятора от напряжения питания
для кулера ZALMAN CNPS5X

По эффективности охлаждения (рис. 26) кулер ZALMAN CNPS5X можно отнести к категории производительных. В случае полной загрузки процессора Intel Core i7-2600K его температура составляет 62 °С при максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 30%, при котором скорость вращения вентилятора становится минимальной, температура процессора составит всего 66 °С.

Рис. 26. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера ZALMAN CNPS5X

А вот по уровню шума кулер ZALMAN CNPS5X оказался не очень хорошим. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 48,6 дБА, что, в общем­то, многовато; при напряжении питания 6 В уровень шума снижается до 31 дБА.

Высокий уровень шума, даже в сочетании с хорошей эффективностью, позволил этому кулеру получить интегральную оценку только в 20,07 балла и занять лишь третье место в нашем рейтинге бюджетных кулеров. Итак, это хороший по эффективности охлаждения, но довольно шумный кулер. Розничная цена ZALMAN CNPS5X - 980 руб.

ZALMAN CNPS9900A LED

ZALMAN CNPS9900A LED - это высокопроизводительный и довольно дорогой кулер класса high-end от компании ZALMAN.

Кулер ZALMAN CNPS9900A LED имеет универсальную систему крепления и снабжен комплектами монтажных рамок под разъемы LGA775/1155/1156 и LGA1366 для процессоров Intel. Каждый комплект представляет собой две рамки, одна из которых устанавливается с лицевой стороны платы, а другая - с обратной. Между собой рамки соединяются винтами.

Для процессоров AMD с разъемами Socket AM3/AM2+/AM2/754/939/940 в комплекте предусмотрена отдельная пружинная скоба, позволяющая соединять радиатор с крепежной рамкой на плате.

В кулере ZALMAN CNPS9900A LED используется фирменный радиатор, представляющий собой два отдельных цилиндрических радиатора, между которыми установлен вентилятор. Ребра радиаторов выполнены из меди и насажены на тепловые трубки. В одном из радиаторов имеется одна тепловая трубка, а в другом - две.

Теплосъемная подошва радиатора, которую тоже пронизывают тепловые трубки, выполнена из меди.

Общая площадь всех пластин радиатора (площадь теплорассеивания) составляет 5402 см 2 .

Кулер ZALMAN CNPS9900A LED оснащен девятилепестковым вентилятором с четырехконтактным разъемом, поддерживающим технологию изменения скорости вращения за счет как изменения напряжения питания, так и широтно­импульсной модуляции напряжения (PWM).

Габариты кулера составляют 94x 131x 152 мм, а вес - 740 г.

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 1000±100 до 2000±200 RPM, а уровень шума, создаваемого вентилятором, составляет от 19 до 38 дБА.

Кроме того, в комплектацию кулера входит переходник с сопротивлением, позволяющий снижать напряжение питания на вентиляторе. В случае применения такого переходника скорость вращения вентилятора меняется в диапазоне от 800±80 до 1300±130 RPM, а уровень шума, создаваемого вентилятором, составляет от 18 до 28,5 дБА.

Также в документации указывается, что вентилятор кулера ZALMAN CNPS9900A LED снабжен двумя подшипниками качения Ball Bearing.

В ходе тестирования кулера ZALMAN CNPS9900A LED (без переходника с сопротивлением) выяснилось, что при использовании технологии PWM скорость вращения вентилятора меняется от 897 до 1950 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 30% и не меняется вплоть до скважности в 0% (рис. 27).

Рис. 27. Зависимость скорости вращения вентилятора

В случае применения технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 651 до 1959 RPM (рис. 28), причем скорость вращения 381 RPM соответствует напряжению питания 4 В. При напряжении питания 6 В скорость вращения составляет 1035 RPM.

Рис. 28. Зависимость скорости вращения вентилятора от напряжения питания
для кулера ZALMAN CNPS9900A LED

По эффективности охлаждения (рис. 29) кулер ZALMAN CNPS9900A LED можно отнес­ти к категории очень производительных. В случае полной загрузки процессора Intel Core i7-2600K его температура составляет 56 °С при максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 20%, при котором скорость вращения вентилятора становится минимальной, температура процессора поднимется всего до 63 °С.

Рис. 29. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера ZALMAN CNPS9900A LED

Таким образом, данный кулер обеспечивает эффективное охлаждение процессора Intel Core i7-2600K при его полной загрузке и имеет хороший потенциал для разгона процессора. Этот кулер целесообразно применять для охлаждения процессоров с высоким значением TDP (включая и процессоры с TDP 130 Вт), а также для охлаждения разогнанных процессоров.

По уровню шума кулер ZALMAN CNPS9900A LED немного уступает своим конкурентам. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 46 дБА, что, в общем­то, немало; при напряжении питания 6 В уровень шума снижается до 31 дБА.

Сочетание очень высокой эффективности и приемлемого уровня шума позволило этому кулеру получить интегральную оценку в 21,29 балла и занять четвертое место в нашем рейтинге кулеров класса high-end. Резюмируя, можно сказать, что это хороший по эффективности охлаждения кулер с вполне адекватной розничной ценой в 1600 руб.

DeepCool ICE Warrior

DeepCool ICE Warrior - это кулер компании DeepCool, которая пока практически неизвестна на российском рынке. Отметим, что компания DeepCool, производящая системы охлаждения для процессоров, графических карт, жестких дисков и ноутбуков, присутствует на рынке уже 14 лет, однако выпускать продукцию под собственной торговой маркой стала относительно недавно (ранее компания работала на OEM-рынок, и ее продукция продавалась под другими брендами).

Кулер DeepCool ICE Warrior имеет универсальную систему крепления и совместим с разъемами LGA775/1155/1156/1366 для процессоров Intel и разъемами Socket AM3/AM2+/AM2 для процессоров AMD. Соответственно в комплекте к кулеру прилагается несколько типов крепежей. Крепеж представляет собой рамку (всего таких рамок в комплекте три), которая устанавливается с обратной стороны материнской платы. К рамке с помощью подпружиненных болтов прикручивается и радиатор, причем на него сначала крепятся монтажные скобы (тип скобы зависит от типа разъема).

В кулере DeepCool ICE Warrior используется радиатор башенного типа с шестью U-образными тепловыми трубками. То есть каждая из шести тепловых трубок имеет U-образный загиб в районе теплосъемной подошвы радиатора, поэтому тонкие алюминиевые пластины радиатора башенного типа оказываются насаженными уже на 12 тепловых трубок.

Сбоку от башенного радиатора с помощью двух пружинных скоб крепится девятилепестковый 120-мм вентилятор с четырехконтактным разъемом, поддерживающий технологию изменения скорости вращения за счет как изменения напряжения питания, так и широтно­импульсной модуляции напряжения (PWM).

Габариты кулера составляют 136x 84x 156 мм, а вес - 978 г.

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 500±200 до 1500±150 RPM (в случае применения PWM-технологии). На максимальной скорости вращения кулер создает воздушный поток 66,3 CFM. Кроме того, указывается, что уровень шума, создаваемого кулером, составляет от 17,6 до 27,6 дБА. Отметим также, что в вентиляторе кулера DeepCool ICE Warrior используется жидкостный подшипник скольжения.

В ходе тестирования кулера DeepCool ICE Warrior выяснилось, что при использовании технологии PWM скорость вращения вентилятора меняется от 468 до 1602 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 20% и не меняется вплоть до скважности в 0% (рис. 30).

Рис. 30. Зависимость скорости вращения вентилятора

Максимальная скорость вращения достигается при скважности PWM-импульсов 90%.

В случае применения технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 372 до 1620 RPM (рис. 31), причем скорость вращения 372 RPM соответствует напряжению питания 5 В. При напряжении питания 6 В скорость вращения составляет 585 RPM.

Рис. 31. Зависимость скорости вращения вентилятора
от напряжения питания для кулера DeepCool ICE Warrior

По эффективности охлаждения (рис. 32) кулер DeepCool ICE Warrior можно отнести к категории высокопроизводительных. При полной загрузке процессора Intel Core i7-2600K его температура составляет 60 °С в случае максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 20%, при котором скорость вращения вентилятора становится минимальной, температура процессора поднимется всего до 74 °С.

Рис. 32. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера DeepCool ICE Warrior

Таким образом, данный кулер обеспечивает эффективное охлаждение процессора Intel Core i7-2600K при его полной загрузке и имеет неплохой потенциал для разгона процессора. Этот кулер целесообразно применять для охлаждения процессоров с высоким значением TDP (включая и процессоры с TDP 130 Вт), а также для охлаждения разогнанных процессоров.

По уровню шума кулер DeepCool ICE Warrior можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 44,3 дБА, что можно считать хорошим результатом. Ну а при напряжении питания 6 В кулер просто не слышно, то есть уровень его шума не превышает фонового уровня в 30 дБА.

Сочетание высокой эффективности и низкого уровня шума позволило кулеру DeepCool ICE Warrior получить высокую интегральную оценку в 20,8 балла и занять шестое место в нашем рейтинге кулеров класса high-end. Резюмируя, можно сказать, что это хороший кулер по доступной розничной цене в 1200 руб.

Thermaltake FrioOCK

Thermaltake FrioOCK - это новая модель кулера от компании Thermaltake, предназначенная для охлаждения разогнанных процессоров с высоким уровнем тепловыделения. Согласно спецификации, этот кулер может отвести от процессора до 240 Вт тепловой мощности.

Данный кулер имеет универсальную сис­тему крепления и совместим с разъемами LGA775/1155/1156/1366 для процессоров Intel и разъемами Socket AM3/AM2+/AM2 для процессоров AMD. Система крепления представляет собой универсальную монтажную рамку, которая совместима со всеми типами разъемов и устанавливается с тыльной стороны системной платы. С лицевой стороны системной платы с помощью болтов к монтажной рамке крепятся скобы, к которым, в свою очередь, уже крепится радиатор кулера. Причем на радиатор предварительно нужно также установить две монтажные скобы.

В кулере Thermaltake FrioOCK используется радиатор башенного типа с шестью U-образными тепловыми трубками. За счет того, что каждая из шести тепловых трубок имеет U-образный перегиб в районе теплосъемной подошвы радиатора, тонкие алюминиевые пластины (их толщина составляет всего 0,4 мм) радиатора оказываются насаженными уже на 12 вертикальных тепловых трубок.

На радиатор надевается кожух с двумя девятилепестковыми 130-мм вентиляторами по бокам. Причем оба вентилятора имеют трехконтактный разъем питания, однако за счет применения Y-разветвителя они присоединяются к одному разъему на плате. Естественно, эти вентиляторы поддерживают только технологию изменения скорости вращения за счет изменения напряжения питания. Кроме того, в саму цепь питания вентиляторов встроен реостат, вращением ручки которого можно дополнительно регулировать скорость вращения вентиляторов.

Габариты кулера составляют 143x 136,8x 158,4 мм, а вес - 1082 г.

Как следует из технических характеристик, скорость вращения вентилятора меняется в диапазоне от 1200 до 2100 RPM. На максимальной скорости вращения кулер создает воздушный поток 121 CFM и статическое давление 3,12 мм водяного столба. Кроме того, указывается, что уровень шума, создаваемого кулером, составляет от 21 до 48 дБА.

Понятно, что наличие реостата в цепи питания вентиляторов кулера позволяет тестировать его в различных режимах. Мы протестировали кулер Thermaltake FrioOCK при двух крайних положениях реостата: High и Low.

В ходе тестирования кулера Thermaltake FrioOCK выяснилось, что в положении реостата High скорость вращения вентилятора меняется от 963 до 2289 RPM, причем минимальная скорость вращения достигается при напряжении питания 4 В (рис. 33).

Рис. 33. Зависимость скорости вращения вентилятора
от скважности PWM-импульсов для кулера Thermaltake FrioOCK

В положении реостата Low скорость вращения вентилятора меняется нелинейно с ростом напряжения питания. При напряжении питания в диапазоне от 4 до 9 В скорость вращения вентилятора точно такая же, как и при положении реостата High. А вот при дальнейшем увеличении напряжения питания скорость вращения вентилятора начинает снижаться. То есть максимальное значение скорости вращения в 1830 RPM достигается при напряжении питания 9 В, а при увеличении напряжения до 12 В скорость снижается до 1353 RPM.

Отметим также, что в положении реостата Low вентиляторы стартуют уже при напряжении 3 В со скоростью 510 RPM (в положении реостата High вентиляторы стартуют только при напряжении 4 В).

По эффективности охлаждения (рис. 34) кулер Thermaltake FrioOCK можно отнести к самым высокопроизводительным. В положении реостата High при полной загрузке процессора Intel Core i7-2600K его температура составляет 58 °С при максимальной скорости вращения вентилятора. Если же напряжение питания понизить до значения 4 В, то температура процессора составит всего 62 °С, а при напряжении 6 В она равна 60 °С.

Рис. 34. Зависимость температуры процессора при его полной загрузке
от напряжения питания для кулера Thermaltake FrioOCK

В положении реостата Low максимальная температура процессора (при напряжении питания 3 В) составляет 67 °С, а при напряжении 12 В - 60 °С.

Как видите, кулер Thermaltake FrioOCK действительно обеспечивает очень эффективное охлаждение процессора и его целесообразно применять исключительно для разгона процессоров, поскольку при охлаждении процессоров в штатном режиме работы будет использоваться далеко не весь его потенциал.

По уровню шума кулер Thermaltake FrioOCK можно отнести к категории довольно шумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 57,53 дБА, а при напряжении питания 6 В кулер - 43,8 дБА, что также очень много.

Следует отметить, что в случае кулера Thermaltake FrioOCK наша методика оценки дала сбой, поскольку не позволила адекватно оценить его. Действительно, с учетом высокого уровня шума интегральная оценка этого кулера составила всего 18,38 балла, что соответствует последнему месту в нашем рейтинге. Однако это вовсе не означает, что кулер плохой. Просто использованная нами методика сравнения кулеров в данном случае оказалась негодной. Основное достоинство этого кулера заключается в эффективном охлаждении именно разогнанных процессоров. Естественно, что уровень шума в таком кулере не может служить весомым аргументом. Он просто не предназначен для тихих ПК. И точно так же, как некорректно сравнивать ноутбуки и серверы по уровню шума, не вполне корректно сравнивать по уровню шума кулер Thermaltake FrioOCK с обычными, поскольку он создан для того, чтобы работать в экстремальных условиях, а тут уж не до шума.

Остается добавить, что розничная цена кулера составляет примерно 1800 руб.

Cooler Master V6

Кулер V6 от компании Cooler Master относится к моделям класса high-end, имеющим универсальную систему крепления и ориентированным на пользователей, которые занимаются самостоятельной сборкой компьютеров.

Данный кулер имеет универсальную систему крепления и совместим с разъемами LGA775/1155/1156/1366 для процессоров Intel и разъемами Socket AM3/AM2+/AM2 для процессоров AMD.

Система крепления представляет собой универсальную монтажную рамку, которая совмес-тима со всеми типами разъемов и устанавливается с тыльной стороны системной платы. С лицевой стороны системной платы с помощью болтов к монтажной рамке крепятся скобы, к которым, в свою очередь, уже прикрепляется радиатор кулера. При этом на радиатор предварительно нужно также установить две монтажные скобы.

Кулер V6 представляет собой радиатор башенного типа, состоящий из тонких алюминиевых пластин, насаженных с двух сторон на шесть тепловых трубок диаметром 6 мм каждая. Тепловые трубки пронизывают все пластины радиатора и теплосъемную медную подошву, соприкасающуюся с поверхностью процессора. Тепловые трубки, если посмотреть на радиатор сверху, расположены в форме буквы V и образуют два V-образных массива (слева и справа). Собственно, именно по причине такого размещения тепловых трубок кулер и получил название V6 (шесть тепловых трубок, расположенных в форме буквы V). По данным компании Cooler Master, V-образная конструкция из тепловых трубок улучшает теплоотвод при горизонтальном воздушном потоке. Впрочем, это не единственное усовершенствование, казалось бы, стандартного радиатора башенного типа. Другое новшество заключается в том, что пластины радиатора расположены не строго горизонтально, а под углом 5°, что уменьшает сопротивление воздушному потоку и увеличивает площадь рассеивания тепла.

Сбоку от радиатора крепится 120-мм вентилятор, имеющий семилепестковую крыльчатку и четырехконтактный разъем питания. Он поддерживает технологию изменения скорости вращения за счет как изменения напряжения питания, так и широтно­-импульсной модуляции (PWM).

Отметим, что конструкция кулера предусматривает возможность установки двух вентиляторов (с двух сторон радиатора), однако в штатную поставку кулера входит лишь один.

При использовании двух вентиляторов оба они подсоединяются через Y-разветвитель к одному четырехконтактному разъему на материнской плате. Причем конструкция разветвителя такова, что сигнал тахометра (контроль скорости вращения) снимается только с одного вентилятора (в разъеме подключения одного вентилятора отсутствует контакт сигнала тахометра), что вполне логично, поскольку съем одновременно двух сигналов тахометра привел бы к некорректным результатам.

Как следует из технических характеристик, скорость вращения вентилятора изменяется в диапазоне от 800 до 2200 RPM (видимо, речь идет об изменении скорости вращения за счет PWM-модуляции). Создаваемый при этом кулером воздушный поток меняется в диапазоне от 34,02 до 93,74 CFM, а воздушное давление - в диапазоне от 0,43 до 3,30 мм водяного столба. Уровень шума, производимого вентилятором, варьируется в диапазоне от 15 до 38 дБА.

Осталось добавить, что габаритные размеры кулера V6 составляют 131,5x 120x 165 мм, а его вес - 805 г.

В ходе тестирования кулера DeepCool ICE Warrior выяснилось, что в случае применения технологии PWM скорость вращения вентилятора меняется от 921 до 2157 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 0%, а максимальная скорость вращения - при скважности 90% (рис. 35).

Рис. 35. Зависимость скорости вращения вентилятора

При использовании технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 381 до 2190 RPM (рис. 36), причем скорость вращения 381 RPM соответствует напряжению питания 4 В. При напряжении питания 6 В скорость вращения составляет 759 RPM.

Рис. 36. Зависимость скорости вращения вентилятора
от напряжения питания для кулера Cooler Master V6

По эффективности охлаждения (рис. 37) кулер Cooler Master V6 можно отнести к категории очень высокопроизводительных. При полной загрузке процессора Intel Core i7-2600K его температура составляет 57 °С в случае максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 0%, при котором скорость вращения вентилятора становится минимальной, то температура процессора поднимется всего до 65 °С.

Рис. 37. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера Cooler Master V6

Таким образом, кулер Cooler Master V6 не только обеспечивает эффективное охлаждение процессора Intel Core i7-2600K при его полной загрузке, но и имеет отличный потенциал для разгона процессора. Этот кулер целесообразно использовать для охлаждения процессоров с высоким значением TDP (включая и процессоры с TDP 130 Вт), а также для охлаждения разогнанных процессоров.

По уровню шума кулер Cooler Master V6 можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 44,3 дБА, что можно считать хорошим результатом. При напряжении питания 6 В кулер просто не слышно, то есть уровень его шума не выделяется на уровне фона в 30 дБА.

Сочетание высокой эффективности и низкого уровня шума позволило этому кулеру получить высокую интегральную оценку в 20,8 балла и занять в нашем рейтинге пятое место. Резюмируя, можно сказать, что это хороший кулер по доступной розничной цене в 1380 руб.

Cooler Master Hyper TX3

Hyper TX3 от компании Cooler Master - это недорогой кулер среднего класса, ориентированный на массовые ПК. Он имеет универсальную систему крепления и может применяться как с процессорами Intel, имеющими разъемы LGA 775 и LGA 1155/1156, так и с процессорами AMD с разъемами Socket AM2/AM2+/AM3 и Socket 754/939/940.

Система крепления кулера к материнской плате зависит от типа разъема. Для процессоров Intel c разъемом LGA775 или LGA1155/1156 применяются удобные клипсовые зажимы, которые сначала прикрепляются на скобках к радиатору.

Кулер представляет собой радиатор башенного типа с тонкими, горизонтально расположенными алюминиевыми пластинами. Пластины радиатора насажены на три медные тепловые трубки диаметром 6 мм каждая, которые также проходят через теплосъемную алюминиевую подошву.

Размеры кулера составляют 90x 51x 139 мм, а вес - 470 г.

С одной стороны от радиатора располагается 92-мм вентилятор, который крепится к нему с помощью монтажных скоб. Вентилятор имеет четырехконтактный разъем питания, то есть поддерживает управление скоростью вращения методом широтно­импульсной модуляции напряжения питания (PWM). Отметим, что опционально на радиатор кулера можно установить с противоположной стороны второй вентилятор.

Согласно заявленным техническим характеристикам, скорость вращения кулера меняется в диапазоне от 800 до 2800 RPM, а воздушный поток, создаваемый вентиляторами, составляет от 15,7 до 54,8 CFM (в зависимости от скорости вращения создаваемое кулером воздушное давление варьируется от 0,35 до 4,27 мм водяного столба).

Кроме того, в технических характеристиках кулера Hyper TX3 указывается, что создаваемый им уровень шума - от 17 до 35 дБА. Время наработки кулера на отказ - 40 тыс. часов.

В ходе тестирования кулера Cooler Master Hyper TX3 выяснилось, что при использовании технологии PWM скорость вращения вентилятора меняется от 738 до 2760 RPM, причем минимальная скорость вращения достигается при скважности PWM-импульсов 10% (рис. 38).

Рис. 38. Зависимость скорости вращения вентилятора

В случае применения технологии изменения скорости вращения вентилятора за счет изменения напряжения питания скорость вращения вентилятора меняется в диапазоне от 426 до 2757 RPM (рис. 39), причем скорость вращения 381 RPM соответствует напряжению питания 5 В. При напряжении питания 6 В скорость вращения составляет 621 RPM.

Рис. 39. Зависимость скорости вращения вентилятора
от напряжения питания для кулера Cooler Master Hyper TX3

По эффективности охлаждения (рис. 40) кулер Cooler Master Hyper TX3 можно отнести к категории средних по производительности. При полной загрузке процессора Intel Core i7-?2600K его температура составляет 63 °С в случае максимальной скорости вращения вентилятора (скважность PWM-импульсов равна 100%). Если же скважность PWM-импульсов понизить до значения в 10%, при котором скорость вращения вентилятора становится минимальной, температура процессора составит уже 83 °С.

Рис. 40. Зависимость температуры процессора при его полной загрузке
от скважности PWM-импульсов для кулера Cooler Master Hyper TX3

Как видите, кулер Cooler Master Hyper TX3 обеспечивает вполне приемлемое охлаждение процессора Intel Core i7-2600K при его полной загрузке. Однако использовать этот кулер для охлаждения процессоров с TDP выше 95 Вт или для разгона процессоров мы бы не рекомендовали.

По уровню шума кулер Cooler Master Hyper TX3 можно отнести к категории малошумных. При максимальной скорости вращения вентилятора измеренный по нашей методике уровень шума составил 44,3 дБА, что можно считать хорошим результатом. При напряжении питания 6 В кулер просто не слышно, то есть уровень его шума не превышает фонового уровня в 30 дБА.

Сочетание высокой эффективности и низкого уровня шума позволило этому кулеру получить высокую интегральную оценку в 20,8 балла и занять четвертое место в нашем рейтинге бюджетных кулеров. Резюмируя, можно сказать, что это хороший кулер по доступной розничной цене в 570 руб.

Если вы работает за компом дома долго и помногу (а особенно — ночью), то любой шумящий вентилятор внутри системного блока способен «довести до белого каления» не только вас, но и ваших домашних. Как же подобрать по-настоящему тихий вентилятор для компьютера?

Итак, почему вентиляторы вообще шумят?

Основных причин две: это собственные механические вибрации (неудачная балансировка крыльчатки, плохой по качеству либо износившийся подшипник и т.д.) и прохождение потока воздуха мимо элементов вентилятора и окружающей его среды (например, мимо рёбер радиатора на процессоре или неудачно попавшего в воздушный поток какого-либо пучка проводов). Для последнего даже существует специальное название — «эоловы тона» (желающие узнать об этом явлении более подробно могут заглянуть в википедию, попутно посетив статью «дорожка Кармана»). Остальным же достаточно знать, что этот шум и по мощности, и по высоте тона напрямую зависит от скорости обтекающего потока.

Из предыдущего абзаца начальные советы совершенно очевидны: по возможности стараться выбирать вентиляторы с максимальной ометаемой крыльчаткой площадью и минимальным числом оборотов, а лучше всего — с возможностью их регулирования (если материнская плата и т.д. не поддерживает регулировку оборотов, то сделать самому «ручной» регулятор не так уж и сложно). Практика показывает, что где-то до уровня порядка тысячи оборотов в минуту компьютерные вентиляторы практически бесшумны — вы скорее услышите шум шпинделя жёсткого диска, чем его.

Далее, поверхность самой крыльчатки при визуальном осмотре должна быть гладкой, без царапин, приливов и облоя пластмассы — все эти дефекты на больших скоростях обязательно начнут «выть» на разные тона. Очень грубо центровку крыльчатки можно проверить, аккуратно взяв вентилятор двумя пальцами за корпус и немного раскрутив крыльчатку (можете поверить на слово — пальцы к малейшей вибрации очень чувствительны!), а ещё лучше — на удерживаемый в руке вентилятор подать напряжение и протестировать наличие вибраций во всём рабочем диапазоне.

Бытует мнение, что тихие вентиляторы для компьютера обязательно должны иметь подшипник качения («с шариками», иначе — ball bearing) — что, вообще говоря, не всегда верно, поскольку коэффициент трения стали по бронзовой втулке подшипника скольжения крайне мал. Проверить тип подшипника (а заодно и нанести консистентную смазку) просто: нужно аккуратно снять липкую наклейку с обратной стороны и вынуть пластиковую/резиновую «пробку» в центре — откроется вид на подшипник, ось крыльчатки и фиксирующую её шайбу.

Но самый важный момент это уровень шума, у каждого вентилятора есть такой показатель Дб при покупке на него обязательно стоит смотреть. Вот таблица по которой можно определить уровень шума который будет издавать вентилятор.

Децибел,
дБА
Характеристика Источники звука
0 Ничего не слышно
5 Почти не слышно
10 Почти не слышно тихий шелест листьев
15 Едва слышно шелест листвы
20 Едва слышно шепот человека (на расстоянии 1 метр).
25 Тихо шепот человека (1м)
30 Тихо шепот, тиканье настенных часов.
Допустимый максимум по нормам для жилых помещений ночью, с 23 до 7 ч.
(СНиП 23-03-2003 «Защита от шума»).
35 Довольно слышно приглушенный разговор
40 Довольно слышно обычная речь.
Норма для жилых помещений днём, с 7 до 23 ч.
45 Довольно слышно обычный разговор
50 Отчётливо слышно разговор, пишущая машинка
55 Отчётливо слышно Верхняя норма для офисных помещений класса А (по европейским нормам)
60 Шумно Норма для контор
65 Шумно громкий разговор (1м)
70 Шумно громкие разговоры (1м)
75 Шумно крик, смех (1м)
80 Очень шумно крик, мотоцикл с глушителем, шум пылесоса (с большой мощностью двигателя — 2 киловатта).
85 Очень шумно громкий крик, мотоцикл с глушителем
90 Очень шумно громкие крики, грузовой железнодорожный вагон (в семи метрах)
95 Очень шумно вагон метро (в 7 метрах снаружи или внутри вагона)

Профилактика и уход

Даже самые тихие вентиляторы со временем могут начать шуметь, если им не делать профилактику: регулярно не менять смазку на подшипнике и не удалять с поверхностей накопившуюся пыль (она резко ухудшает аэродинамику поверхностей — см. выше). Также никогда и ни при каких обстоятельствах нельзя «тормозить» вентилятор посторонними предметами о крыльчатку — вы просто необратимо испортите кромку лопастей!



Рекомендуем почитать

Наверх