Усилитель низкой частоты на мощных транзисторах. Транзисторные усилители

Авто 07.09.2019
Авто

Читатели! Запомните ник этого автора и никогда не повторяйте его схемы.
Модераторы! Прежде чем меня забанить за оскорбления, подумайте, что Вы "подпустили к микрофону" обыкновенного гопника, которого даже близко нельзя подпускать к радиотехнике и, тем более, к обучению начинающих.

Во-первых, при такой схеме включения, через транзистор и динамик пойдет большой постоянный ток, даже если переменный резистор будет в нужном положении, то есть будет слышно музыку. А при большом токе повреждается динамик, то есть, рано или поздно, он сгорит.

Во-вторых, в этой схеме обязательно должен быть ограничитель тока, то есть постоянный резистор, хотя бы на 1 КОм, включенный последовательно с переменным. Любой самоделкин повернет регулятор переменного резистора до упора, у него станет нулевое сопротивление и на базу транзистора пойдет большой ток. В результате сгорит транзистор или динамик.

Переменный конденсатор на входе нужен для защиты источника звука (это должен обьяснить автор, ибо сразу же нашелся читатель, который убрал его просто так, считая себя умнее автора). Без него будут нормально работать только те плееры, в которых на выходе уже стоит подобная защита. А если ее там нет, то выход плеера может повредиться, особенно, как я сказал выше, если выкрутить переменный резистор "в ноль". При этом на выход дорогого ноутбука подастся напряжение с источника питания этой копеечной безделушки и он может сгореть. Самоделкины, очень любят убирать защитные резисторы и конденсаторы, потому-что "работает же!" В результате, с одним источником звука схема может работать, а с другим нет, да еще и может повредиться дорогой телефон или ноутбук.

Переменный резистор, в данной схеме должен быть только подстроечным, то есть регулироваться один раз и закрываться в корпусе, а не выводиться наружу с удобной ручкой. Это не регулятор громкости, а регулятор искажений, то есть им подбирается режим работы транзистора, чтобы были минимальные искажения и чтобы из динамика не шел дым. Поэтому он ни в коем случае не должен быть доступен снаружи. Регулировать громкость, путем изменения режима НЕЛЬЗЯ. За это нужно "убивать". Если очень хочется регулировать громкость, проще включить еще один переменный резистор последовательно с конденсатором и вот его уже можно выводить на корпус усилителя.

Вообще, для простейших схем - и чтобы заработало сразу и чтобы ничего не повредить, нужно покупать микросхему типа TDA (например TDA7052, TDA7056... примеров в интернете множество) , а автор взял случайный транзистор, который завалялся у него в столе. В результате доверчивые любители будут искать именно такой транзистор, хотя коэффициент усиления у него всего 15, а допустимый ток аж 8 ампер (сожгет любой динамик даже не заметив).

Транзисторные усилители

ЭЛЕКТРОННЫЕ УСИЛИТЕЛИ И ГЕНЕРАТОРЫ

Электронные усилители

Транзисторные усилители

Назначением усилителя как электронного устройства является увеличе­ние мощности сигнала за счет энергии источника питания.

В зависимости от формы электрических сигналов усилители разделяют на: усили­тели непрерывных сигналов, называемые усилителями постоянного тока; усили­тели сигналов с гармоническим несущим процессом, которые называют усилите­лями переменного тока; усилители импульсных сигналов – импульсные усили­тели. Из усилителей переменного тока выделяют узкополосные, или из­бирательные, усиливающие только одну гармоническую составляющую из ряда гармоник несинусоидального периодического тока. Импульсные усилители являются широкополосными.

В электронных устройствах применяют также усилители, преобразую­щие изменения амплитуды или фазы гармонического тока в соответствующие изменения значения и знака постоянного тока (напряжения). Называют их усилителями среднего значения тока.

В соответствии с назначением коэффициентом преобразования усилителя является коэффициент усиления мощности

где , – мощность выходного и входного сигналов соответственно.

Однако в зависимости от режимов работы выходной и входной цепей усилителя практическое значение может иметь не усиление мощности сигнала, а повышение его уровня по напряжению или по току. Поэтому на практике различают усилители мощности, усилители напряжения и усилители тока. Со­ответственно в качестве коэффициентов преобразования используются коэф­фициенты усиления напряжения и тока

; . (14.2)

Очевидно, что .

Режим работы усилителя определяется соотношениями входного , выход­ного сопротивлений и сопротивлений источника сигнала и на­грузки . Для усилителя напряжения характерны соотношения: , , которые дают режим, близкий к режиму холостого хода на выходе. Источником сигнала является источник напряжения. Для усилителя тока соотно­шения , дают режим, близкий к короткому замыканию на выходе. Источником сигнала служит источник тока.

Однако рассмотренные идеальные режимы усиления напряжения или тока на практике встречаются редко. Транзисторные усилители большей частью рабо­тают как усилители мощности в режиме согласованной нагрузки источника сиг­нала, а иногда и согласованной нагрузки усилителя, т.е. при и .

Простейший усилитель принято называть усилительным каскадом . При не­достаточном усилении сигнала одним каскадом усилитель выполняется из не­скольких каскадов. Усилители электронных устройств, как правило, состоят из двух или трех каскадов, которые называются входным, выходным и промежуточ­ным каскадами.

Общим требованием к усилителям электронных устройств является как можно меньшее искажающее воздействие на сигналы. Необходимые информаци­онные характеристики и параметры усилителей обеспечиваются при достаточно высокой стабильности коэффициентов усиления, практически линейной проход­ной характеристике, ограниченных линейных искажениях (сдвигах фаз гармони­ческих составляющих сигналов) и малой инерционностью. Перечисленные свой­ства усилителей достигаются главным образом за счет обратных связей. Поэтому практически все усилители электронных устройств выполняются с обратными связями. Особое место занимают усилители с глубокой положительной, обеспе­чивающей релейный или автоколебательный режим их работы, и отрицательной обратной связью – операционные усилители.

Усилительный каскад может быть выполнен на основе любой из трех схем включения транзистора. Однако преимущественно используются усилительные каскады по схеме включения с общим эмиттером (ОЭ) биполярного и схеме с общим истоком (ОИ) полевого транзисторов, как обеспечивающие наибольшее усиление (рис. 14.1 а, б).

Режим работы транзистора в усилительном каскаде отличается от режима работы в схеме включения транзистора, так как его выходные зажимы размы­каются и к ним под­ключается нагрузка с сопротивле­нием , а к входным зажимам под­ключается источник сигнала с сопро­тивлением и ЭДС . При = 0 транзистор находится в некотором исходном режиме, задаваемом ис­точником питания и источником смещения .

Резистор уменьшает коэф­фициент усиления по току биполяр­ного транзистора и крутизну харак­теристики полевого транзистора, поскольку их выходные сопротивле­ния конечны.

Внутренняя положительная обратная связь в схеме включения биполяр­ного транзистора с ОЭ, увеличивая коэффициент усиления мощности каскадом, одновременно увеличивает нестабильность коэффициента усиле­ния. Поэтому усилительные каскады на основе схемы с ОЭ биполярного и с ОИ полевого транзисторов всегда выпол­няются с внешними (специально введенными) отрицательными обратными связями (рис. 14.2 а, б).

В усилителях переменного тока частота несущего процесса, как правило, равна промышленной (50 Гц) или кратна ей. Наи­большие частоты не выходят за пределы звукового диапазона, наименьшая может составлять 25…30 Гц .

В усилителях переменного тока возможно гальваническое разделение це­пей усиливаемого сигнала и цепей постоянного тока, задающих исходный ре­жим транзистора, что является важной их особенностью. Разделение достига­ется путем использования реактивных сопротив­лений – кондесаторов или трансформаторов для связи транзистора с источником сигнала и нагрузкой. Соответственно различают усилители переменного тока с конден­саторными (RC -связями) и трансформаторными связями.

Достоинствами конденсаторных усилительных каскадов являются их от­носительная простота и технологичность изготовления. Однако их параметры, прежде всего коэффициент усиления мощности, хуже параметров трансформаторных каскадов. Достоинством последних является свойство обеспечения возможно большего приближения к оптимальному ре­жиму усиления мощности вплоть до согласования транзи­стора с источником сигнала и нагрузкой. Однако в связи с низкими значениями напряжений, применяемых для питания транзисторов, согласование возможно только в усилителях слабых сигналов. Такие усилители выполняют, как правило, с конденсаторными связями. С трансформаторными связями выпол­няют усилители больших сигналов, особенно выходные каскады (на биполярных транзисторах).

Часто, особенно в электронных устройствах с преобразователями неэлек­трических величин, необходимо усиление сигналов очень низких частот (). В этом случае используют усилительные каскады постоянного тока, имеющие амплитудно-частотную характеристику, равномерную в диа­пазоне от до . Так как использование конденсаторов и трансформато­ров в усилителях постоянного тока невозможно, для связи между каскадами используют только резисторы.

Из числа схем усилителей постоянного тока наибольший интерес представ­ляет параллельно-баланс–ная или дифференциальная схема (рис. 14.3). В ней использован принцип четырехплече­го моста. Однако в такой схеме предъявляются особые требования к идентичности характеристик транзи­сторов и других элементов. Такие усилители могут выполняться как на биполярных, так и на полевых тран­зисторах. В дискретных устройствах (например, ЭВМ) их используют для выполнения арифметических опера­ций.

14.1.2. Усилители на микро­схемах

В настоящее время многокаскадные усилители переменного тока с RC -свя­зью выполняют на основе интегральных микросхем. Они состоят, как правило, из нескольких (не менее двух) каскадов. Полоса пропускания частот таких усилите­лей находится в пределах от 200 Гц до 100 кГц . Особенностью интегральных усилителей являются непосредственные (гальванические) связи между каскадами. Связь с источником сигнала и нагрузкой конденсаторная. Так как конденсаторы большой емкости трудно выполнить в интегральном исполнении, то в микросхе­мах предусматривают специальные выводы для подключения внешних конденса­торов и резисторов. На рис. 14.4 показаны схема интегрального усилителя (обве–­ дена пунктиром) и схема его включения.

Сейчас в интернете можно найти огромное количество схем различных усилителей на микросхемах, преимущественно серии TDA. Они обладают достаточно неплохими характеристиками, хорошим КПД и стоят не так уж и дорого, в связи с этим и пользуются такой популярностью. Однако на их фоне незаслуженно остаются забытыми транзисторные усилители, которые хоть и сложны в настройке, но не менее интересны.

Схема усилителя

В этой статье рассмотрим процесс сборки весьма необычного усилителя, работающего в классе «А» и содержащего всего 4 транзистора. Эта схема разработана ещё в 1969 году английским инженером Джоном Линсли Худом, несмотря на свою старость, она и по сей день остаётся актуальной.

В отличие от усилителей на микросхемах, транзисторные усилители требуют тщательной настройки и подбора транзисторов. Эта схема – не исключение, хоть она и выглядит предельно простой. Транзистор VT1 – входной, структуры PNP. Можно экспериментировать с различными маломощными PNP-транзисторами, в том числе и с германиевыми, например, МП42. Хорошо себя зарекомендовали в этой схеме в качестве VT1 такие транзисторы, как 2N3906, BC212, BC546, КТ361. Транзистор VT2 – структуры NPN, средней или малой мощности, сюда подойдут КТ801, КТ630, КТ602, 2N697, BD139, 2SC5707, 2SD2165. Особое внимание стоит уделить выходным транзисторам VT3 и VT4, а точнее, их коэффициенту усиления. Сюда хорошо подходят КТ805, 2SC5200, 2N3055, 2SC5198. Нужно отобрать два одинаковых транзистора с как можно более близким коэффициентом усиления, при этом он должен более 120. Если коэффициент усиления выходных транзисторов меньше 120, значит в драйверный каскад (VT2) нужно поставить транзистор с большим усилением (300 и более).

Подбор номиналов усилителя

Некоторые номиналы на схеме подбираются исходя из напряжения питания схемы и сопротивления нагрузки, некоторые возможные варианты показаны в таблице:


Не рекомендуется поднимать напряжение питания более 40 вольт, могут выйти из строя выходные транзисторы. Особенность усилителей класса А – большой ток покоя, и, следовательно, сильный разогрев транзисторов. При напряжении питания, например, 20 вольт и токе покоя 1.5 ампера усилитель потребляет 30 ватт, не зависимо от того, подаётся на его вход сигнал или нет. На каждом из выходных транзисторов при этом будет рассеиваться по 15 ватт тепла, а это мощность небольшого паяльника! Поэтому транзисторы VT3 и VT4 нужно установить на большой радиатор, используя термопасту.
Данный усилитель склонен в появлению самовозбуждений, поэтому на его выходе ставят цепь Цобеля: резистор сопротивлением 10 Ом и конденсатор 100 нФ, включенные последовательно между землёй и общей точкой выходных транзисторов (на схеме эта цепь показана пунктиром).
При первом включении усилителя в разрыв его питающего провода нужно включить амперметр для контроля тока покоя. Пока выходные транзисторы не разогрелись до рабочей температуры, он может немного плавать, это вполне нормально. Также при первом включении нужно замерять напряжение между общей точкой выходных транзисторов (коллектор VT4 и эммитер VT3) и землёй, там должна быть половина питающего напряжения. Если напряжение отличается в большую или меньшую сторону, нужно покрутить подстроечный резистор R2.

Плата усилителя:

(cкачиваний: 405)


Плата изготовлена методом ЛУТ.

Собранный мной усилитель






Несколько слов о конденсаторах, входном и выходном. Ёмкость входного конденсатора на схеме обозначена 0,1 мкФ, однако такой ёмкости не достаточно. В качестве входного следует поставить плёночный конденсатор ёмкостью 0,68 – 1 мкФ, иначе возможен нежелательный срез низких частот. Выходной конденсатор С5 стоит взять на напряжение не меньшее, чем напряжением питания, жадничать с ёмкостью также не стоит.
Преимуществом схемы этого усилителя является то, что она не представляет опасности для динамиков акустической системы, ведь динамик подключается через разделительный конденсатор (С5), это значит, что при появлении на выходе постоянного напряжения, например, при выходе усилителя из строя, динамик останется цел, ведь конденсатор не пропустит постоянное напряжение.

Цель: Объяснить курсантам принцип работы усилительного каскада на биполярном транзисторе. Полезные свойства отрицательной обратной связи.

План

    Предварительные каскады усиления.

    Резистивные усилительные каскады.

    Резистивный каскад на биполярном транзисторе.

    Обратная связь в усилителях.

    Определение основных параметров усилителя.

    Определение параметров усилителя методом активного четырехполюсника.

    Эксплуатационные параметры транзистора.

1. Предварительные каскады усиления

Назначение усилителя в конечном итоге состоит в получении на заданном сопротивлении оконечного нагрузочного устройства тре­буемой мощности усиливаемого сигнала.

В качестве источника входного сигнала в УНЧ могут исполь­зоваться такие устройства, как микрофон, звукосниматель, фото­элемент, термопара, детектор и т. п. Типы нагрузок также весьма разнообразны. Ими могут быть, например, громкоговоритель, изме­рительный прибор, записывающая головка магнитофона, последу­ющий усилитель, осциллограф, реле.

Большинство из перечисленных выше источников входного сигнала развивают очень низкое напряжение. Подавать его не­посредственно на каскад усиления мощности не имеет смысла, так как при таком слабом управляющем напряжении невозможно по­лучить сколько-нибудь значительные изменения выходного тока, а, следовательно, и выходной мощности. Поэтому в состав струк­турной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность полезного сигнала в нагрузку, как правило, входят и предварительные каскады усиления (рис. 13.1).

2. Резистивные усилительные каскады

Эти каскады принято классифицировать по характеру сопро­тивления нагрузки в выходной цепи транзистора. Наибольшее применение получили резистивные усилительные каскады, сопро­тивлением нагрузки которых служит резистор.

В качестве нагрузки транзистора может быть использован и трансформатор. Такие каскады называют трансформаторными. Однако вследствие большой стоимости, значительных размеров и массы трансформатора, а также из-за неравномерности амплитудно-частотных характеристик трансформаторные каскады предваритель­ного усиления применяются весьма редко. Основное применение эти схемы находят в выходных каскадах усилителей.

В каскадах предварительного усиления на биполярных тран­зисторах чаще других используется схема с общим эмиттером, которая, как было показано выше (см. параграф 7.3), обладает высоким коэффициентом усиления по напряжению и мощности, сравнительно большим входным сопротивлением и допускает использование одного общего источника питания для цепей эмит­тера и коллектора.

Рассмотрим принципы построения и особенности работы наи­более употребительных схем предварительного усиления.

3. Резистивный каскад на биполярном транзисторе.

Простейшая схема резистивного усилительного каскада с общим эмиттером и питанием от одного источника показана на рис. 13.2. Входной сигнал поступает на базу и изменяет ее потенциал относительно заземленного эмиттера. Это приводит к изменению тока базы, а следовательно, к изменению тока коллектора и напряжения на нагрузочном сопротивлении R K . Разделительный конденсатор С p 1 служит для предотвращения протекания постоянной составляю­щей тока базы через источник входного сигнала. С помощью кон­денсатора С р2 на выход каскада подается переменная составляю­щая напряжения U КЭ, изменяющаяся по закону входного сигнала, но значительно превышающая его по величине. Важную роль играет резистор R Б в цепи базы, обеспечивающий выбор исходной рабочей точки на характеристиках транзистора и определяющий режим работы каскада по постоянному току.

Для выяснения роли резистора R Б обратимся к рис. 13.3, иллюстрирующему процесс усиления сигнала схемой с общим эмиттером.

Рис. 13.3. Графическое пояснение процесса усиления сигнала схемой в общим эмиттером

В принципе процесс усиления можно отразить следующей взаимосвязью электрических величин

U m . вх I Б m I K m I K m R K (U КЭ m = E K – I K m R K) = U m . вых >> U m . вх.

Действительно, рассматривая вначале рис. 13.3, а , а затем рис. 13.3, б, можно убедиться в том, что напряжение входного сигнала с амплитудой U m . вх = U БЭ m синфазно изменяет величину тока базы. Эти изменения базового тока вызывают в коллекторной цепи пропорциональные изменения тока коллектора и напряжения на коллекторе, причем амплитуда коллекторного напряжения (с учетом масштаба по оси абсцисс) оказывается значительно больше амплитуды напряжения на базе 1 .

Для получения наименьших искажений усиливаемого сигнала рабочую точку Р следует располагать на середине отрезка АВ на­грузочной прямой, построенной в семействе выходных характе­ристик транзистора. Из рис. 13.3, б видно, что положение рабочей точки Р соответствует току смещения в цепи базы I Бр. Для получе­ния выбранного режима необходимо в усилителе обеспечить тре­буемую величину тока смещения в цепи базы. Для этого и служит резистор R Б в схеме рис. 13.2. Величину сопротивления этого ре­зистора рассчитывают по формуле

(13.1)

где I Бр и I Kp - постоянные составляющие тока базы и коллектора в выбранных рабочих точках Р" и Р соответственно.

Схема, приведенная на рис. 13.2, получила название схемы с фикси­рованным базовым током. Смеще­ние фиксированным током базы от­личается минимальным числом де­талей и малым потреблением тока от источника питания. Кроме того, сравнительно большое сопротивле­ние резистора R Б (десятки килоом) практически не влияет на величи­ну входного сопротивления каска­да. Однако этот способ смещения пригоден лишь тогда, когда каскад работает при малых колебаниях температуры транзистора. Кроме того, большой разброс и неста­бильность параметра β даже у однотипных транзисторов делают режим работы каскада весьма неустойчивым при смене транзисто­ра, а также с течением времени.

Более эффективной является схема с фиксированным напряже­нием смещения на базе (рис. 13.4). В этой схеме резисторы и, подключенные параллельно источнику питания Е К, состав­ляют делитель напряжения. Сопротивления делителя определяются из очевидных соотношений:

Ток делителя I д обычно выбирают в пределах

I Д ≈ (2 ÷ 5)I Бр (13.4)

При этом повышается стабильность режима работы схемы, так как изменения тока в цепях эмиттера и коллектора транзистора незначительно влияют на величину напряжения смещения. Вместе с тем ток делителя не следует выбирать слишком большим из сооб­ражений экономичности, так как чем больше ток I Д, тем более мощ­ным должен быть источник питания Е К.

Из схемы, приведенной на рис. 13.4, видно, что сопротивление делителя включено параллельно входному сопротивлению транзистора. Кроме того, пренебрегая малым внутренним сопро­тивлением источника питания, можно считать, что и включе­ны параллельно друг другу. Поэтому необходимо, чтобы

т. е. делитель, образованный резисторами и, должен обла­дать достаточно большим сопротивлением (порядка нескольких килоом). В противном случае входное сопротивление каскада ока­жется недопустимо малым.

При построении схем транзисторных усилителей приходится принимать меры для стабилизации положения рабочей точки на характеристиках. Основной дестабилизирующий фактор, нарушаю­щий устойчивую работу транзисторной схемы,- влияние темпера­туры. Существуют различные способы термостабилизации режима работы транзисторных каскадов. Наиболее распространенные из них реализуются с помощью схем, показанных на рис. 13.5.

Рис. 13.5. Схема термостабилизации режима транзисторного каскада:

а – с терморезистором; б – с диодом; в – с цепочкой эмиттерной стабилизации R Э C Э

В схеме на рис. 13.5, а терморезистор с отрицательным темпе­ратурным коэффициентом сопротивления включен в базовую цепь транзистора таким образом, что при повышении температуры про­исходит уменьшение отрицательного напряжения на базе за счет уменьшения сопротивления терморезистора. При этом происхо­дит уменьшение тока базы, а следовательно, и тока коллектора. В результате увеличение коллекторного тока, вызванное влиянием температуры, компенсируется его уменьшением за счет действия термозависимого смещения, т. е. общее приращение тока коллектора будет незначительным.

Одна из возможных схем термостабилизации режима транзис­тора с помощью полупроводникового диода показана на рис. 13.5,6. В этой схеме диод включен в обратном направлении, а температур­ная характеристика обратного тока диода должна быть аналогична температурной характеристике обратного тока коллектора приме­няемого транзистора. Реализовать эту возможность, однако, удается только для одного транзистора данного типа. При смене транзистора стабильность, как правило, ухудшается из-за разброса величины обратного тока коллектора (напомним, что обратный ток коллек­тора в наибольшей степени подвержен влиянию температуры).

Наибольшее распространение получила схема термостабилиза­ции режима, приведенная на рис. 13.5, в. В этой схеме навстречу фиксированному прямому напряжению смещения, снимаемому с резистора , включено напряжение, возникающее на резисторе R Э при прохождении через него тока эмиттера.

Пусть по какой-либо причине, например при увеличении тем­пературы, постоянная составляющая коллекторного тока возрастает. Так как I Э = I K + I Б, то увеличение тока I K приведет к увеличению тока эмиттера I Э и падению напряжения на рези­сторе R Э. В результате напряжение между эмиттером и базой U БЭ уменьшится, что приведет к уменьшению тока базы I Б, а следовательно, и тока I K . Наоборот, если по какой-либо причине коллекторный ток уменьшится, то уменьшится и напряжение на резисторе R Э, а прямое напряжение U БЭ возрастет. При этом увеличится ток базы и ток коллектора.

В большинстве случаев резистор R Э шунтируется конденсато­ром С Э достаточно большой емкости (порядка десятков микрофа­рад). Это делается для отвода переменной составляющей тока эмиттера от резистора R Э.

С целью увеличения силы сигнала, особенно в звуковом диапазоне, применяются усилители низких частот (УНЧ). Преобразование, осуществляемое при помощи таких устройств, позволяет легче улавливать и воспринимать звук, поступающий от излучателя.

Усилители, обеспечивающие изменение частоты до 10-100 МГц, комплектуются по сходному принципу, и основным отличием их схем является уровень ёмкости используемого конденсатора, которая рассчитывается исходя из соотношения сигналов поставляемой низкой и производимой высокой частот. То есть, чем сильнее становится сигнал, тем меньше должна быть ёмкость конденсатора.

Использование именно транзисторных усилителей оправдано тем, что они не нуждаются в предварительном прогреве до начала работы (по сравнению, например, с DIY-ламповыми усилителями) и отличаются долговечностью, безопасностью, доступностью.

Чтобы обеспечить достаточную громкость воспроизведения звука понадобится усилитель с двумя-тремя каскадами. При этом один из них – выходной (оконечный), а другой (другие) – каскады предварительного усиления. Выходной каскад как раз и выдаёт окончательный результат усиления сигнала. С точки зрения экономии может быть довольно простым (особенно подходит для нестационарных конструкций). На схемах транзисторы в усилительных каскадах обозначаются как V1 (V2, V3…) в соответствии с очерёдностью каскада. В двухкаскадной конструкции между транзисторами находится месторасположение разделительного конденсатора. Однокаскадный и двухкаскадный усилитель функционируют практически одинаково, кроме того момента, что на предварительный каскад нагрузка идёт от резистора, а на выходной – от динамика.Питает оба каскада один источник (его роль могут выполнять как батареи, так и выпрямители).

В зависимости от структуры используемых транзисторов (n-p-n или p-n-p) понадобится в одном случае подключение к положительной полярности батареи, а в другом – к отрицательной. Включающая полярность соответственно так же будет различаться.

При сборке усилителя следует в первую очередь смонтировать только один каскад и соединить его с конденсатором. После подсоединить к выводу конденсатора и заземлённому источнику питания динамик. Потом попробовать подать на вход усилителя слабый сигнал. Настроить резистор (путём подбора сопротивления) так, чтобы громкость была наибольшей. Если сигнал, который пошёл на динамик, вас устраивает, то можно продолжить сборку. Наиболее подходящий уровень питающего напряжения этой схемы – 4,5 Вольт.

Когда выходной каскад будет готов, то необходимо включить динамик в коллекторную цепь.

Сборка усилителя НЧ на транзисторах для наушников

Работа подобной схемы не отличается сложностью, но очень зависит от качества и характеристик входящих в неё элементов. К тому же, возможно, что она не покажется достаточно компактной.

Обычно для наушников усилитель собирается по самой простой двухкаскадной схеме с двумя транзисторами (подойдёт КТ315 или его аналоги). Самым слабым местом этого устройства является точность подбора напряжения питающего эмиттер, базу и коллектор. Мало того, на базу поступает напряжение двух разновидностей: положительное и отрицательное. Если выбранные для конструкции резисторы будут обеспечивать наименьшее требуемое для базы напряжение, то усилитель будет работать нормально.

Для бесперебойной работы такого устройства потребуется напряжение более 5 Вольт. При дополнении конструкции микросхемой (например, TDA 2822) на выходе получится:

  • Уровень питающего напряжения: 1,8 – 15 Вольт;
  • Значение мощности: не превысит 1,5 Ватт;
  • Размер конструкции будет соответствовать площади небольшой печатной платы;
  • Размер корпуса: чуть больше питающего блока из двух пальчиковых батареек.

Для сборки усилителя будет достаточно:

  • Микросхемы (TDA 2822 или аналогичной);
  • Переменного резистора на 10 000 Ом;
  • Двух постоянных резисторов на 4 700 Ом и один на 10 000 Ом;
  • Двух электролитических конденсаторов на 10 микрофарад;
  • Трёх неполярных плёночных конденсаторов на 100 нанофарад;
  • Двух гнёзд на 3,5 мм;
  • Двух пальчиковых батареек;
  • Кусочка фольги;
  • Подходящего по размеру корпуса.

Когда все материалы подготовлены, следует наметить, как будут расположены детали относительно поверхности платы, и обозначить дорожки(на них следует нанести лак или воспользоваться лазерным принтером для нанесения схемы).

Главной задачей при сборке усилителя будет изготовление печатной платы. Это совсем нетрудно при наличии специальной программы для оформления плат. При отсутствии таковой можно воспользоваться обычным графическим редактором с соблюдением всех замеров и обозначением расположения соединений и выводов. Результат при помощи принтера переносится на глянцевую бумагу. Жирность печати – максимальная. Схема плотно скрепляется с фольгой. После нужно несколько раз пройтись горячим утюгом по плате, пока красящий компонент с бумаги не перейдёт на фольгу (не забудьте предварительно обезжирить плату). Бумага аккуратно смачивается тёплой водой и снимается. Схема остаётся на фольге. Далее нужно будет потравить печатную плату в растворе хлорного железа до полного уничтожения меди. Потом останется только вмонтировать все компоненты в соответствии со схемой. Питание можно подключить только после того, как будет проверена правильность установки всех элементов.

Для желающих осуществить сборку усилителя звука на транзисторах своими руками существует ряд нехитрых рекомендаций:

  • Следует применять транзисторы для КВ-диапазона;
  • Нагрузка, приходящаяся на транзисторы выходного каскада, не должна превышать половинного значения их номинальной мощности;
  • Подбор выходных транзисторов обусловлен коэффициентом передачи тока;
  • Не следует жалеть пространства для радиатора;
  • Работа предварительных каскадов должна обязательно соответствовать А-классу;
  • Радиоэлементы должны иметь максимально короткие выводы;
  • Обязательно следует приобретать качественные блокировочные конденсаторы;
  • Установка осуществляется при помощи коротких жёстких проводников.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.



Рекомендуем почитать

Наверх