Введение. Роль информационных технологий в материальном производстве

Детские товары 03.08.2019
Детские товары

«Суров закон рынка, но это закон» - так можно перефразировать известное латинское выражение. Производить качественную продукцию в сжатые сроки и с минимальными затратами - задача, которую приходится решать всем промышленным предприятиям. Однако производственные мощности практически любого отечественного машиностроительного предприятия соответствуют 80-м годам прошлого столетия и не позволяют изготавливать конкурентоспособную продукцию. В цехах ощущается острая нехватка квалифицированных специалистов. Не менее злободневна и проблема большой продолжительности процессов разработки изделий и технологической подготовки их производства, что приводит к неоправданному увеличению затрат и сроков выпуска изделий и, как следствие, к потере конкурентоспособности на рынке. Как правило, длительная подготовка производства изделий обусловлена серьезными затратами при передаче конструкторско-технологической информации о разрабатываемом изделии и при ее поиске.

Затраты при передаче информации вызваны тем, что предприятие зачастую не придает должного значения необходимости внедрения единой системы конструкторско-технологической подготовки производства. В результате все сводится к «лоскутной» автоматизации конструкторских и технологических задач, когда каждое подразделение выбирает себе систему, руководствуясь единственным принципом - «нам так удобнее». Это приводит к отсутствию единого формата данных. Создаваемые данные приходится постоянно переводить из одной системы в другую, что чревато ошибками и затрудняет процесс внесения изменений.

Затраты при хранении и поиске информации вызваны схожими причинами: конструкторские и технологические данные хранятся в файловых системах; информация о том, кто, когда и какие конкретно вносил изменения, не сохраняется; теряется история версий объекта. Все это усложняется многоступенчатой процедурой передачи данных в другие подразделения, участвующие в процессе разработки.

Полно и качественно решить эти проблемы позволяет переход на использование комплексной системы разработки изделий - от дизайна изделия, его разработки и производства до сервисного обслуживания. Это и есть Система разработки изделий, предлагаемая американской компанией РТС (Parametric Technology Company).

Далее мы расскажем о Системе разработки изделий, которая внедряется в ОАО «Электромашина» специалистами предприятия при поддержке инженерно-консалтинговой компании СОЛВЕР и обеспечивает сквозное проектирование изделий и управление данными о них в течение всего жизненного цикла выпускаемой предприятием продукции.

В основе - сквозной цикл подготовки производства

Современная методология подготовки производства нового изделия предполагает сквозной цикл: проектирование изделия - проектирование оснастки - разработка управляющих программ - производство на основе использования единой трехмерной математической модели изделия. В чем преимущество такого подхода?

Во-первых, вся работа строится на базе исходной модели, созданной конструктором. Наличие единой геометрии позволяет исключить ошибки при создании оснастки и управляющих программ, а специализированные, встроенные в систему модули анализа - обеспечить соответствие функциональности проектируемого изделия заданным требованиям еще на этапах разработки изделия, что, несомненно, сказывается на качестве продукции.

Справка

ОАО «Электромашина» (г.Челябинск)

ОАО «Электромашина» - основной производитель электрооборудования, систем и комплексов управления для техники специального назначения и железнодорожного транспорта. Предприятие предлагает полный комплекс услуг: поставка запчастей, ремонт и техническое обслуживание электрооборудования.

Базовой системой для проектирования и подготовки производства в OAO «Электромашина» выбран программный комплекс Pro/ENGINEER, а в качестве средства управления инженерными данными - система Windchill, которые в совокупности образуют Систему разработки изделий. Внедрение системы осуществлялось специалистами предприятия при поддержке СОЛВЕР на протяжении 18 месяцев. Сегодня предприятие самостоятельно и квалифицировано использует систему, создавая качественную продукцию в сжатые сроки и с меньшими затратами.

Инженерно-консалтинговая компания СОЛВЕР (г. Москва, г.Воронеж)

Инженерно-консалтинговая компания СОЛВЕР содействует российским машиностроительным предприятиям в построении «умного» производства, под которым подразумевается высокоэффективное и высокорентабельное производство. За 14 лет работы компанией выполнено более 385 промышленных проектов, внедрены сотни автоматизированных рабочих мест конструкторов и технологов, сотни единиц технологического оборудования.

Сегодня компания продвигает концепцию построения «умного» производства, помогая отечественным машиностроительным предприятиям, производящим или желающим производить конкурентоспособную продукцию, делать это более эффективно на основе предлагаемого компанией прогрессивного технологического оборудования, инструмента и программного обеспечения.

Во-вторых, единая исходная геометрия позволяет распараллелить труд разработчиков - конструкторов и технологов. Таким образом, технологи могут приступать к работе еще на этапе проектирования изделия, не дожидаясь окончательного утверждения комплекта конструкторской документации. Несмотря на то что труд инженера - процесс итерационный и в каком-то смысле бесконечный (нет предела совершенству!), технологии сквозного проектирования позволяют при необходимости быстро и качественно проводить задуманные разработчиками изменения.

В-третьих, процессы проектирования изделия и подготовки производства в современных условиях немыслимы без использования единой корпоративной системы управления конструкторско-технологическими данными, обеспечивающей качественное управление процессами подготовки производства.

Конструкторская подготовка производства

При использовании простых систем автоматизированного проектирования конструктора зачастую не интересуют технологические особенности изготовления деталей и узлов, что нередко приводит к браку и последующим дорогостоящим доработкам уже в процессе производства. Во избежание подобных ситуаций необходима согласованная работа конструкторов и технологов, а также учет технологических ограничений еще на начальных этапах разработки изделия.

Система сквозного параллельного проектирования и подготовки производства Pro/ENGINEER позволяет учитывать технологические особенности конкретного производства как на этапе конструкторского проектирования, так и при разработке технологии изготовления. Входящий в систему инструмент наследования конструкторской геометрии предоставляет технологу возможность выполнять работу по проектированию оснастки и разработке управляющей программы на основе конструкторской модели, внося в нее необходимые технологические ограничения. Представьте себе обычную ситуацию: конструктор оснастки проектирует пресс-форму на деталь, в модели которой кроме литейных присутствует также множество элементов, получаемых при последующей механической обработке. Иными словами, для того чтобы спроектировать пресс-форму, необходимо эти элементы исключить. При этом ассоциативная связь между конструкторской и технологической моделями сохраняется. Это, в свою очередь, позволяет управляющей программе при внесении конструктором изменений (если они не касаются мехобработки) изменяться автоматически. Инструмент наследования обеспечивает «работу» ассоциативной связи в одну сторону - от конструктора к технологу. Изменения же, вносимые технологом, никоим образом не влияют на исходную геометрию.

Естественно, для организации эффективной параллельной работы разных подразделений - участников разработки необходимо составить «правила игры»: разработать документ (обычно это стандарт предприятия), в котором должны быть описаны правила создания трехмерных моделей, требования к описывающей их атрибутивной информации, обязанности каждого подразделения в общей структуре подготовки производства и т.д. В ОАО «Электромашина» работа по созданию такого стандарта началась в рамках проекта внедрения, совместного с компанией СОЛВЕР, а закончена силами созданного во время проекта бюро САПР предприятия, на которое были возложены все работы по поддержке и развитию созданной Системы разработки изделия и подготовки производства.


Большое значение при коллективной работе имеет правильная организация работы с библиотеками типовых и стандартных компонентов (рис. 1 и 2) разрабатываемых изделий. Для формирования единого источника данных в рамках предприятия была создана навигационная структура хранилища данных. За многолетний период внедрения Pro/ENGINEER на машиностроительных предприятиях специалистами СОЛВЕР были разработаны библиотеки стандартизованных компонентов, которые легко адаптируются под конкретные требования любого заказчика. Стандартные изделия, такие как подшипники, крепеж и т.п., входящие в эти библиотеки, выполнены ими в соответствии с требованиями ГОСТа, а атрибутивная информация полностью описывает классы точности и прочности, материал, покрытие и т.д.

Организация эффективного хранения данных определяется несколькими ключевыми моментами:

  • высокой производительностью работы систем Windchill и Pro/ENGINEER;
  • наличием единого атрибутивного описания компонентов;
  • эффективной навигационной структурой;
  • правилами создания новых типов и типоразмеров компонентов;
  • требованиями к кодированию компонентов;
  • жизненным циклом типового изделия.

Практика показывает, что на каждом предприятии действует определенный ограничительный перечень применяемых стандартных компонентов. И вполне логично, что при применении единого электронного архива данных рядовые пользователи не должны иметь доступа как к созданию новых типов и типоразмеров стандартных компонентов, так и к редактированию уже имеющихся компонентов. В ОАО «Электромашина» решение этих задач возложено на бюро САПР.

Если типовой порядок создания компонента архива заключается в генерировании необходимого типоразмера и его сохранении в отдельный файл, то создание другого типоразмера осуществляется простым изменением атрибутивной информации и последующей регенерацией файла. Для каждого типа компонента определен жизненный цикл, процесс согласования и утверждения, описывающий процедуру принятия решения о необходимости его использования, занесения в ограничительный перечень и синхронизации новой информации с существующей на предприятии информационной системой управления предприятием (ERP).

Для работы в Pro/ENGINEER под управлением в Windchill пользователю не требуется никакого дополнительного программного обеспечения. Pro/ENGINEER имеет встроенный web-браузер, посредством которого выполняется открытие, сохранение и другие действия с документами, хранящимися в Windchill. Например, вставка библиотечного компонента в сборку или просто его открытие легко осуществляется перетаскиванием компонента из окна Windchill в окно Pro/ENGINEER. При этом если компонент был предварительно описан, то он сам автоматически определяет свое положение в конструкции (рис. 3 и 4).


Технологическая подготовка производства

Все виды технологической оснастки в ОАО «Электромашина» разрабатываются также с применением Pro/ENGINEER. К ним относятся приспособления, нестандартное оборудование, испытательное оборудование, пресс-формы и штампы (рис. 5 и 6). Разработка всей оснастки выполняется на основе геометрии конструкторской модели и ассоциативно связана с ней. В ходе проекта внедрения специалистами предприятия уже в течение первого месяца было разработано с использованием трехмерных моделей пять пресс-форм, формообразующие компоненты которых впоследствии изготавливались на станках с ЧПУ.


Рис. 6. Страница свойств объекта «Приспособление для фрезерования»

Разработка управляющих программ для изготовления деталей на станках с ЧПУ выполняется на предприятии тоже в Pro/ENGINEER (рис. 7 и 8) под управлением Windchill. Все управляющие программы, так же как и оснастка, разрабатываются на основе конструкторской модели, которая применяется в качестве базы для всех операций обработки. При создании технологом-программистом объектов обработки траектории движения инструмента ссылаются на выбранные конструктивные элементы детали, поверхности и кромки модели. Таким образом, устанавливается ассоциативная связь между моделью изделия и заготовкой. При любой модификации модели все ассоциативно связанные с ней операции обработки обновляются. ОАО «Электромашина» имеет современный парк станочного оборудования с ЧПУ, в том числе поставленного компанией СОЛВЕР. Поэтому внедрение современных технологий в области разработки управляющих программ позволяет предприятию использовать это оборудование максимально эффективно.

Рис. 7. Хранение управляющих программ в Windchill


Следующим шагом в области внедрения современных технологий на предприятии будет освоение программного комплекса Vericut. Этот комплекс позволяет моделировать процессы обработки деталей на станках с ЧПУ с целью обнаружения возможных ошибок в траектории режущего инструмента, столкновений рабочих органов станка, а также повысить эффективность применения металлорежущих станков. При этом вся работа в Vericut ведется с использованием управляющей программы в G-кодах - то есть в Vericut учитываются и особенности управляющей стойки станка, и особенности его кинематики. Применение Vericut обеспечивает сокращение процента брака и доработок, оптимизацию режимов резания, сокращение времени обработки, продление срока службы режущего инструмента, повышение качества обрабатываемых поверхностей, а также позволяет еще до запуска детали в производство устранить ошибки, которые впоследствии могут привести к поломке оснастки, инструмента или станка.

Управление процессами технологической подготовки

В ОАО «Электромашина» технологические процессы разрабатываются с использованием программного обеспечения КОМПАС Автопроект, файлы которого представлены в формате ZIP. Формирование визуального представления технологического процесса выполняется в приложении MS Office Excel. Поскольку для согласования и утверждения необходима только визуальная информация, данные КОМПАС Автопроект автоматически преобразуются в формат PDF, и в этом формате передаются на хранение в Windchill. Преимуществом этого формата является то, что он дает возможность применения электронной подписи, обеспечивает создание текстовых и графических замечаний на поле документа и возможность просмотра на любом рабочем месте.

Для управления технологическими инструкциями создана специальная библиотека «Технологические процессы» (рис. 9), где организуется их хранение, согласование и утверждение, ограничение по правам доступа и поиск. Стоит отметить, что любые библиотеки формируются в первую очередь в соответствии с регламентом доступа к рабочим данным. Например, для конструктора изделия закрыт доступ к библиотеке технологических процессов или управляющих программ, однако ему предоставляется возможность просмотра отдельных необходимых документов.

В создании интегрированной информационной среды понятие жизненного цикла является определяющим. Практически на каждый объект, будь то чертеж, модель, документ или др., назначается свой жизненный цикл, в соответствии с которым он изменяется, последовательно переходя из одного состояния в другое. Жизненный цикл в Windchill представляет собой набор этапов, ассоциированных с рабочими потоками и описывающих логику работы с объектом. В качестве инструмента моделирования применялось программное обеспечение ARIS Toolset (рис. 10) немецкой компании IDS Sheer - мирового лидера в области разработки инструментальных средств анализа и реорганизации бизнес-процессов, а также партнера компании СОЛВЕР.

При выполнении проекта был проведен анализ существующего бизнес-процесса подписания, согласования и утверждения технологической документации. В ходе анализа стандарта предприятия и проведенного опроса сотрудников технологических подразделений были определены основные этапы и роли участников процесса. На основе полученных данных была разработана модель существующего бизнес-процесса в состоянии «как есть». Эта модель характеризовалась большим количеством этапов и последовательностей процесса согласования, требующего значительных временны х затрат. Современные системы управления инженерными данными позволяют значительно (в несколько раз) сократить время утверждения документации и увеличить время для ее качественной обработки. Это стало возможным благодаря передаче данных с почти мгновенной скоростью, а также за счет постоянного контроля выполнений заданий исполнителями и параллельности согласования информации.

На основе этой модели бизнес-процесса был создан вариант модели для состояния «как надо» при внедрении информационной системы управления Windchill. Действия участников процесса согласования технологической документации были выделены в отдельные блоки, которые определили основные этапы жизненного цикла технологического процесса. При этом для максимального сокращения сроков разработки документации работы по согласованию с различными службами предприятия были распараллелены.

Для обеспечения процесса согласования технологической документации был создан жизненный цикл объекта «Технологический процесс» (рис. 11). Шаблон его жизненного цикла состоит из пяти этапов: «В работе», «На нормоконтроле», «На техконтроле», «На рассмотрении» и «Сдано в архив».


На этапе «В работе» (рис. 12) происходит разработка технологического процесса (совместно с сотрудниками технологических служб), присвоение сотрудником отдела стандартизации обозначения техпроцессу, проверка техпроцесса ведущим технологом (рис. 13 и 14) и начальником технологического бюро ОГТ. При необходимости проведения исправлений и доработок предусмотрены возврат документации исполнителю и повторная проверка.


Рис. 14. Задание на проверку технологического процесса ведущим технологом

На этапе «На нормоконтроль» производится контроль соответствия требованиям нормативной документации (рис. 15 и 16). При необходимости проведения исправлений и доработок предусмотрены возврат документации исполнителю и ее повторная проверка.



На этапе «На техконтроль» осуществляется проверка технологического процесса технологическими службами (технологами по механической обработке, сварке, гальваническим покрытиям, литью и термообработке) и его утверждение заместителем начальника технического отдела (рис. 17). Перед проверкой для разработчика реализована возможность выбора согласующих технологов в соответствии со спецификой технологического процесса (рис. 18 и 19).


На этапе «На рассмотрении» происходит согласование технологического процесса с начальником технологического бюро цеха, начальником бюро технического контроля, сотрудником отдела главного метролога и заместителем директора по качеству (рис. 20 и 21). В рамках проекта с целью более полной демонстрации технологий Windchill по автоматизации документооборота для этого этапа было разработано два варианта шаблона рабочего потока, отличающихся друг от друга порядком распределения заданий и различными подходами к моделированию рабочих потоков.


Отметим, что возможности Windchill позволяют автоматизировать процессы согласования не только конструкторской или технологической документации, но и любых других документов. Например, специалисты бюро САПР предприятия по окончании проекта уже своими силами автоматизировали процесс согласования договоров ОАО «Электромашина». Это, во-первых, позволило сократить длительность процессов, а во-вторых, обеспечило возможность отслеживания состояния процесса - в какой службе находится договор на согласовании, сколько времени на это уже ушло и т.п.

Результаты внедрения

Одним из главных результатов выполненного проекта является то, что на предприятии сформирована высококвалифицированная команда, способная решать комплекс задач по внедрению информационных технологий в области конструкторско-технологической подготовки производства. Среди этих задач - осуществление технической поддержки системы, проведение обучения пользователей, разработка необходимых стандартных компонентов и специализированных приложений, дополняющих возможности имеющегося программного обеспечения и пр.

Специалистами бюро САПР ОАО «Электромашина» совместно с сотрудниками компании СОЛВЕР созданы единые корпоративные стандарты в области использования системы автоматизированного проектирования Pro/ENGINEER и системы управления жизненным циклом изделия Windchill, которые позволяют систематизировать имеющийся опыт и эффективно использовать его в дальнейших разработках.

Сегодня Pro/ENGINEER применяется пока еще не на всех этапах разработки изделия и подготовки производства, но уже сейчас на предприятии отмечено заметное повышение качества проектируемых изделий за счет того, что значительная часть ошибок в конструкторской документации выявляется на стадии технологической подготовки производства до изготовления изделий «в металле».

Внедрение Системы разработки изделия - это итерационный процесс, и система будет развиваться в ОАО «Электромашина» и дальше, помогая по-умному организовывать подготовку производства и обеспечивать конкурентоспособность выпускаемой продукции.

Александр Московченко

Руководитель подразделения «САПР и подготовки производства» инженерно-консалтинговой компании СОЛВЕР.

Сергей Ефимов

Руководитель отдела «Системы управления жизненным циклом изделий» компании СОЛВЕР.

Корпоративные информационные технологии.

Корпоративное управление и создание корпоративных информационных систем в настоящее время опираются на различные информационные технологии, так как, к сожалению, не существует универсальной технологии. Можно выделить следующие три группы методов управления: ресурсами, процессами, корпоративными знаниями (коммуникациями). Среди информационных технологий в качестве наиболее используемых можно выделить следующие: СУБД, Workflow (стандарты ассоциации Workflow Management Coalition) Интранет.

Задача управления ресурсами относится к числу классических методик управления и является первой, где стали широко использоваться информационные технологии. Это связано с наличием хорошо отработанных экономико-математических моделей, эффективно реализуемых средствами вычислительной техники.

Интранет представляет собой технологию управления корпоративными коммуникациями. Интранет отличается от Интернета только информационными аспектами, где выделяются три уровня: универсальный язык представления корпоративных знаний, модели представления, фактические знания.

Универсальный язык представления корпоративных знаний не зависит от конкретной предметной области и определяет грамматику и синтаксис. Задачей универсального языка представления корпоративных знаний является: унификация представления знаний, однозначное толкование знаний, разбиение процессов обработки знаний на простые процедуры, допускающие автоматизацию.

Модели представления определяют специфику деятельности организации. Знания этого уровня являются метаданными, описывающими первичные данные.

Фактические знания отображают конкретные предметные области и являются первичными данными.

Информационные технологии в промышленности и экономике.

Внедрение информационных технологий в сферу производства развивалось по пути создания информационных систем и получило название АСУП (автоматизированная система управления производством). Однако главная проблема комплексной автоматизации после внедрения АСУП не была решена, но при этом был накоплен опыт разработок подобных систем и подготовлены специалисты.

При проектировании АСУП зачастую игнорировались вопросы совместимости, стандартизации, что затрудняло внедрение современных технологий и приводило к большим затратам на модернизацию. Широкое распространение получили корпоративные информационные системы (КИС), базирующиеся на принципах корпоративных информационных технологий и современных стандартов.

Выделяют три основных класса задач, решаемых с помощью КИС:

*формирования отчетных показателей;



*выработки стратегических управленческих решений по развитию бизнеса;

*выработки тактических решений.

Основной трудностью при внедрении КИС является диагностика.

Здесь можно выделить три этапа:

1. Обследование, системный анализ и оценка существующей структуры и технологий управления;

2. Разработка новых вариантов организационных структур и технологий управления на основе информационных технологий;

3. Разработка положения по реорганизации управления, плана внедрения, регламента управленческого документооборота.

Условно выделяют тиражируемые, полузаказные и заказные КИС.

Тиражируемая КИС не требует доработки со стороны разработчика, существует сама по себе, не предоставляет возможности внесения изменений. Такие системы предназначены для малых предприятий.

Заказные. Ненадежны и с трудом поддаются модернизации. Основная область их применения - производства с очень большой спецификой.

Полузаказные системы являются наиболее гибкими, требуют меньших капитальных затрат. Основная область их применения - крупные предприятия.

Кроме КИС следует отметить программные системы, реализующие отдельные функции управления:

1. Бухгалтерские программы: 1С: Бухгалтерия.

2. Системы автоматизации торговли: 1С: Торговля.

3. Системы автоматизации складского учета: 1С: Склад.

АСУ ТП представляют двухуровневую систему управления.

Нижний уровень включает контроллеры, обеспечивающие первичную обработку информации, поступающей непосредственно с объекта управления.

Верхний уровень АСУ ТП составляют мощные компьютеры, выполняющие функции серверов баз данных и рабочих станций, обеспечивающих хранение, анализ и обработку всей поступающей информации, а также взаимодействие с оператором. Основой программного обеспечения верхнего уровня являются пакеты SCADA (Supervision Control and DATA Acquisition).


3. Информационные технологии в образовании. Методологический аспект

Цель информатизации общества - создание гибридного интегрального интеллекта всей цивилизации, способного предвидеть и управлять развитием человечества.

В процессе информатизации образования необходимо выделить следующие аспекты:

*методологический;

*экономический;

*технический;

*технологический;

Любому предприятию, учреждению, организации в процессе своей деятельности приходится постоянно сталкиваться с большими потоками информации: международной, экономической, политической, конкурентной, технологической, рыночной, социальной и т. д. При этом из множества потоков информации необходимо отобрать то, что соответствует поставленным целям. Качественная информация делает действия специалистов различных областей экономики целенаправленными и эффективными и здесь важнейшая роль принадлежит эффективному использованию современных ИТ.

Цель функционирования информационной технологии -производство с помощью современной вычислительной техники информации, предназначенной для ее анализа человеком и принятия на этой основе управленческих решений.

К задачам информационной технологии относятся:

  • * сбор данных или первичной информации;
  • * обработка данных и получение результатов информации;
  • * передача результатов информации пользователю для принятия на ее основе решений.

В современных условиях информационные технологии имеют стратегическое значение для развития общества в целом. Это обусловлено следующими положениями:

  • 1) ИТ позволяют активизировать и эффективно использовать информационные ресурсы общества, которые сегодня являются наиболее важным стратегическим фактором его развития;
  • 2) ИТ позволяют оптимизировать и во многих случаях автоматизировать информационные процессы, которые в последние годы занимают все большее место в жизнедеятельности человеческого общества;
  • 3) информационные процессы являются важными элементами других более сложных производственных или же социальных процессов;
  • 4) ИТ сегодня играют исключительно важную роль в обеспечении информационного взаимодействия между людьми, а также в системах подготовки и распространения массовой информации;
  • 5) ИТ занимают сегодня центральное место в процессе интеллектуализации общества, развития его системы образования и культуры;
  • 6) ИТ играют в настоящее время ключевую роль также и в процессах получения и накопления новых знаний;
  • 7) принципиально важное для современного этапа развития общества значение развития ИТ заключается в том, что их использование может оказать существенное содействие в решении глобальных проблем человечества и, прежде всего, проблем, связанных с необходимостью преодоления переживаемого мировым сообществом глобального кризиса цивилизации. Современная информационная технология не может существовать отдельно от технической (компьютерной) среды, т. е. от базовой информационной технологии, под которой понимают аппаратные (технических) средства, предназначенные для организации процесса переработки данных (информации, знаний), а также аппаратные (технические) средства, предназначенные для организации связи и передачи данных (информации, знаний).

С появлением компьютеров, у специалистов, занятых в самых разнообразных предметных областях (банковской, страховой, бухгалтерской, статистической и т. д.), появилась возможность использовать информационные технологии. В связи с этим возникла необходимость в определении понятия существовавшей до этого момента традиционной (присущей той или иной предметной области) технологии преобразования исходной информации в требуемую результатную. Таким образом, появилось понятие предметной технологии. Необходимо помнить, что предметная технология и информационная технология влияют друг на друга.

Под предметной технологией понимается последовательность технологических этапов по преобразованию первичной информации в результатную в определенной предметной области, независящая от использования средств вычислительной техники и информационной технологии.

Информационные технологии могут существенно отличаться в различных предметных областях и компьютерных средах, выделяют такие понятия как обеспечивающие и функциональные технологии. Обеспечивающие информационные технологии - это технологии обработки информации, которые могут использоваться как инструментарий в различных предметных областях для решения различных задач. Они могут базироваться на совершенно разных платформах. Это связано с наличием различных вычислительных и технологических сред. Поэтому при их объединении на основе предметной технологии возникает проблема системной интеграции, которая заключается в необходимости приведения различных ИТ к единому стандартному интерфейсу.

Функциональная информационная технология это такая модификация обеспечивающих информационных технологий, при которой реализуется какая-либо из предметных технологий. Таким образом, функциональная информационная технология образует готовый программный продукт (или часть его), предназначенный для автоматизации задач в определенной предметной области и заданной технической среде.

Преобразование (модификация) обеспечивающей информационной технологии в функциональную может быть выполнена не только специалистом-разработчиком систем, но и самим пользователем. Это зависит от квалификации пользователя и от сложности необходимой модификации. В зависимости от вида обрабатываемой информации, информационные технологии могут быть ориентированы на:

  • * обработку данных (например, системы управления базами данных, электронные таблицы, алгоритмические языки, системы программирования и т. д.);
  • * обработку текстовой информации (например, текстовые процессоры, гипертекстовые системы и т. д.);
  • * обработку графики (например, средства для работы с растровой графикой, средства для работы с векторной графикой);
  • * обработку анимации, видеоизображения, звука (инструментарий для создания мультимедийных приложений);
  • * обработку знаний (экспертные системы).

Следует помнить, что современные информационные технологии могут образовывать интегрированные системы, включающие обработку различных видов информации.

Технология обработки информации на компьютере может заключаться в заранее определенной последовательности операций и не требовать вмешательства пользователя в процесс обработки. В данном случае диалог с пользователем отсутствует и информация будет обрабатываться в пакетном режиме обработки. При этом экономические задачи, решаемые в пакетном режиме, характеризуются следующими свойствами:

  • * алгоритм решения задачи полностью формализован и процесс ее решения не требует вмешательства человека;
  • * имеется большой объем входных и выходных данных, значительная часть которых хранится на магнитных носителях;
  • * расчет выполняется для большинства записей входных файлов;
  • * требуется большое время для решения задачи, что обусловлено большими объемами данных;
  • * имеется жесткий регламент обработки информации т. е. задачи решаются с заданной периодичностью.

В том случае, если необходимо непосредственное взаимодействие пользователя с компьютером, при котором на каждое свое действие пользователь получает немедленные действия компьютера, используется диалоговый режим обработки информации. Диалоговый режим является не альтернативой пакетному, а его развитием. Если применение пакетного режима позволяет уменьшить вмешательство пользователя в процесс решения задачи, то диалоговый режим предполагает отсутствие жестко закрепленной последовательности операций обработки данных (если она не обусловлена предметной технологией).

При внедрении современных информационных технологий в организацию преследуется две взаимосвязанные цели:

  • * сокращение затрат в организации;
  • * увеличение отдачи, повышение производительности.

Это достигаются за счет использования естественной специфики ИТ, которая проявляется в следующих аспектах.

  • 1. Повышение производительности труда. Она имеет отношение к скорости, стоимости и качеству выполнения рутинных задач. Для повышения производительности труда в организациях применяют компьютерные системы справочно-нормативной информации, документооборота, корпоративных систем масштаба предприятия - позволяющие менеджерам и служащих осуществлять за короткое время те действия, на которые еще несколько десятилетий назад требовались дни и недели.
  • 2. Увеличение конкурентоспособности бизнеса. Это возможно, например, путем фиксирования информацию о еженедельных поставках и возврате продукции от каждого продавца. После этого программа определяет доход от каждого продавца, сравнивает полученный результат, группируя их по сегментам и т. д. После этого определяется оптимальный ассортимент продукции для каждого сегмента, что позволяет увеличить доход дистрибьюторов и розничной торговли.
  • 3. Интегрирование финансовой информации. Когда руководитель пытается оценить работу компании, он может столкнуться с разными оценками менеджеров по одной и той же проблеме. Например, финансовый отдел предоставляет свой вариант отчета о доходах, а отдел продаж - свой.

Остальные подразделения так же могут показывать свои варианты того, каков их вклад в бизнес. Единая система создает один окончательный вариант отчета, который не может никем оспариваться, поскольку все используют одну информационную систему.

  • 4. Быстрое обслуживание заказов. В современных ИТ для предприятий заказ проживает всю свою жизнь - от момента появления и до той минуты, когда товар отгружается клиенту, а бухгалтерия выписывает ему счет. Имея информацию в одной системе, а не «размазанной» по множеству различных приложений, компании легче отслеживать заказ и координировать производство, складирование и отгрузку по всем подразделениям одновременно.
  • 5. Стандартизация и ускорение процесса производства. Крупные производственные компании, особенно нацеленные на приобретения и слияния, часто обнаруживают, что многочисленные подразделения компании делают одно и то же, используя разные методы и разные компьютерные системы. Современные информационные технологии основаны на стандартных методах автоматизации определенных шагов производственного процесса.
  • 7. Оптимизация складских запасов. Современные ИТ способствуют тому, что производственный процесс протекает регламентировано (без сбоев), улучшается процесс исполнения заказа внутри компании. Компания теперь может запасать меньше сырья, необходимого для производства продукта, и хранить меньше готовой продукции на складах. Для того чтобы радикально улучшить всю цепочку поставок, может использоваться специальный модуль, который сегодня входит в стандартную конфигурацию большинства систем.
  • 8. Стандартизация информации по персоналу. В компаниях с большим количеством различных бизнес-единиц отделы кадров часто не имеют единой унифицированной методики отслеживания рабочего времени персонала и работы с ним. Это положение может исправить системы масштаба предприятия с модулями по управлению персоналом. Современная информационная технология в экономике направлена на создание различных видов отчетов: регламентированных и специальных.

Они могут иметь форму суммирующих, сравнительных и чрезвычайных отчетов. Формироваться регулярно и/или по запросу и т. д. Целью информационной технологии, используемой в экономике и управлении бизнесом, является удовлетворение информационных потребностей всех без исключения сотрудников фирмы, имеющих дело с принятием решений. Эта технология ориентирована на работу в среде информационной системы управления. Информационные системы управления идеально подходят для удовлетворения сходных информационных потребностей работников различных функциональных подсистем (подразделений) или уровней управления фирмой. Поставляемая ими информация содержит сведения о прошлом, настоящем и вероятном: будущем фирмы. Эта информация имеет вид регулярных или специальных управленческих отчетов.

Таким образом, необходимость и актуальность автоматизации информационных процессов в экономике заключается в следующем:

  • * своевременное информационное обслуживание, стремительно развивающихся товарных и финансовых рынков;
  • * рост потребности в разработках автоматизированных систем обработки информации и управления;
  • * дифференцируется и повышается количество и качество информационной продукции;
  • * изменяются взгляды и подходы к оценке роли информации в современном обществе;
  • * повышаются требования к содержанию и формам представления данных;
  • * сокращается время между совершением хозяйственных операций и их информационным отображением, необходимым для принятия решений;
  • * ускоренные темпы развития самой отрасли информатизации в мировом экономическом пространстве;
  • * превращение деятельности по разработке и внедрению программных технологий в один из видов бизнеса:
  • * доступность вычислительной техники и программного обеспечения как товара внутреннего компьютерного рынка.

информационный технология система экономика

Контрольная работа
По дисциплине Информационные технологии
Тема: Информационные технологии в производстве

Содержание

Введение

ЭВМ прочно вошли в производственную деятельность, и в настоящее время нет необходимости доказывать целесообразность использования вычислительной техники в системах управления технологическими процессами, проектирования, научных исследований, административного управления, в учебном процессе, банковских расчетах, здравоохранении, сфере обслуживания и т.д. Бурное развитие информационных технологий за последние десятилетия обусловлено высокой потребностью общества в них, в первую очередь потребностями производства. Многие задачи, некогда требующие монотонной и долгой работы, стало возможно решить при помощи компьютера за считанные минуты, что значительно упростило жизнь, помогло сэкономить рабочее время и успешно помогает снизить затраты разного рода на производстве. Использование современных информационных технологий становится возможным даже там, где, казалось бы, они никогда не смогут дополнить или даже полностью заменить труд специалиста.
Введение систем автоматизации в производстве помогает значительно сократить количество наемных рабочих, отдав предпочтение нескольким специалистам в области информационных технологий, которые будут способны решать большинство проблем производства. В большинстве случаев такой подход позволяет добиться существенной экономии средств, несмотря на высокий уровень зарплат подобных специалистов. По всем показателям автоматизированное производство выигрывает, так что современному специалисту важно не только знать о существовании систем автоматизации, но и уметь с ними работать в совершенстве.
Целью данной работы является ознакомление с существующими информационными технологиями, применяемыми в производстве. Рассмотрение основных информационных систем автоматизации производства актуально в течение многих лет, примерно с середины XX века, и актуальность данной проблемы останется высокой еще в течение длительного периода, так как изменения в этой области тесно связаны с постоянными новшествами в информационных технологиях и науке. За последние годы происходили значимые изменения в области создания и разработки информационных систем: изначально информационные системы применялись лишь на производстве с большими объемами, например, на машиностроительных или оборонных заводах. Постепенная популяризация и доступность ЭВМ сделала возможной использование информационных систем и в менее крупных масштабах, при этом дав стимул для развития логической части самих систем, что будет показано ниже на примере эволюции информационной системы MRP в систему MRPII, также нельзя не заметить появление ERP, внесшее ощутимый вклад.
В ходе работы будут рассмотрены принципы информационных систем по автоматизации производства, а также некоторые программные средства для их реализации. Таким образом, можно будет выделить несколько наиболее удачных и наиболее часто используемых систем на сегодняшний день.

Системы автоматизации управления производством

Успешное производство всегда зависит от не менее успешного управления. Именно на плечах управляющих лежит высокая ответственность за организацию производственных процессов, которые будут приносить прибыль для фирмы в целом. В наши дни существует около двадцати основных современных теорий автоматизации производства, которые базируются на современных информационных технологиях. Каждый подход имеет свои плюсы и минусы в определенных условиях, поэтому, полезно рассмотреть каждый из них. Также нельзя не заметить, что некоторые системы автоматизации появлялись в процессе модернизации некогда существовавших систем, но это не привело к полному отказу от изначальных разработок. Например, ERP-система (система планирования ресурсов предприятия) является логическим продолжением систем планирования материальных потребностей (MRP-системы) и систем планирования производственных ресурсов (MRP II-системы). Выбор определенной информационной системы для автоматизации производства зависит от многих факторов, среди которых можно выделить: объемы, тип, цель, потребность в автоматизации. На примере вышеупомянутых ERP-систем можно сказать, что мелкому производству вряд ли будет полезно тратить время на внедрение столь масштабной информационной системы, которая при небольшом уровне развития предприятия, будет только отнимать время специалистов, приводя к ухудшению показателей. Правильный выбор подходящей информационной системы для производства – непростое и очень важное решение, особенно в момент становления фирмы, когда ориентация под определенную модель автоматизации может определить становление всего производства. Сложные системы, обеспечивающие максимальный контроль по многочисленным направлениям, не только могут оказаться невостребованными, но и послужить одной из весомых статей расходов, что весьма нежелательно в большинстве случаев. Одной из начальных систем, сочетающей в себе успешные методы управления и невысокую стоимость внедрении, является система планирования потребности в материалах.

Система MRP (Material Requirements Planning) – планирование потребности в материалах

Данная система была разработана в США в 1950-х годах, но только через 25 лет, когда произошел бурный скачок в развитии вычислительной техники, она получила известность и последующее повсеместное распространение. К концу 1980-х годов MRP использовали большинство фирм в США и Великобритании. На сегодняшний день использование системы планирования потребности в материалах не актуально из-за возраста системы, но именно она является базой для большого количества ныне существующих систем автоматизации.
В середине XX века многие производители сталкивались с достаточно серьезными проблемами несвоевременной поставки ресурсов, что приводило к снижению производственных показателей и скоплению большого количества материалов на складах. Главной задачей MRP является то, чтобы каждый элемент производства, каждая комплектующая деталь были в нужное время в нужном количестве. Это обеспечивается формированием такой последовательности производственных операций, которая позволяет соотносить своевременное изготовление продукции с заложенным планом выпуска. Такой подход также призван обеспечить минимальное количество запасов на складе. В упрощённом виде исходную информацию для MRP-системы представляют календарные планы производства, ведомость материалов, состав изделия, состояние запасов. На основании входных данных MRP-система выполняет следующие основные операции:
      по данным календарного плана производства определяется количество конечных изделий для каждого периода времени планирования;
      к составу конечных изделий добавляются запасные части, не включённые в календарный план производства;
      для календарного плана производства и запасных частей определяется общая потребность в материальных ресурсах в соответствии с ведомостью материалов и составом изделия с распределением по периодам времени планирования;
      общая потребность материалов корректируется с учётом состояния запасов для каждого периода времени планирования;
      осуществляется формирование заказов на пополнение запасов с учётом необходимого времени опережения.
Результатом работы MRP-системы является план-график снабжения материальными ресурсами производства (потребность каждой учётной единицы материалов и комплектующих для каждого периода времени). Для реализации план-графика снабжения система создаёт график заказов в привязке к периодам времени. Он используется для размещения заказов поставщикам материалов и комплектующих или для планирования самостоятельного изготовления с возможностью внесения корректировок в процессе производства. Системы класса MRP по соотношению цена/качество подходят для небольших предприятий, где функции управления ограничиваются учётом (бухгалтерским, складским, оперативным), управлением запасами на складах и управлением кадрами.
Возраст этой системы накладывает определенные недостатки, которые в ее рамках решать было нецелесообразно. Самым главным недостатком MRP-систем является большой объем обработки входных данных по сравнению с объемами информации в целом и результатами. При стремлении перейти на частые, но малые заказы, в рамках MRP-систем вряд ли удастся найти оптимальный план по расходам на обработку заказов и транспортировку, так как система изначально разрабатывалась для больших предприятий с многотысячными заказами (крупные машиностроительные заводы США).
Популярным ПО для MRP-систем некогда служил Microsoft Business Solutions-Navision, разрабатываемый с начала 1980-х годов. На сегодняшний день программы комплекс перерос в Microsoft Dynamics NAV, где MRP-модуль является отдельным подключаемым модулем.

Система MRP II (Manufacturing Resource Planning) – планирование производственных ресурсов

На смену системе MRP пришла система планирования производственных ресурсов, названная MRP II, чтобы подчеркнуть связь систем. В новой системе было уделено внимание куда большему числу факторов, что позволило значительно расширить сферу применения и увеличить показатели. Переход от одной системы к другой был вызван не только видимыми недостатки в первоначальной MRP-системе, но и постоянно нарастающими мощностями ЭВМ. С течением времени расчеты более сложных и многоуровневых операций стали возможны на относительно дешевых компьютерах, что послужило возрастающим интересном к постоянным доработкам информационных систем. В отличие от MRP, в системе MRP II производится планирование не только в материальном, но и в денежном выражении, что позволяет охватить куда большее количество всевозможных показателей. MRP II и на сегодняшний день представляет собой метод для эффективного планирования всех ресурсов производственной компании. Некоторые производства до сих пор не отказались от использования схемы MRP II, считая ее оптимальной информационной системой. В идеале, выполняется операционное планирование в натуральных единицах измерения, финансовое планирование в стоимостных единицах измерения, и содержит в себе возможности моделирования для ответа на вопросы «а что будет, если…?». Модель состоит из множества процессов, каждый из которых связан с другими: бизнес-планирование, планирование производства (планирование продаж и операций), разработка главного календарного плана производства, планирование потребности в материалах, планирование потребности в мощностях и системы поддержки контроля исполнения по мощностям и материалам. Результат таких систем интегрируется с финансовыми отчетами, такими как бизнес-план, отчет о соглашениях по закупкам, бюджет отгрузки и прогноз запасов в стоимостном выражении». Как видно, разница между двумя моделями ощутима, так как MRP II оперирует куда большим количеством показателей. Различия между MRP и MRP II можно представить в виде наглядной схемы:

На рис.1 показана схема модели MRP II, в которой при помощи овала выделены элементы системы MRP. Как видно, переход от первой модели автоматизации ко второй значительно расширяет границы обрабатываемых данных, что позволяет наладить производство оптимальным образом. Модель MRP II чувствительна к изменениям спроса в кратковременном периоде, что выгодно отличает ее от предшественницы. Стандарт программного обеспечения системы MRP II включает в себя 16 последовательных функций:
      планирование продаж и производства;
      управление спросом;
      составление плана производства;
      планирование потребностей в сырье и материалах;
      спецификации продукции;
      складская подсистема;
      отгрузка готовой продукции;
      управление производством на цеховом уровне;
      планирование производственных мощностей;
      контроль входа/выхода;
      материально-техническое снабжение;
      планирование запасов сбытовой сети;
      планирование и управление инструментальными средствами;
      финансовое планирование;
      моделирование;
      оценка результатов деятельности.
К преимуществам модели относят снижение запасов, улучшение обслуживания клиентов, приводящее к росту продаж, увеличение производительности труда рабочих, равномерное снижение затрат на закупку, уменьшение сверхурочных работ, уменьшение транспортных затрат по повышенному тарифу.

Система APS (Advanced Planning and Scheduling) – усовершенствованное планирование

Главной особенностью системы APS является возможность быстрого составления планов с учётом имеющихся ресурсов и производственных ограничений (переналадки оборудования, доступность оснастки, связи между машинами и др.) и быстрого перепланирования по заранее составленным сценариям оптимизации. Систему APS можно разбить на две части, которые тесно связаны с другими информационными системами автоматизации.
Первая часть метода APS похожа на алгоритм MRP II. Существенное отличие заключается в том, что в системе APS согласование материалов и мощностей происходит не итеративно, а синхронно, что резко сокращает время перепланирования. Системы типа APS позволяют решать такие задачи, как "проталкивание" срочного заказа в производственные графики, распределение заданий с учетом приоритетов и ограничений, перепланирование с использованием полноценного графического интерфейса. Это особенно актуально для позаказного производства, а также в случаях жесткой конкуренции в сроках выполнения заказа и необходимости точного соблюдения этих сроков. Вторая часть метода APS - диспетчеризация производства, с возможностью учета различного рода ограничений, с элементами оптимизации. Функции APS, присущие производственным ERP-системам, пока являются относительно новыми. Тем не менее, считается, что со временем алгоритмы APS станут общепринятыми для многих производственных предприятий.
Основными компонентами системы являются: прогнозирование сбыта и спроса, основной производственный план и общее планирование загрузки производственных мощностей, планирование производства и детальное планирование загрузки производственных мощностей. Первый модуль отвечает за прогнозирование на основе истории системы. Пользователь может вносить свои корректировки в виде условий изменений рынка. В отличие от MRP II, на этом этапе возможно добиться значительного повышения скорости планирования, так как планирование возможно с одновременным учетом ограничений по мощностям и ресурсам. На практике выигрыш во времени зачастую оказывается значителен. Компонент составления производственного плана и планирования нагрузки оказывается полезен при схемах производства «на заказ», «на склад» и при непрерывном производстве. Сравнение данных по производственному плану и данных, полученных в реальном времени, позволяет выявить «узкие места» производства. Так же компонент позволяет произвести сравнение нескольких производственных планов для выявления оптимальной загрузки объектов производства. Третий компонент позволяет учитывать динамику и реальное состояние дел, чтобы формировать календарные графики в соответствии с доступностью ресурсов (оборудование, рабочая сила, хранилища, источники энергии, основные материалы). Оптимизация в системах APS базируется на эвристиках и/или на сложных математических моделях, которые создаются для конкретной отрасли (например, металлургия, прокат - оптимизация изменений толщин листов), конкретного предприятия. При этом тонкая настройка алгоритмов оптимизации может быть осуществлена непосредственно самими пользователями.
APS-системы являются своеобразной надстройкой к существующим ERP-системам, заменяя схожие механизмы в них. Потребность в высокой точности входных данных можно рассматривать двояко, так как, с одной стороны, это несомненно положительная сторона для планирования производства, с другой, негативная, потому что ошибки в расчетах могут приводить к убыткам. Использование APS-систем требует большой точности и профессионализма, что заметно усложняет их внедрение.
Одной из наиболее распространенной в мире универсальной системой планирования, полностью отвечающей критериям APS систем является продукт фирмы SAP AG Advanced Planning & Optimization или APO (в настоящее время входящий в состав программного продукта SAP SCM).

Система JIT (Just In Time) – точно в срок

Одной из широко распространенных в мире информационных моделей является модель «точно в срок» (just-in-time, JIT). Основная ее идея заключается в следующем: если производственное расписание задано, то можно так организовать движение материальных потоков, что все материалы, компоненты и полуфабрикаты будут поступать в необходимом количестве, в нужное место (на сборочной линии - конвейере) и точно к назначенному сроку для производства или сборки готовой продукции. Благодаря этому компоненты с предыдущей операции (обработка или доставка от поставщика) попадают в производство тогда и только тогда, когда в них появляется необходимость. В отличие от MRP, рассчитанной на предприятия с масштабным производством, JIT более применим для производства среднего масштаба, где происходит постоянный и непрерывный процесс производства небольших партий, что требует постоянных поставок материалов в небольшом количестве. Плюсом данного подхода можно назвать отсутствие необходимости в страховых запасах и иммобилизующих денежных средствах, но стоит сделать оговорку, что это верно для предприятий среднего и малого уровня. Данная система является успешной альтернативой MRP с определенными условиями. Простота процедур планирования поставок не совместима с крупными производствами, где планирование и контроль процессов производства находится на более высоком уровне, так как в конечном счете это негативно отразится на показателях.
Концепция «точно в срок» тесно связана с составляющими логистического цикла. В идеальном случае материальные ресурсы или готовая продукция должны быть доставлены в определенную точку логистической цепи (канала) именно в тот момент, когда в них есть потребность, что исключает излишние запасы, как в производстве, так и в дистрибьюции. Многие современные информационные системы, основанные на данном подходе, ориентированы на короткие составляющие логистических циклов, а это требует адекватной реакции звеньев информационной системы на изменения спроса и соответственно производственной программы.
Данная модель характеризуется следующими основными чертами:
      минимальными (нулевыми) запасами материальных ресурсов, незавершенного производства, готовой продукции;
      короткими производственными циклами;
      небольшими объемами производства готовой продукции и пополнения запасов (поставок);
      взаимоотношениями по закупкам материальных ресурсов с небольшим числом надежных поставщиков и перевозчиков;
      эффективной информационной поддержкой;
      высоким качеством готовой продукции и сервиса поставок материалов.
Концепция «точно в срок» способствует усилению контроля и поддержанию уровня качества продукции в разрезе всех составляющих структуры производства. Внедряемые информационные системы, основанные на данном подходе, связанном с синхронизацией всех процессов и этапов поставки материальных ресурсов, производства и сборки, поставки готовой продукции потребителям, предполагают высокую точность информации и прогнозирования. Этим объясняются, в частности, и короткие составляющие производственных циклов. Для эффективной реализации технологии JIT должны работать с надежными телекоммуникационными системами и информационно-компьютерной поддержкой.
Развитие некрупных производственных компаний и относительная простота информационной системы JIT не могла остаться незамеченной. Чем больше предприятий внедряют информационную систему у себя, тем больше поправок к ней может появиться. Современные технологии JIT стали более интегрированными и комбинируются из различных вариантов производственных концепций и распределительных систем, таких, как системы, минимизирующие запасы в логистических каналах, логистические системы быстрого переключения, выравнивания уровня запасов, групповые технологии, превентивное гибкое автоматизированное производство, современные логистические системы всеобщего статистического контроля и управления циклами качества продукции и т. п. Поэтому в настоящее время принято относить такие технологии к новой версии концепции «точно в срок» - концепции JIT II. Большинство информационных систем, получивших широкое распространение, постоянно улучшаются и на их основе создаются более новые и оптимальные системы, так что JIT не стала исключением.
Основной целью информационной системы JIT II является максимальная интеграция всех логистических функций фирмы для минимизации уровня запасов в интегрированной информационной системе, обеспечение высокой надежности и уровня качества продукции и сервиса для максимального удовлетворения запросов потребителей. Системы, основанные на идеологии JIT II, используют гибкие производственные технологии выпуска небольших объемов готовой продукции группового ассортимента на базе раннего предсказания покупательского спроса.
Ярким примером реализации информационной системы JIT является микро-система KANBAN, ставшая одной из первых попыток практического внедрения концепции «точно в срок».
В этой системе сочетаются особенности системы «точно в срок», в частности, малый размер запаса, и отдельные производственные единицы. Системы наиболее применимы для изделий, выпускаемых в больших объемах на регулярной основе. Они гораздо менее применимы для дорогих или крупных изделий, расходы за хранение которых на складе или доставку велики; системы менее применимы отношении нечасто и нерегулярно используемых изделий или на предприятия обрабатывающей промышленности, которые не делятся на малые производственные единицы.
Микро-система KANBAN ощутимо уменьшает запасы материальных ресурсов на входе и незавершенное производстве на выходе, позволяя выявлять «узкие места» в производственном процессе. Когда проблема решена, объем буферных запасов снова снижается, пока не обнаружится следующее «узкое место». Таким образом, система KANBAN позволяет установить баланс в цепи поставки путем минимизации запасов на каждом этапе.
Практическое использование системы KANBAN, а затем ее модифицированных версий позволяет значительно улучшить качество выпускаемой продукции: сокращается логистический цикл, существенно повышается оборачиваемость оборотного капитала фирм, снижается себестоимость производства, а страховые запасы практически исключаются и значительно уменьшается объем незавершенного производства. Анализ мирового опыта применения микрологистической системы KANBAN многими известными машиностроительными фирмами показывает, что она дает возможность уменьшить производственные запасы на 50%, товарные - на 8% при значительном ускорении оборачиваемости оборотных средств и повышении качества готовой продукции.
Микро-система KANBAN была разработана и впервые в мире реализована фирмой «Тойота». В 1959 году эта фирма начала эксперименты с этой информационной системой и в 1962 году начала процесс перевода всего производства на этот принцип. В основе организации производства фирмы «Тойота» лежит годовой план производства и сбыта автомобилей, на базе которого составляются месячные и оперативные планы среднесуточного выпуска на каждом участке, основанные на прогнозировании покупательского спроса (период упреждения - 1 и 3 месяца). Суточные графики производства составляются только для главного сборочного конвейера. Для цехов и участков, обслуживающих главный конвейер, графики производства не составляются (им устанавливаются лишь ориентировочные месячные объемы производства).

ERP-системы

В соответствии со Словарем APICS (American Production and Inventory Control Society), термин «ERP-система» (Enterprise Resource Planning - Управление ресурсами предприятия) может употребляться в двух значениях. Во-первых, это - информационная система для идентификации и планирования всех ресурсов предприятия, которые необходимы для осуществления продаж, производства, закупок и учета в процессе выполнения клиентских заказов. Во-вторых (в более общем контексте), это - методология эффективного планирования и управления всеми ресурсами предприятия, которые необходимы для осуществления продаж, производства, закупок и учета при исполнении заказов клиентов в сферах производства, дистрибьюции и оказания услуг.
Аббревиатура ERP используется для обозначения комплексных систем управления предприятием (Enterprise-Resource Planning – планирование - ресурсов предприятия). Ключевой термин ERP является Enterprise – Предприятие, и только потом – планирование ресурсов. Истинное предназначение ERP - в интеграции всех отделов и функций компании в единую компьютерную систему, которая сможет обслужить все специфичные нужды отдельных подразделений.
Самое трудное – построить единую систему, которая обслужит все запросы сотрудников финансового отдела, и, в то же время, угодит и отделу кадров, и складу, и другим подразделениям. Каждый из этих отделов обычно имеет собственную компьютерную систему, оптимизированную под свои особенности работы. ERP комбинирует их все в рамках одной интегрированной программы, которая работает с единой базой данных, так, что все департаменты могут легче обмениваться информацией и общаться друг с другом. Такой интегрированный подход обещает обернуться очень большой отдачей, если компании смогут корректно установить систему.
и т.д.................

ЭВМ прочно вошли в производственную деятельность, и в настоящее время нет необходимости доказывать целесообразность использования вычислительной техники в системах управления технологическими процессами, проектирования, научных исследований, административного управления, в учебном процессе, банковских расчетах, здравоохранении, сфере обслуживания и т.д. Бурное развитие информационных технологий за последние десятилетия обусловлено высокой потребностью общества в них, в первую очередь потребностями производства. Многие задачи, некогда требующие монотонной и долгой работы, стало возможно решить при помощи компьютера за считанные минуты, что значительно упростило жизнь, помогло сэкономить рабочее время и успешно помогает снизить затраты разного рода на производстве. Использование современных информационных технологий становится возможным даже там, где, казалось бы, они никогда не смогут дополнить или даже полностью заменить труд специалиста.

Введение систем автоматизации в производстве помогает значительно сократить количество наемных рабочих, отдав предпочтение нескольким специалистам в области информационных технологий, которые будут способны решать большинство проблем производства. В большинстве случаев такой подход позволяет добиться существенной экономии средств, несмотря на высокий уровень зарплат подобных специалистов. По всем показателям автоматизированное производство выигрывает, так что современному специалисту важно не только знать о существовании систем автоматизации, но и уметь с ними работать в совершенстве.

Целью данной работы является ознакомление с существующими информационными технологиями, применяемыми в производстве. Рассмотрение основных информационных систем автоматизации производства актуально в течение многих лет, примерно с середины XXвека, и актуальность данной проблемы останется высокой еще в течение длительного периода, так как изменения в этой области тесно связаны с постоянными новшествами в информационных технологиях и науке. За последние годы происходили значимые изменения в области создания и разработки информационных систем: изначально информационные системы применялись лишь на производстве с большими объемами, например, на машиностроительных или оборонных заводах. Постепенная популяризация и доступность ЭВМ сделала возможной использование информационных систем и в менее крупных масштабах, при этом дав стимул для развития логической части самих систем, что будет показано ниже на примере эволюции информационной системы MRPв систему MRPII, также нельзя не заметить появление ERP, внесшее ощутимый вклад.

В ходе работы будут рассмотрены принципы информационных систем по автоматизации производства, а также некоторые программные средства для их реализации. Таким образом, можно будет выделить несколько наиболее удачных и наиболее часто используемых систем на сегодняшний день.

Системы автоматизации управления производством

Успешное производство всегда зависит от не менее успешного управления. Именно на плечах управляющих лежит высокая ответственность за организацию производственных процессов, которые будут приносить прибыль для фирмы в целом. В наши дни существует около двадцати основных современных теорий автоматизации производства, которые базируются на современных информационных технологиях. Каждый подход имеет свои плюсы и минусы в определенных условиях, поэтому, полезно рассмотреть каждый из них. Также нельзя не заметить, что некоторые системы автоматизации появлялись в процессе модернизации некогда существовавших систем, но это не привело к полному отказу от изначальных разработок. Например, ERP-система (система планирования ресурсов предприятия) является логическим продолжением систем планирования материальных потребностей (MRP-системы) и систем планирования производственных ресурсов (MRPII-системы). Выбор определенной информационной системы для автоматизации производства зависит от многих факторов, среди которых можно выделить: объемы, тип, цель, потребность в автоматизации. На примере вышеупомянутых ERP-систем можно сказать, что мелкому производству вряд ли будет полезно тратить время на внедрение столь масштабной информационной системы, которая при небольшом уровне развития предприятия, будет только отнимать время специалистов, приводя к ухудшению показателей. Правильный выбор подходящей информационной системы для производства – непростое и очень важное решение, особенно в момент становления фирмы, когда ориентация под определенную модель автоматизации может определить становление всего производства. Сложные системы, обеспечивающие максимальный контроль по многочисленным направлениям, не только могут оказаться невостребованными, но и послужить одной из весомых статей расходов, что весьма нежелательно в большинстве случаев. Одной из начальных систем, сочетающей в себе успешные методы управления и невысокую стоимость внедрении, является система планирования потребности в материалах.

Система MRP (MaterialRequirementsPlanning) – планирование потребности в материалах

Данная система была разработана в США в 1950-х годах, но только через 25 лет, когда произошел бурный скачок в развитии вычислительной техники, она получила известность и последующее повсеместное распространение. К концу 1980-х годов MRPиспользовали большинство фирм в США и Великобритании. На сегодняшний день использование системы планирования потребности в материалах не актуально из-за возраста системы, но именно она является базой для большого количества ныне существующих систем автоматизации.

В середине XXвека многие производители сталкивались с достаточно серьезными проблемами несвоевременной поставки ресурсов, что приводило к снижению производственных показателей и скоплению большого количества материалов на складах. Главной задачей MRP является то, чтобы каждый элемент производства, каждая комплектующая деталь были в нужное время в нужном количестве. Это обеспечивается формированием такой последовательности производственных операций, которая позволяет соотносить своевременное изготовление продукции с заложенным планом выпуска. Такой подход также призван обеспечить минимальное количество запасов на складе. В упрощённом виде исходную информацию для MRP-системы представляют календарные планы производства, ведомость материалов, состав изделия, состояние запасов. На основании входных данных MRP-система выполняет следующие основные операции:

· по данным календарного плана производства определяется количество конечных изделий для каждого периода времени планирования;

· к составу конечных изделий добавляются запасные части, не включённые в календарный план производства;

· для календарного плана производства и запасных частей определяется общая потребность в материальных ресурсах в соответствии с ведомостью материалов и составом изделия с распределением по периодам времени планирования;

· общая потребность материалов корректируется с учётом состояния запасов для каждого периода времени планирования;

· осуществляется формирование заказов на пополнение запасов с учётом необходимого времени опережения.

Результатом работы MRP-системы является план-график снабжения материальными ресурсами производства (потребность каждой учётной единицы материалов и комплектующих для каждого периода времени). Для реализации план-графика снабжения система создаёт график заказов в привязке к периодам времени. Он используется для размещения заказов поставщикам материалов и комплектующих или для планирования самостоятельного изготовления с возможностью внесения корректировок в процессе производства. Системы класса MRP по соотношению цена/качество подходят для небольших предприятий, где функции управления ограничиваются учётом (бухгалтерским, складским, оперативным), управлением запасами на складах и управлением кадрами.

Возраст этой системы накладывает определенные недостатки, которые в ее рамках решать было нецелесообразно. Самым главным недостатком MRP-систем является большой объем обработки входных данных по сравнению с объемами информации в целом и результатами. При стремлении перейти на частые, но малые заказы, в рамках MRP-систем вряд ли удастся найти оптимальный план по расходам на обработку заказов и транспортировку, так как система изначально разрабатывалась для больших предприятий с многотысячными заказами (крупные машиностроительные заводы США).

Популярным ПО для MRP-систем некогда служил Microsoft Business Solutions-Navision, разрабатываемый с начала 1980-х годов. На сегодняшний день программы комплекс перерос в Microsoft Dynamics NAV, где MRP-модуль является отдельным подключаемым модулем.



Рекомендуем почитать

Наверх