Схемотехника двухфазных корректоров коэффициента мощности. Пассивные корректоры коэффициента мощности

Бытовая техника 21.06.2019
Бытовая техника

Развитие и широкое распространение импульсных методов преобразования электрической энергии привело к появлению маломощных бытовых и промышленных электроприборов с искажённой формой или не нулевым фазовым сдвигом потребляемого от сети тока (лампы дневного света, электродвигатели, телевизоры, компьютеры, микроволновые печи и пр.). Резкое увеличение числа таких потребителей сказывается на их электромагнитной совместимости и энергосистемах в целом . В 2001году МЭК приняла стандарт IEC–1000–3–2, согласно которому любая электротехническая продукция мощностью более 200 ватт, подключаемая к сети переменного тока, должна иметь активный характер входного сопротивления, то есть коэффициент мощности () должен быть равен единице.

Для повышения в настоящее время используют пассивные и активные корректоры коэффициента мощности (ККМ). Первые применяют при неизменных нагрузках, путём введения компенсирующих реактивностей (например, конденсаторы для ламп дневного света), вторые обладают более широким спектром применения. Рассмотрим упрощенную схему активного корректора, которая приведена на рис.6.1.

Рисунок 6.1 – Упрощенная схема активного ККМ

На этом рисунке R 1 , R 2 – датчик входного напряжения (ДН), R 3 – датчик тока (ДТ). Индуктивность L, ключ VT1, диод VD1 и конденсатор С 1 образуют импульсный повышающий стабилизатор напряжения. Работа ККМ поясняется эпюрами рис.6.1б. Замыкание транзистора VТ1 происходит в момент времени, когда напряжение на выходе датчика тока ДТ становится равным нулю (т. е. при нулевом токе в индуктивности L). Размыкание транзистора VТ1 происходит в момент времени, когда линейно нарастающее напряжение с датчика тока становится равным изменяющемуся по синусоидальному закону напряжению с датчика напряжения ДН. После размыкания транзистора ток в индуктивности начинает спадать, индуктивность разряжается на нагрузку через диод VD1, ДТ и сеть. При нулевом значении тока транзистор вновь замыкается. Далее процесс повторяется. Частота коммутации ключа превышает частоту сети и составляет десятки…сотни килогерц. Усредненный ток i ср в индуктивности и потребляемый от сети, повторяет форму напряжения сети. По высокой частоте работы ключа сеть шунтируют конденсатором С 2 (обычно это доли мкФ). Можно дополнительно ввести обратную связь по выходному напряжению и обеспечить предварительную стабилизацию. Очевидно, что работа ККМ возможна, если амплитуда входного напряжения меньше напряжения на конденсаторе С 1 (с учётом отклонений). Для напряжения сети 220В (амплитуда 311В), выходное напряжение ККМ принимают равным 380…400В.

6.2 Разновидности ккм

В рассмотренной выше схеме ККМ используется, так называемый, метод граничного управления. Он наиболее прост в реализации, но размыкание ключа производится при значительном токе, что связано с существенными потерями мощности.

Известны и другие методы управления ключом в ККМ :

    управление по пиковому значению тока

    метод разрывных токов с ШИМ.

    управление по среднему значению тока.

Сущность этих методов поясняется эпюрами рис.6.2 а, б, в соответственно.

Рисунок 6.2 – Управление ключом в ККМ

Управление по пиковому значению тока (рис. 6.2.а) привлекательно по малым обратным помехам (в сеть) и малым броскам тока через ключ, но имеет место изменение частоты и жесткая коммутация силового диода.

Управление методом разрывных токов с ШИМ (рис. 6.2.б). Реализация этого метода близка к методу граничного управления, но отличается постоянной частотой коммутации. Достоинством является простая схема управления, но разрывные токи дросселя становятся дополнительным источником помех. Управление по среднему значению тока (рис. 6.2.в) производится при неизменной частоте, а наличие интегратора для усреднения тока повышает помехозащищённость системы управления. Обычно пиковое значение пульсаций тока дросселя находится в пределах 20% от среднего значения и именно этот метод управления применяют в корректорах на мощности более 300 ватт.

Cуществуют не только однофазные, но и трёхфазные корректоры коэффициента мощности. Силовой контур трёхфазного ККМ с одним управляемым ключом приведен на рис. 6.3 , а на рис. 6.4 и 6.5 показаны эпюры, поясняющие работу.

Рисунок 6.3 – Силовой контур трёхфазного ККМ

Рисунок 6.4 – Эпюры токов реакторов L1,L2,L3 трёхфазного ККМ

Рисунок 6.5 – Эпюры основных процессов трёхфазного ККМ

Управление ключом производится аналогично однофазному корректору.

В рассмотренных схемах ККМ, последний пропускает всю мощность нагрузки. Это последовательный корректор и его элементная база сдерживает увеличение выходной мощности. ККМ может быть построен и по ампердобавочной (рис.1.19) схеме – включение активного фильтра тока параллельно нагрузке. В этом случае, установленная мощность элементов активного фильтра, предназначенного для компенсации только мощности искажений от высших гармоник входного тока, будет на уровне, определяемом коэффициентом гармоник этого тока (например, 0,3 для трёхфазной мостовой схемы и 0,15 для двенадцатифазной схемы выпрямления) . Структурная схема такого ККМ приведена на рис. 6.6. Принцип компенсации высших гармоник в кривой тока, потребляемого от сети, поясняется эпюрами рис. 6.7. Для наглядности форма тока нагрузки принята прямоугольной. Корректор формирует разность между гармоникой тока сети и фактическим током нагрузки

(6.1)

где j – индекс фазы (A,B или C);

i J 1 – первая гармоника тока фазы j .

Схема управления корректором обычно базируется на широтно-импульсной модуляции.

Рисунок 6.6 – Структурная схема параллельного трёхфазного ККМ

Рисунок 6.7 – Компенсация высших гармоник тока

Как отдельные элементы электронной техники, схемы управления корректорами впервые были выпущены в 1989 г. фирмой Mikro Linear (LM 4812). Затем разработками занялись Siemens, Motorola и др. В настоящее время имеется обширное семейство ИМС для управления импульсными источниками, совмещёнными с ККМ и реализующие тот или иной метод управления.

Корректор коэффициента мощности

Основные понятия

Развитие и широкое распространение импульсных методов преобразования электрической энергии привело к появлению маломощных бытовых и промышленных электроприборов с искажённой формой или не нулевым фазовым сдвигом потребляемого от сети тока (лампы дневного света, электродвигатели, телевизоры, компьютеры, микроволновые печи и пр.). Резкое увеличение числа таких потребителей сказывается на их электромагнитной совместимости и энергосистемах в целом . В 2001году МЭК приняла стандарт IEC–1000–3–2, согласно которому любая электротехническая продукция мощностью более 200 ватт, подключаемая к сети переменного тока, должна иметь активный характер входного сопротивления, то есть коэффициент мощности () должен быть равен единице.

Для повышения в настоящее время используют пассивные и активные корректоры коэффициента мощности (ККМ). Первые применяют при неизменных нагрузках, путём введения компенсирующих реактивностей (например, конденсаторы для ламп дневного света), вторые обладают более широким спектром применения. Рассмотрим упрощенную схему активного корректора, которая приведена на рис.6.1.

Рисунок 6.1 – Упрощенная схема активного ККМ

На этом рисунке R 1 , R 2 – датчик входного напряжения (ДН), R 3 – датчик тока (ДТ). Индуктивность L, ключ VT1, диод VD1 и конденсатор С 1 образуют импульсный повышающий стабилизатор напряжения. Работа ККМ поясняется эпюрами рис.6.1б. Замыкание транзистора VТ1 происходит в момент времени, когда напряжение на выходе датчика тока ДТ становится равным нулю (т. е. при нулевом токе в индуктивности L). Размыкание транзистора VТ1 происходит в момент времени, когда линейно нарастающее напряжение с датчика тока становится равным изменяющемуся по синусоидальному закону напряжению с датчика напряжения ДН. После размыкания транзистора ток в индуктивности начинает спадать, индуктивность разряжается на нагрузку через диод VD1, ДТ и сеть. При нулевом значении тока транзистор вновь замыкается. Далее процесс повторяется. Частота коммутации ключа превышает частоту сети и составляет десятки…сотни килогерц. Усредненный ток i ср в индуктивности и потребляемый от сети, повторяет форму напряжения сети. По высокой частоте работы ключа сеть шунтируют конденсатором С 2 (обычно это доли мкФ). Можно дополнительно ввести обратную связь по выходному напряжению и обеспечить предварительную стабилизацию. Очевидно, что работа ККМ возможна, если амплитуда входного напряжения меньше напряжения на конденсаторе С 1 (с учётом отклонений). Для напряжения сети 220В (амплитуда 311В), выходное напряжение ККМ принимают равным 380…400В.

Разновидности ККМ

В рассмотренной выше схеме ККМ используется, так называемый, метод граничного управления. Он наиболее прост в реализации, но размыкание ключа производится при значительном токе, что связано с существенными потерями мощности.

Известны и другие методы управления ключом в ККМ :

· управление по пиковому значению тока

· метод разрывных токов с ШИМ.

· управление по среднему значению тока.

Сущность этих методов поясняется эпюрами рис.6.2 а, б, в соответственно.

Рисунок 6.2 – Управление ключом в ККМ

Управление по пиковому значению тока (рис. 6.2.а) привлекательно по малым обратным помехам (в сеть) и малым броскам тока через ключ, но имеет место изменение частоты и жесткая коммутация силового диода.

Управление методом разрывных токов с ШИМ (рис. 6.2.б). Реализация этого метода близка к методу граничного управления, но отличается постоянной частотой коммутации. Достоинством является простая схема управления, но разрывные токи дросселя становятся дополнительным источником помех. Управление по среднему значению тока (рис. 6.2.в) производится при неизменной частоте, а наличие интегратора для усреднения тока повышает помехозащищённость системы управления. Обычно пиковое значение пульсаций тока дросселя находится в пределах 20% от среднего значения и именно этот метод управления применяют в корректорах на мощности более 300 ватт.

Cуществуют не только однофазные, но и трёхфазные корректоры коэффициента мощности. Силовой контур трёхфазного ККМ с одним управляемым ключом приведен на рис. 6.3 , а на рис. 6.4 и 6.5 показаны эпюры, поясняющие работу.

Рисунок 6.3 – Силовой контур трёхфазного ККМ

Рисунок 6.4 – Эпюры токов реакторов L1,L2,L3 трёхфазного ККМ

Рисунок 6.5 – Эпюры основных процессов трёхфазного ККМ

Управление ключом производится аналогично однофазному корректору.

В рассмотренных схемах ККМ, последний пропускает всю мощность нагрузки. Это последовательный корректор и его элементная база сдерживает увеличение выходной мощности. ККМ может быть построен и по ампердобавочной (рис.1.19) схеме – включение активного фильтра тока параллельно нагрузке. В этом случае, установленная мощность элементов активного фильтра, предназначенного для компенсации только мощности искажений от высших гармоник входного тока, будет на уровне, определяемом коэффициентом гармоник этого тока (например, 0,3 для трёхфазной мостовой схемы и 0,15 для двенадцатифазной схемы выпрямления) . Структурная схема такого ККМ приведена на рис. 6.6. Принцип компенсации высших гармоник в кривой тока, потребляемого от сети, поясняется эпюрами рис. 6.7. Для наглядности форма тока нагрузки принята прямоугольной. Корректор формирует разность между гармоникой тока сети и фактическим током нагрузки

На сегодняшний день существуют два подхода к построению источников питания, дающих на выходе стабильное выходное напряжение или ток — источники питания с параметрической и с импульсной стабилизацией.

В линейных источниках стабилизация выходного параметра осуществляется за счет нелинейного элемента. Импульсные — работают по принципу управления энергией в катушке индуктивности с помощью одного или нескольких коммутирующих ключей.

Преимущество первых — низкий уровень высокочастотных шумов, что важно для аналоговой аппаратуры. За импульсными источниками — более высокие мощности и лучшее соотношение мощности и размеров. Кроме того, они имеют более высокий КПД. Вопросы сложности или простоты схемотехники являются весьма спорными, т.к. современная промышленность предлагает широкий спектр решений, в том числе и однокристальных, для любых приложений.

Но для сети линейные и импульсные источники питания являются нелинейной нагрузкой — форма потребляемого тока будет отличаться от синусоидальной, что приведет к возникновению дополнительных гармоник, а следовательно — к появлению реактивной составляющей мощности, дополнительному нагреву и потерям в линиях электропередач. Кроме того, другим потребителям энергии приходится применять дополнительные меры для защиты от сетевых помех — особенно в случае импульсных блоков высокой мощности, работающих под нагрузкой. Ограничения на допустимые наводки в сети от работающего прибора регламентируются соответствующими международными и государственными стандартами. Можно не сомневается, что российские стандарты в этой области будут ужесточаться и приближаться к мировым. В итоге именно те компании, которые освоят техники снижения сетевых помех, получат значительное преимущество над конкурентами.

Для снижения влияния потребителя тока на сеть применяются активные или пассивные корректоры. Пассивные корректоры представляют собой дроссели, чаще всего применяемые в устройствах небольшой мощности и некритичные к габаритным размерам. В остальных случаях целесообразно применение активных высокочастотных корректоров, часто называемых корректорами коэффициента мощности (ККМ или PFC — Power Factor Correction). К основным задачам ККМ можно отнести:

  • Придание потребляемому от сети току синусоидальной формы (снижение коэффициента гармоник);
  • Ограничение выходной мощности;
  • Защиту от короткого замыкания;
  • Защиту от пониженного или повышенного напряжений.

Фактически, ККМ можно рассматривать как некий буферный каскад (схему), снижающий взаимное влияние питающей сети и источника питания.

Типовая структура корректора мощности представлена на рисунке 1.

Рис. 1.

ККМ может быть реализован не только на дискретных элементах, но и при помощи специализированных микросхем — контроллеров ККМ (PFC-корректоры). К основным производителям контроллеров корректоров коэффициента мощности относятся:

  • STMicroelectronics- L4981, L656x;
  • Texas Instruments- UCx854, UC28xx;
  • International Rectifier — IR115x;
  • ON Semiconductor- MC3x262, MC33368, NCP165x, NCP160x;
  • Fairchild Semiconductor- FAN48xx, FAN69x, FAN7527;
  • Linear Technology Corporation- LTC1248.

ККМ-контроллеры STMicroelectronics

Компания STMicroelectronics предлагает несколько серий производительных контроллеров ККМ, способных обеспечить различные режимы работы прибора. Дополнительные опции упрощают построение импульсных источников питания, учитывая стандарты энергосбережения и требования к уровню вносимых в питающую сеть искажений.

Таблица 1. Контроллеры корректора коэффициента мощности STMicroelectronics

Микросхема Корпус Режим работы Напряжение
питания, В
Ток потребления, мА активный/стартовый (низкопотребляющий) Примечание
L4981 PDIP 20; SO-20 ССМ 19,5 12/0,3 Мягкий старт; защита от перенапряжения, перегрузки по току
L6561 DIP-8; SO-8 TM 11…18 4/0,05 Защита от перенапряжения
L6562A DIP-8; SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения
L6562AT SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения
L6563H SO-16 TM, tracking boost 10,3…22,5 5/0,09
L6563S SO-14 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора
L6564 SSOP 10 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора

Микросхема контроллера корректора мощности L4981 позволяет построить высокоэффективные блоки питания с синусоидальным током потребления. Коэффициент мощности может достигать величины 0,99 при низком уровне гармоник. Сама микросхема реализована по технологии BCD 60II и работает по принципу контроля среднего тока (CCM), поддерживая синусоидальность потребляемого тока.

L4981 может быть использована в системах с питающими напряжениями 85…265 В без внешнего драйвера силового ключа. Серия «A» для ШИМ-контроллера использует фиксированную частоту; серия «B» для оптимизации входного фильтра дополнительно использует частотную модуляцию.

Также в состав микросхемы входят: прецизионный источник опорного напряжения, усилитель рассогласования, схема блокировки работы при критическом падении напряжения, датчик тока, схема мягкого старта и защита от перенапряжения и перегрузки по току. Уровень срабатывания защиты по току для L4981A задается при помощи внешнего резистора; для повышения точности в серии L4981B используется внешний делитель напряжения.

Ключевые особенности:

  • Boost-ШИМ с коэффициентом мощности до 0,99;
  • Искажение тока не более 5%;
  • Универсальный вход;
  • Мощный выходной каскад (биполярные и МОП-транзисторы);
  • Защита от просадки напряжения с гистерезисом и программируемым порогом включения;
  • Встроенный источник опорного напряжения с точностью 2% (доступен извне);
  • Низкий ток запуска (~0,3мА);
  • Система мягкого включения.

Серия L6561 является улучшенной версией PFC-контроллера L6560 (полностью с ним совместима). Основные новшества:

  • Улучшенный аналоговый умножитель, позволяющий устройству работать в широком диапазоне входных напряжений (от 85 до 265В) с превосходными показателями коэффициента гармоник (THD);
  • Стартовый ток уменьшен до нескольких миллиампер (~4мА);
  • Добавлен вывод разрешения работы, гарантирующий низкое энергопотребление в режиме ожидания (stand by ).

Ключевые возможности, воплощенные в смешанной технологии BCD:

  • Ультранизкий стартовый ток (~50мкА);
  • 1% встроенный источник опорного напряжения;
  • Программируемая защита от перенапряжения;
  • Токовый датчик без внешнего фильтра низких частот;
  • Малый ток покоя.

Выходной каскад способен управлять силовыми МОП- или IGBT-ключами с токами управления до 400 мА. Микросхема работает в переходном режиме работы корректоров коэффициента мощности — Transition Mode (TM) — промежуточный режим между непрерывным (CCM) и прерывистым (DCM). L6561 оптимизирована для балластных схем питания газоразрядных ламп, сетевых адаптеров, импульсных источников питания.

Контроллер ККМ L6562A/L6562AT также работает в переходном режиме (TM) и совместим повыводно с предшественниками L6561 и L6562. Его высоколинейный умножитель имеет специальную схему, уменьшающую рассогласование входного переменного тока, что позволяет оперировать в широком диапазоне входных напряжений с низким коэффициентом гармоник при различных нагрузках. Выходное напряжение контролируется операционным усилителем с высокоточным источником опорного напряжения (до 1% точности).

L6562A/L6562AT в режиме покоя имеет потребление порядка 60 мкА и рабочий ток всего 5 мА. Наличие входа управления включением/выключением облегчает создание конечных устройств, отвечающих требованиям стандартов Blue Angel, EnergyStar, Energy2000 и ряда других.

Эффективная двухуровневая система защиты от перенапряжения срабатывает даже в случае возникновения перегрузки в момент запуска корректора или же в случае отрыва нагрузки при работе.

Выходной каскад способен обеспечить выходной ток до 600 мА и входной до 800 мА, что является достаточным для управления мощными силовыми MOSFETs или IGBT-ключами. В дополнение к указанным выше возможностям L6562A может оперировать в проприетарном режиме фиксированного времени выключения (Fixed-Off-Time ) — рисунок 2.


Рис. 2.

Серии ККМ-контроллеров L6563, L6563S, L6563H, L6564 построены по схеме типового корректора коэффициента мощности, работающего в режиме TM с рядом дополнительных возможностей.

L6563, L6563S имеют режим работы Tracking boost, двунаправленный вход упреждения напряжения, вход разрешения работы, прецизионный источник опорного напряжения (точность при 25°С в пределах 1…1,5%). Кроме того, в микросхему интегрированы: схемы защиты от перенапряжения с настраиваемым порогом, разрыва контура обратной связи (выключение микросхемы), насыщения индуктора (выключение микросхемы); программируемый детектор критического падения переменного напряжения. Максимальный ток потребления L6563х составляет не более 6 мА в активном режиме, стартовый ток менее 100 мкА.

Микросхема контроллера корректора
коэффициента мощности L6562A

Сферы применения ККМ-контроллера включают в себя:

  • Импульсные блоки питания, отвечающие требованиям стандартов IEC61000-3-2 (телевизоры, мониторы, компьютеры, игровые консоли);
  • AC/DC-преобразователи/зарядные устройства с мощностью до 400 Вт;
  • Электронный балласт;
  • Входной уровень серверов и веб-серверов.

Ключевыми особенностями L6562A являются:

  • Проприетарное решение умножителя;
  • Настраиваемые уровни защиты от перенапряжения;
  • Ультранизкий стартовый ток- 30мкА;
  • Низкий ток покоя- 2,5мА;
  • Мощный выходной каскад для управления силовыми ключами- -600,800мА.

Микросхемы выпускаются в компактных восьмивыводных корпусах DIP-8 и SO-8. Структурная схема L6562A показана на рисунке 3.


Рис. 3.

Инверсный вход усилителя ошибки разделяет функции вывода разрешения работы микросхемы. При напряжении на нем ниже 0,2 В он выключает микросхему, тем самым понижая ее энергопотребление, а при превышении порога в 0,45 В микросхема переходит в активный режим. Основное назначение данной функции — управление ККМ-контроллером, например, он может управляться следующим за ним ШИМ-контроллером преобразователя напряжения. Дополнительной возможностью, предоставляемой функцией выключения, является автоматическое отключение в случае замыкания на землю напряжения низкоомного резистора выходного делителя или обрыва цепи делителя.

Выходной сигнал усилителя ошибки поступает на его инверсный вход через компенсирующие цепи обратной связи. Фактически, работа данных цепей определяет стабильность выходного напряжения, высокий коэффициент мощности и низкий уровень гармоник.

После выпрямителя основное питающее напряжение поступает на вход умножителя через делитель напряжения и служит источником опорного синусоидального сигнала для токовой петли.

Напряжение с измерительного резистора в цепи силового ключа поступает на вход компаратора ШИМ, где сравнивается с опорным синусоидальным сигналом для определения момента размыкания ключа. Для снижения влияния импульсных помех аппаратно реализована задержка в 200 нс от фронта импульса. По отрицательному фронту импульса размагничивания индуктора происходит замыкание силового ключа.

Примером схемы включения L6562A может служить повышающий источник напряжения на 400 В (рисунок 4).


Рис. 4.

Вторым примером может служить применение L6562A в составе источника питания для светодиодных светильников (рисунок 5).


Рис. 5.

L6562A имеет специализированную схему, снижающую влияние переходных процессов в районе нулевого переменного входного напряжения, когда диоды в выпрямительном мосту еще закрыты, и ток через мост равен нулю. Для борьбы с данным эффектом встроенная схема заставляет ККМ-контроллер перекачивать больше энергии в момент пересечения нуля сетевым напряжением (увеличивается промежуток времени нахождения силового ключа в открытом состоянии). В результате уменьшается промежуток времени, в течение которого потребление энергии (тока) схемой недостаточно, и полностью разряжается фильтрующий конденсатор, стоящий после моста. Низкое значение опорного напряжения позволяет использовать более низкоомный резистор для измерения тока в цепи силового ключа, соответственно снижается и рассеиваемая на нем мощность (меньше рассеиваемой мощности ® меньше нагрев ® ниже требования к системе охлаждения и вентиляции). Низкие входные токи динамической защиты от перенапряжения допускают применение высокоомного верхнего резистора в делителе напряжения цепи обратной связи по напряжению без увеличения влияния шума. В итоге снижается ток потребления схемы в режиме ожидания (важно в связи с требованиями стандартов энергосбережения). В таблице 2 приведены основные параметры ККМ-контроллера L6562A.

Таблица 2. Основные эксплуатационные параметры L6562A

Параметр Значение
Пороги включения/выключения, В 12,5/10
Разброс значений порога выключения (макс), В ± 0,5
Ток микросхемы перед запуском (макс), мкА 60
Усиление умножителя 0,38
Значение опорного напряжения, В 1,08
Время реакции на изменение тока, нс 175
Динамический ток переключения схемы OVP, мкА 27
Пороги детектора нуля, выключения/срабатывания/удержания, В 1,4/0,7/0
Пороги включения/выключения микросхемы, В 0,45/0,2
Падение напряжения на внутреннем драйвере ключа, В 2,2
Задержка относительно фронта импульса в датчике тока, нс 200

Все это делает L6562A прекрасным недорогим решением для ИБП мощностью до 350 Вт, совместимых с требованиями стандартов EN61000-3-2.

Варианты применения и методика расчета типовых узлов для схем на основе L6562A/АТ приводятся в руководствах по применению; список основных документов приведен ниже.

AN3159: STEVAL-ILH005V2: 150 W HID electronic ballast — встраиваемый блок электронного балласта мощностью до 150 Вт.

AN2761: Solution for designing a transition mode PFC preregulator with the L6562A — примеры построения предварительного регулятора с ККМ в транзитивном режиме на основе L6562A.

AN2782: Solution for designing a 400 W fixed-off-time controlled PFC preregulator with the L6562A — Пример разработки 400-ваттного предварительного регулятора с ККМ на базе L6552A в режиме фиксированного времени во выключенном состоянии.

AN2928: Modified buck converter for LED applications — Модифицированный понижающий преобразователь для светодиодного освещения.

AN3256: Low-cost LED driver for an A19 lamp — Светодиодный драйвер для ламп А19 по низкой цене.

AN2983: Constant current inverse buck LED driver using L6562A — Светодиодный драйвер постоянного тока на L6562A.

AN2835: 70 W HID lamp ballast based on the L6569, L6385E and L6562A — Схема электронного балласта для газоразрядных ламп.

AN2755: 400 W FOT-controlled PFC pre-regulator with the L6562A — 400-ватный предварительный регулятор на базе L6562A в режиме fixed-off-time.

AN2838: 35 W wide-range high power factor flyback converter demonstration board using the L6562A — Демонстрационная плата 35-ваттного широкодиапазонного конвертера с высоким коэффициентом мощности на основе L6562A.

AN3111: 18 W single-stage offline LED driver — Автономный одноуровневый 18-ваттный светодиодный драйвер.

AN2711: 120 VAC input-Triac dimmable LED driver based on the L6562A — Тиристорный регулируемый светодиодный драйвер на L6562A мощностью 120 Вт.

Демонстрационные платы, предлагаемые STMicroelectronics, позволяют быстро разобраться с различными режимами работы микросхем, а также посмотреть, как поведут себя устройства в разных условиях эксплуатации. Кроме того, отладочные средства служат прототипами устройств. На момент написания статьи для ознакомления с L6562A предлагается следующий набор отладочных средств — таблица 3.

Таблица 3. Отладочные средства для L6562A

Плата Внешний вид Описание
STEVAL-ILL027V2 18-ваттный автономный светодиодный драйвер
EVL6562A-TM-80W Оценочная плата 80-ваттного корректора коэффициента мощности работающего в режиме TM
STEVAL-ILL013V1 Регулируемый автономный ККМ и светодиодный драйвер с регулировкой мощности на базе L6562A
EVL6562A-LED Демонстрационная плата светодиодного драйвера постоянного тока на L6562A
STEVAL-ILL016V2 Тиристорный автономный светодиодный драйвер на L6562AD и TSM1052
STEVAL-ILL019V1 35-ваттный автономный светодиодный драйвер для четырехканальных светодиодных источников типа HB RGGB
STEVAL-ILL034V1 Светодиодный драйвер для ламп типа A19 на базе L6562A (ориентировано на американский рынок)
EVL6562A-400W L6562A Предварительный регулятор напряжения с корректором коэффициента мощности в режиме fixed-off-time

ККМ-контроллеры STMicroelectronics серий L6563S/H

Помимо стандартных функций и возможностей контроллеры коэффициента мощности серии L6563S/H (рис. 6) имеют ряд опций, улучшающих характеристики конечных устройств, работающих на их основе.


Рис. 6.

Среди отличительных особенностей:

  • Возможность работы в режиме tracking boost;
  • 1/V 2 -коррекция;
  • Защита от перенапряжения, разрыва цепи обратной связи, насыщения индуктора.

Высоколинейный умножитель с коррекцией ступенчатых искажений основного тока позволяет микросхемам работать в широком диапазоне входного переменного напряжения при минимальном уровне нелинейных искажений даже при больших нагрузках.

Выходное напряжение контролируется усилителем ошибки и прецизионным источником напряжения (1% при 25°С). Стабильность контура обратной связи отслеживается упреждающей связью по напряжению (1/V 2 -коррекция), которая в данной микросхеме использует уникальную проприетарную технику, позволяющую существенно улучшить переходные процессы на линии при падениях или скачках сетевого напряжения (т.н. двунаправленная связь — «bidirectional»).

ККМ-контроллер L6563H имеет тот же набор функций, что и L6563/L6563S, с добавлением высоковольтного источника запуска. Эта возможность востребована в приложениях с жесткими требованиями по энергосбережению, а также в тех случаях, когда контроллер ККМ работает в режиме мастера.

Дополнительно L6563H имеет возможность работы в режиме отслеживания повышения (tracking boost operation ) — выходное напряжение изменяется, реагируя на изменения сетевого напряжения.

L6563H может быть использован в составе блоков питания мощностью до 400 Вт при соответствии требованиям стандартов EN61000-3-2, JEITA-MITI.

Микросхема L6564 является более компактной версией L6563S в корпусе SSOP-10 — имеет тот же драйвер, источник опорного напряжения и систему управления. В серии L6563A отсутствует защита от насыщения индуктора.

Так же, как и L6562A, ККМ-контроллеры L6263x могут работать в режиме фиксированного времени выключения (Fixed-Off-Time ). Кроме того, выводы состояния контроллера позволяют управлять ШИМ-контроллером DC/DC-преобразователя, питаемого предварительным регулятором ККМ-контроллера при нештатных ситуациях (разрыв обратной связи, насыщение индуктора, перегрузка). С другой стороны, возможно отключение ККМ-контроллера в том случае, если DC/DC-конвертор работает на малую нагрузку. В отличие от серий L6562x имеются отдельные входы управления контроллером, что делает управление достаточно гибким.

AN3142: Solution for designing a 400 W fixed-off-time controlled PFC preregulator with the L6563S and L6563H — 400-ваттный ККМ-регулятор на L6563S и L6563H в режиме fixed-off-time.

AN3027: How to design a transition-mode PFC pre-regulator with the L6563S and L6563H — Разработка ТМ ККМ-контроллера с помощью L6563S and L6563H.

AN3203: EVL250W-ATX80PL: 250W ATX SMPS demonstration board — Демонстрационная плата ATX блока питания на 250 ВТ.

AN3180: A 200 W ripple-free input current PFC pre-regulator with the L6563S 1 — Корректор коэффициента мощности на L6563L свободный от шума входного тока.

AN2994: 400 W FOT-controlled PFC pre-regulator with the L6563S — 400-ваттный ККМ-контроллер на L6563S в режиме fixed-off-time.

AN3119: 250 W transition-mode PFC pre-regulator with the new L6563S — 250-ваттный ККМ-контроллер на L6563S в режиме transition-mode.

AN2941: 19 V — 75 W SMPS compliant with latest ENERGY STARR criteria using the L6563S and the L6566A — Импульсный блок питания с выходным напряжением 19 В мощностью 75 Вт совместимый с требованиями новейшего стандарта Energy Starr.

AN3065: 100 W transition-mode PFC pre-regulator with the L6563S — 100-ваттный ККМ-контроллер на L6563S в режиме transition-mode.

Демонстрационные платы для L6563S/ L6564 показаны в таблице 4.

Таблица 4. Отладочные средства для L6563S/ L6564

Наименование Внешний вид Описание
EVL250W-ATX80PL Плата ATX блока питания на 250 Вт
EVL6563S-250W 250-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM
EVL6563S-100W 100-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM
EVL6563S-200ZRC Корректор коэффициента мощности на L6563S свободный от шума входного тока (200 Вт)
EVL185W-LEDTV Блок питания мощностью 185 Вт для LED-телевизоров с корректором коэффициента мощности, режимом ожидания на базе L6564, L6599A, и VIPER27L

Дополнительно по запросу разработчика могут быть предоставлены программные продукты для автоматизации разработки и расчета схем на L6563S, L6564 в режимах TM и fixed-off-time.

Рекомендации по выбору компонентов
для ККМ-контроллера

Для корректной работы микросхем ККМ-контроллеров, стабильной работы прибора и его соответствия требованиям стандартов необходимо выбрать подходящий режим работы.

Как правило, для мощностей меньше 200 Вт ККМ-контроллеры L6562A/3S/3H/4 включаются в режиме TM. Для приборов, оперирующих мощностями более 200 Вт, применяется микросхема L4981 (ее режим работы CCM). Возможно также применение серий L6562A/3S/3H/4 в режимах Fixed-Off-Time или Reeple-Steering.

Силовой MOSFET-ключ и выпрямительный диод для силовой части корректора мощности или источника питания можно легко выбрать из продукции STMicroelectronics.

Для устройств малой мощности (до 100 Вт) подходят силовые ключи семейства SuperMesh3, например, серии STx10N62K3. Для средней мощности (100…1000 Вт) — семейство MDMesh2 серии STx25NM50M. И для мощных источников, работающих с мощностями более 1 кВт — семейство MDMesh5 серии STP42N65M5.

Заключение

Несмотря на сравнительно небольшой по количеству серий ассортимент предлагаемых ККМ-контроллеров, продукция STMicroelectronics, благодаря ряду удачных схемотехнических решений и разнообразию возможных режимов работы, перекрывает практически весь спектр приложений импульсных преобразователей энергии — повышающие/понижающие блоки питания, драйверы светодиодных светильников, корректоры коэффициента мощности.

Кроме того, для всего спектра приложений осуществляется информационная и техническая поддержка разработчика — от рекомендаций по применению и программ для расчета блоков и узлов до отладочных и демонстрационных плат.

Получение технической информации, заказ образцов, поставка — e-mail:

О компании ST Microelectronics

На рынке персональных компьютеров становится все больше и больше блоков питания со встроенными корректорами мощности. Они выполнены с использованием различных интегральных микросхем, и поэтому имеют разные схемы построения, хотя общие принципы схемотехники (о которых рассказывалось в предыдущей публикации), практически, одинаковы. Поэтому, рассмотрев всего лишь одну микросхему, а именно, UCC3818, мы получим хорошее представление об архитектуре большинства контроллеров коррекции мощности.

Микросхема UCC3818 относится к семейству контроллеров коррекции мощности, к которому принадлежат еще и такие контроллеры, как UCC2817, UCC2818 и UCC3817. Различие между контроллерами этого семейства заключается в разных диапазонах рабочих температур и разных значениях напряжений UVLO (напряжения включения и напряжения выключения микросхемы). Микросхемы семейства являются ШИМ-контроллерами, выполняющими все функции, необходимые для активной коррекции коэффициента мощности. Контроллеры позволяют доводить значения коэффициент мощности почти до единицы путем формирования необходимой формы входного тока, в зависимости от параметров входного переменного напряжения. Контроллеры семейства работают в режиме среднего тока, в результате чего обеспечивается стабильность входного тока и малые искажения синусоидальности сетевого тока.

Контроллеры UCC x817/x818 имеют следующие основные особенности:

- обеспечивают управление повышающим преобразователем;

- ограничивают искажения, вносимые в питающую сеть;

- обеспечивают модуляцию передней кромки импульса тока;

- позволяют работать с любым переменным напряжением, использующимся в любых странах мира;

- обеспечивают защиту от превышения напряжения;

- обеспечивают ограничение потребляемой мощности на заданном уровне;

- работают в режиме среднего тока;

- обеспечивают улучшенное подавление шумов;

- имеют улучшенный алгоритм опережающего управления;

- имеют типовое значение пускового тока, равное 150 мкА;

- созданы с использованием маломощной технологии BiCMOS.

Контролеры семейства разработаны в компании Texas Instrument"s и обладают малым значением пускового тока и низким уровнем потребляемой мощности. В контроллерах используется технология модуляции передней кромки импульса тока, т.е. длительность рабочего цикла регулируется путем изменения времени начала заряда сглаживающего конденсатора (а не временем прекращения зарядного тока). Данная технология позволяет уменьшить величину пульсаций на сглаживающем конденсаторе, устанавливаемом на выходе корректора мощности, что, в итоге, приводит к уменьшению габаритов этого конденсатора, а, следовательно, и к снижению его стоимости и стоимости всей схемы.

Усилитель тока имеет малое входное смещение (2 мВ), что позволяет уменьшать искажения тока в условиях малой нагрузки.

Рис.1 Архитектура ШИМ-контроллера семейства UCC3818

Блок-схема ШИМ-контроллеров UCCx817/x818 представлена на рис.1. Предельные значения основных параметров микросхем представлены в табл.1.

Таблица 1. Предельные значения параметров UCC3818

Параметр

Обознач.

Значение

Питающее напряжение

18 V

Ток потребления

20 mA

Выходной управляющий ток (продолжительный)

I DRVOUT

0.2 A

Выходной управляющий ток

I DRVOUT

1.2 A

CAI , MOUT , SS

Входное напряжение на контакте PKLMT

Входное напряжение на контактах VSENSE , OVP / EN

10 V

Входной ток контактов RT , IAC , PKLMT

10 mA

Максимальное отрицательное напряжение на контактах DRVOUT , PKLMT , MOUT

V NEG

0.5 V

Рассеиваемая мощность

Температура пайки (10 сек)

T SOL

300° C

Контроллеры выпускаются в 16-контактных корпусах типа SOIC, PDIP, TSSOP. Распределение сигналов по контактам микросхемы представлено на рис.2, а в табл.2 дается описание этих сигналов.

Рис.2 Цоколевка микросхемы UCC3818

Таблица 2. Назначение контактов микросхемы UCC3818

Обознач.

Описание

«Земля». Относительного это контакта измеряются все напряжения. Контакты VCC и REF должны подключаться к «земле» через конденсаторы 0.1 мкФ , или через большие керамические конденсаторы.

PKLMT

Вход ограничения пикового тока корректора мощности. Порогом для токового ограничения является уровень . Для формирования смещения сигнала ограничения тока используется внешний резистивный делитель, подключенный с одной стороны к «отрицательному» выводу токового датчика, а с другой стороны, к источнику опорного напряжения VREF . Полученное таким образом смещение соответствует пиковому значению тока. Ограничение тока осуществляется в тот момент, когда напряжение контакта PKLMT становится ниже .

CAOUT

Выход усилителя тока. Это выход операционного усилителя с широкой полосой пропускания, который измеряет величину сетевого тока и формирует команды для широтно-импульсного модулятора корректора мощности. Это позволяет устанавливать необходимого значение рабочего цикла ШИМ. Компенсационные внешние элементы устанавливаются между выходом CAOUT и входом MOUT .

Неинвертирующий вход усилителя тока. Этот вход используется для контроля величины сетевого тока с помощью токового датчика, в качестве которого используется низкоомный резистор. Вход CAI соединен через резистор с той стороной токового датчика, которая подключена к «земле». Величина сетевого тока измеряется по разности потенциалов на контакте CAI и контакте MOUT (именно между двумя этими контактами и включается токовый датчик).

MOUT

Мультиплексированный контакт, являющийся выходом умножителя и одновременно инвертирующим входом усилителя тока. Такая конфигурация позволяет улучшить защиту от помех и позволяет работать в режиме модуляции переднего фронта. Совместно с контактом CAI используется для контроля величины сетевого тока.

Вход аналогового умножителя. На этом входе создается ток, пропорциональный мгновенному значению входного напряжения. Умножитель настроен таким образом, что позволяет отслеживать очень малые изменения входного тока. Рекомендуемое максимальное значение входного тока составляет 500 мкА .

VAOUT

Выход усилителя ошибки по напряжению. Этим операционным усилителем осуществляется регулировка выходного напряжения. Выход усилителя внутренне ограничивается на величине примерно 5.5 В .

Напряжение упреждающего управления. На этот контакт подается сигнал, пропорциональный среднедействующему (RMS ) значению напряжения. При отсутствии питающей сети на контакте VFF должно устанавливаться напряжение 1.4В .

VREF

Выход опорного напряжения. На этом выходе формируется постоянное стабилизированное напряжение величиной 7.5В . Выходной ток этого контакта может достигать величины 20 мА, что необходимо для питания внешних периферийных цепей. В составе микросхемы имеется внутренняя цепь ограничения тока при коротких замыканиях. Выход VREF запрещен и установлен в , если питающее напряжение Vcc ниже порога UVLO . Между контактом VREF и «землей» должен устанавливаться шунтирующий керамический конденсатор емкостью около 0.1мкФ (или больше) для обеспечения стабильности опорного напряжения.

OVP / EN

Вход внутреннего компаратора, который запрещает работу выходного драйвера микросхемы в случае, если выходное напряжение превышает заданный уровень.

VSENSE

Инвертирующий вход усилителя ошибки по напряжению. Обычно этот вход соединен с компенсационной цепью и с выходом повышающего преобразователя (подключается через делитель).

Контакт для подключения частотозадающего резистора. Внешний резистор, включенный между этим выводом и «землей» задает величину тока для заряда конденсатора, подключенного к контакту CT . Номинал резистора рекомендуется выбирать в диапазоне 10…100 кОм . Номинальное напряжение на данном контакте равно .

Контакт для программирования «мягкого старта». К этому контакту подключается внешний конденсатор. Конденсатор разряжается, если питающее напряжение Vcc становится низким. Если работа «мягкого старта» разрешена, внешний конденсатор начинает заряжаться внутренним источником тока. Напряжение контакта SS используется как сигнал ошибки во время запуска микросхемы, разрешая регулировать ширину выходных импульсов. В случае, когда питающее напряжение Vcc падает, сигнал OVP / EN быстро опускается ниже 1.9В и внешний конденсатор SS быстро разряжается и запрещает функционирование ШИМ.

Контакт для подключения частотозадающего конденсатора. Конденсатор, задающий частоту ШИМ, включается между этим контактом и «землей». Этот конденсатор должен располагаться как можно ближе к «земле».

Положительное питающее напряжение. Для нормального функционирования, этот вход должен быть подключен к стабилизированному источнику, формирующему выходной ток величиной, как минимум, 20 мА и напряжение величиной 10…17 В . К контакту Vcc напрямую должен быть подключен шунтирующий конденсатор для поглощения импульсов тока, необходимых для заряда емкости затвора внешнего MOSFET -транзистора. Чтобы предотвратить формирование выходных импульсов неправильной формы на контакте DRVOUT , выходной драйвер контроллера должен быть заблокирован до тех пор, пока напряжение на контакте Vcc превышает верхний порог UVLO и находится ниже нижнего порога UVLO .

DRVOUT

Выходной сигнал, управляющий внешним силовым ключом, в качестве которого используется полевой транзистор, т.е.на выходе формируются сигналы управления затвором полевого транзистора. Выход представляет собой тотемный выход, построенный на MOSFET -транзисторах. Между выходом DRVOUT и затвором внешнего полевого транзистора должен устанавливаться последовательный токоограничивающий резистор, который обеспечивает согласование между выходным сопротивлением микросхемы и сопротивлением затвора. Резистор позволяет избежать перегрузки выхода DRVOUT .

Рассмотрим практический вариант применения микросхемы UCC3818 в составе блока питания HPC 360-302. В этом блоке питания используется активный высокочастотный корректор мощности, устанавливаемый сразу же после диодного моста (рис.3). Входом схемы корректора мощности являются точки, обозначенные BD+ («плюс» диодного моста) и BD- («минус» диодного моста). Таким образом, на вход корректора мощности подается напряжение величиной примерно 300В. Выходом корректора мощности является напряжение Vo величиной около 400В (относительно точки GND).

Рис.3 Положение корректора мощности в блоке питания HPC 360-302

Принципиальная схема корректора мощности блока питания HPC 360-302 представлена на рис.4.

Рис.4 Принципиальная схема корректора мощности блока питания HPC 360-302

Питающее напряжение Vcc для контроллера UCC3818 формируется интегральным стабилизатором на напряжение +12В типа 7812 (IC1). На вход этого стабилизатора подается постоянное нестабилизированное напряжение величиной 15...20 В. Это напряжение формируется дежурным преобразователем блока питания. Для его формирования задействована дополнительная обмотка импульсного трансформатора дежурного преобразователя (рис.5). Импульсы, генерируемые в этой обмотке, выпрямляются диодом D8 и сглаживаются конденсатором С10. Ограничение полученного напряжения осуществляется стабилитроном ZD1. Таким образом, контроллер UCC3818 запускается сразу же, как только блок питания включается в сеть, и начинает работать дежурный преобразователь.

Рис.5 Формирование питающего напряжения для UCC3818 в корректоре мощности блока питания HPC 360-302

Включение UCC3818 происходит в момент, когда напряжение Vcc на конт.15 превышает значение 10.2 В.

При включении контроллера на конт.9 появляется опорное напряжение VREF величиной 7.5В, на конт.14 (CT) появляется пилообразное напряжение внутреннего частотозадающего генератора, а на выходе – на конт.16 (DRVOUT) появляются прямоугольные импульсы. Выходные импульсы контроллера управляют внешним силовым ключом, который в данной схеме образован двумя параллельно включенными полевыми транзисторами QF1 и QF2. параллельное включение двух транзисторов позволяет увеличить мощность схемы.

Переключение транзисторов QF1 и QF2 приводит к созданию импульсного тока в дросселе L1. Этот дроссель является, пожалуй «главным» элементом всей схемы. Импульсы, наводимые в дросселе, имеют амплитуду, значительно превышающую 300В. Эти импульсы выпрямляются диодом D7, в результате чего создается напряжение постоянного тока величиной около 400В.

Функцию токового датчика в схеме выполняют два параллельно включенных резистора большой мощности R14/R14A. Падение напряжения на этих резисторах пропорционально току, потребляемому схемой из сети. Это падение напряжения оценивается контроллером через входные контакты CAI (конт.4) и MOUT (конт.5). Кроме того, превышение током предельного значения отслеживается через конт.2 (PKLMT). Чем больше величина потребляемого тока, тем меньше напряжение на конт.2.

Выходное напряжение корректора мощности обозначено на схеме Vo. Величина этого напряжения контролируется микросхемой UCC3813 через входы VSENSE (конт.11) и OVP/EN (конт.10). Выходное напряжение подается на эти контакты через резистивный делитель, в который входят резисторы R2/R3/R4/R5/R19. Компенсационная цепь усилителя ошибки по напряжения состоит из элементов C7/C15/R7 и включена между конт.11 (VSENSE) и конт.7 (VAOUT).

Длительность периода «мягкого старта», в течение которого длительность выходных импульсов контроллера плавно нарастает в момент его включения, задается конденсатором С4, подключенным к конт.13 (SS).

В.Дьяконов, А.Ремнев, В.Смердов

В последнее время на рынке бытовой и офисной радиоэлектронной аппаратуры (РЭА) все чаще появляется техника, в состав источников питания которой входят новые узлы - корректоры мощности (КМ). В статье рассмотрены вопросы применения КМ, принцип их работы, диагностика и ремонт.

Большинство современных источников питания РЭА представляют собой импульсные источники вторичного электропитания с бестрансформаторным мостовым выпрямителем и емкостным фильтром. Наряду с достоинствами (высокий КПД, хорошие массогабаритные показатели) они имеют сравнительно низкий коэффициент мощности (0,5...0,7) и повышенный уровень гармоник потребляемого от сети тока (>30%). Форма тока, потребляемого такими источниками, показана на рис. 1 сплошными линиями.

Несинусоидальная форма тока приводит к возникновению электромагнитных помех, засоряющих сеть переменного тока, и сбою в работе другой РЭА.

Вышеописанные источники питания, являясь однофазными потребителями, при большом количестве электронной аппаратуры и нерациональном ее подключении к трехфазной питающей сети, могут вызвать перекос фаз. При этом часть РЭА будет работать при повышенном напряжении, а другая - при пониженном, что всегда нежелательно. Для устранения перекоса фаз в трехфазную сеть, как правило, вводится нулевой провод,который выравнивает напряжение во всех фазах. Однако при импульсном характере потребляемого тока и большом количестве его гармонических составляющих возможна перегрузка нулевого провода. Это связано с тем, что его сечение обычно в 2...2,5 раза меньше, чем у фазных проводов. По технике безопасности запрещается защищать этот провод плавкими предохранителями или автоматами защиты сети. Очевидно, что при неблагоприятных условиях возможно перегорание нулевого провода и, как следствие, - возникновение перекоса фаз.

В связи с этим все более ужесточаются требования по электромагнитной совместимости вторичных импульсных источников с питающей сетью и резко ограничивается уровень высших гармоник потребляемого от сети тока для всех однофазных потребителей. В настоящее время новые европейские стандарты требуют улучшения формы потребляемого тока только при мощностях потребителей свыше 200 Вт, а в ближайшее время эти требования будут введены и для потребителей с мощностью до 50...70 Вт.

В настоящее время используют ся пассивная и активная коррекции формы потребляемого тока.

Пассивные цепи коррекции,состоящие из индуктивностей и емкостей, обеспечивают коэффициент мощности, который показывает отличие формы потребляемого тока от синусоиды (не хуже 0,9...0,95). При конструктивной простоте и надежности пассивные цепи коррекции имеют относительно большие габариты и чувствительны к изменениям частоты питающего напряжения и величины тока нагрузки.

Более перспективным является использование активных КМ, которые формируют на входе импульсного источника питания синусоидальный потребляемый ток, совпадающий по фазе и частоте с питающим напряжением. Такие КМ имеют небольшие габариты за счет работы с частотами преобразования в несколько десятков килогерц и обеспечивают коэффициент мощности 0,95...0,99.

Сформировать на входе мостового выпрямителя импульсного источника питания синусоидальный ток можно с помощью одной из схем преобразователей постоянного напряжения в постоянное при использовании принципа следящей высокочастотной широтноимпульсной модуляции (ШИМ). При этом чаще всего применяются повышающие преобразователи , обладающие следующими преимуществами:
. силовой транзистор имеет соединение истока с общим проводом, что облегчает построение схемы его управления;
. максимальное напряжение на транзисторе равно выходному напряжению;
. наличие индуктивности, включенной последовательно с нагрузкой, обеспечивает фильтрацию высокочастотных составляющих.

Рассмотрим принцип работы активного КМ, реализованного на повышающем преобразователе со следящей ШИМ (рис. 2).

Вначале рассмотрим работу схемы КМ без узлов умножения (УМ) и датчика напряжения нагрузки (ДНН), роль которых описана ниже. Опорное напряжение синусоидальной формы, получаемое с датчика выпрямленного напряжения (ДВН), поступает на один из входов схемы управления (СУ) силовым ключом, реализованном на МДП-транзисторе VT. На второй вход СУ поступает сигнал, пропорциональный току ключа. Пока напряжение с ДВН больше напряжения, формируемого датчиком тока (ДТ), транзистор открыт и в индуктивности накапливается энергия (рис. 3 а). Диод VD на этом интервале (Tи) закрыт.

При равенстве сигналов, поступающих на СУ, ключ закрывается и энергия, накопленная в индуктивности, передается в нагрузку. После того, как за время tП ток в индуктивности спадет до нуля, снова включается транзистор. Частота переключений транзистора во много раз превышает частоту питающей сети, что позволяет существенно уменьшить размеры индуктивности. При этом за полупериод сетевого напряжения огибающая амплитудных значений тока индуктивности (рис. 3 б) изменяется по синусоидальному закону. Аналогично изменяется и среднее значение тока. В результате этого потребляемый ток имеет синусоидальную форму и совпадает по фазе с питающим напряжением.

Однако величина напряжения на нагрузке существенно зависит от изменений входного напряжения и тока нагрузки. Для стабилизации напряжения нагрузки в СУ дополнительно вводят цепь обратной связи по этому напряжению. Возможность получения синусоидальной формы потребляемого тока с одновременной стабилизацией напряжения нагрузки реализуется при помощи аналогового умножения (узел УМ) сигналов, поступающих с ДВН и с ДНН.
Полученный таким образом дополнительный сигнал в этом случае становится опорным напряжением для СУ.

Рассмотренный принцип управления КМ используется при мощностях нагрузки до 300 Вт. При больших мощностях необходимо формировать более гладкую кривую изменения потребляемого тока. Это можно осуществить, когда ток в индуктивности не спадает до нуля (рис. 3 в и 3 г). Если в КМ относительно малой мощности транзистор вступает в работу при достижении током индуктивности нулевого значения, то в мощных КМ - при заданном значении этого тока.


Рассмотрим работу КМ на примере практической схемы, представленной на рис. 4. Схема управления реализована на специализированной микросхеме L6560, структурная схема которой приведена на рис. 5,


А назначения выводов - в табл. 1.

Напряжение ДВН, формируемое резистивным делителем R1 R2, поступает на выв. 3 микросхемы L6560. Конденсатор С1 на выходе выпрямителя выполняет функции ВЧ-фильтра, а не сглаживающего конденсатора, как в традиционных схемах. Поэтому его величина не превышает сотен нанофарад - единиц микрофарад при мощностях в нагрузке 100...200 Вт. Дополнительная фильтрация ВЧ-помех на выв. 3 осуществляется конденсатором С2.
Резистор R5 выступает в роли датчика тока ключа, напряжение которого через ВЧ-фильтр R4 С4 поступает на выв. 4 микросхемы. Силовой ключ управляется сигналом, получаемым с выв. 7. Учитывая особенности работы ключей КМ (большой динамический диапазон амплитудных значений тока), чаще всего в качестве них используются МДП-транзисторы. При больших частотах преобразования, характерных для КМ, эти транзисторы обладают малыми динамическими потерями и легко управляются непосредственно микросхемами . Для уменьшения вероятности возбуждения схемы в цепь затвора МДП-транзистора вводят низкоомный резистор .

С резистивного делителя R6 R7 снимается сигнал обратной связи по выходному напряжению и подается на выв. 1. Для уменьшения влияния импульсных помех, возникающих в выходной цепи, между выв. 1 и 2 микросхемы включен интегрирующий конденсатор С3, емкость которого составляет сотни нанофарад.

При включении КМ в сеть в первый момент питание микросхемы осуществляется через резистор R3. Как только КМ выходит на рабочий режим, с дополнительной обмотки катушки индуктивности L снимается напряжение, которое с одной стороны используется как напряжение питания микросхемы, а с другой - является сигналом определения нулевого тока индуктивности.

На выходе КМ обязательно присутствует фильтрующий конденсатор С5, так как энергия в нагрузку передается импульсами. Емкость этого конденсатора, как правило,определяется из расчета 1,5...2 мкФ на 1 Вт мощности в нагрузке.

В последнее время ведущими фирмами выпущено большое количество интегральных микросхем для СУ корректоров мощности. Такое количество микросхем связано с дополнительными функциями, которые они способны выполнять, хотя принцип построения КМ на этих микросхемах практически одинаков. К дополнительным функциям относятся:
. защита от перенапряжения при переходных процессах;
. защита от возникновения повторных запусков;
. защита от повреждения при запусках на замкнутую нагрузку;
. улучшение гармонического состава при переходе через нуль сетевого напряжения;
. блокировка при пониженном напряжении питания;
. защита от случайных выбросов входного напряжения.

Корректор мощности, как правило, не является самостоятельным устройством, а входит в состав импульсных источников питания. Для получения необходимых уровней и полярностей выходных напряжений такие источники питания содержат преобразователи. В связи с этим разработчики микросхем часто объединяют в одном корпусе два каскада схем управления: собственно для КМ, а также для преобразователя напряжения.

В табл. 2 приведены основные параметры микросхем управления различных фирм, предназначенных для вторичных импульсных источников питания с коррекцией мощности.

Основным критерием работы КМ является уровень выходного напряжения. При переменном напряжении питающей сети 220 В выходное напряжение КМ постоянно и должно составлять 340.360 В. Если напряжение менее 300 В, то это говорит о неисправности. Для дальнейшей проверки КМ необходим осциллограф. С его помощью прове ряют осциллограммы в характерных узлах КМ при номинальной нагрузке, в качестве которой может быть подключен эквивалентный резистор.

Напряжение на затворе транзистора. При исправной микросхеме ее выходное напряжение представляет собой прямоугольные импульсы высокой частоты, намного превышающей частоту сети. При исправном МДП-транзисторе разница в напряжении на выходе микросхемы и затворе транзистора практически равна нулю. Если затвор транзистора пробит, появляется разность этих напряжений в несколько вольт.

Напряжение на истоке транзистора, которое является напряже нием, снимаемым с датчика тока. При нормальной работе КМ форма напряжения должна быть похожей на форму тока ключа, показанной на рис. 3. Отличие будет свидетельствовать о возможной неисправности МДП-транзистора. Диагностика их неисправностей подробно изложена в .

Напряжение на ДВН. Форма этого напряжения представляет собой выпрямленную синусоиду. При нормально работающем выпрямителе возможна неисправность резистивного делителя.

Для проверки самой микросхемы дополнительно необходим источник постоянного напряжения с регулировкой напряжения от 3 до 15 В. Это напряжение подается на входы цепи питания микросхемы при отключенном от сети КМ. При изменении напряжения регулируемого источника контролируется выходное напряжение микросхемы. Пока напряжение питания меньше 12..13 В, выходное напряжение равно нулю. При большем напряжении на выходе микросхемы появляется выходной сигнал с уровнем, отслеживающим питающее напряжение. При уменьшении питающего напряжения ниже 7 В этот выходной сигнал скачком уменьшается до нуля. При отсутствии такой закономерности весьма вероятно, что неисправна микросхема.

Литература
1. Бачурин В. В., Дьяконов В.П., Ремнев А.М., Смердов В.Ю. Схемотехника устройств на мощных полевых транзисторах. Справочник. М.: Радио и связь, 1994.
2. В.Дьяконов, А.Ремнев, В.Смердов. Особенности ремонта узлов радиоэлектронной аппаратуры на МДП-транзисторах. Ремонт&Сервис, 1999, № 11, с. 57-60.
[email protected]



Рекомендуем почитать

Наверх