Стабилизатор напряжения ресанта моргает лампочка вход. Основные неисправности и ремонт стабилизатора напряжения

Инструмент 23.04.2019
Инструмент


Как и любое сложное электронное устройство, стабилизатор напряжения иногда выходит из строя, сам выключается или выбивает автоматы или по крайней мере не корректно работает, гудит или пищит.
Причин может быть несколько, в зависимости от конкретной ситуации, и это может зависеть от неправильности использования или же зависеть непосредственно от типа и электронной начинки самого аппарата.

Попытки хозяев отремонтировать самому такое сложное устройство могут быть оправданы только в случае поверхностных причин поломки и небольшого понимания в принципе работы устройства.

Но не всегда это приводит к желаемому результату, а зачастую и вовсе может привести к полной поломке платы управления а также силовых ключей, что в итоге повысит стоимость ремонта в разы.
По этому лучше доверить ремонт специалистам, тем более в случае если стабилизатор на гарантии.
Но мы все же рассмотрим основные причины неисправностей, и методы их устранения.

Стабилизатор любого типа - это сложное электронное устройство и зачастую для выявления неисправности будут необходимы измерительные приборы и хотя бы некоторые познания в радиотехнике.

Как правило во всех стабилизаторах напряжения стоит целая система защиты целью которой есть защита силовых элементов от сгорания, защита по превышению мощности, перегреву устройства, а также защита выходного напряжения от аномальных скачков напряжения.
В основном вся защита стабилизатора реализована на плате управления, сложность схемы которой, зависит от типа стабилизатора.

Сложнее всего выявить неисправность в стабилизаторе на симисторных ключах, сложная схема управления требует проверки с помощью осциллографа или в крайнем случае можно применить метод последовательной проверки каждого элемента схемы.

В релейных стабилизаторах напряжения частой причиной поломки является реле которое переключает обмотки трансформатора. При частом нестабильном напряжению в сети реле выполняют множество переключений на протяжение дня, со временем контакты реле подгорают, еще могут залипнуть, а бывает и сама катушка реле перегорает. В таких случаях может появится сообщение об ошибке, стабилизатор может просто выключится, а может быть и куда хуже вплоть до внутреннего замыкания с соответствующими последствиями.

Самым простым в ремонте можно назвать сервоприводный стабилизатор, после снятия крышки устройства можно наглядно рассмотреть его поведение и попытаться выявить причину логическими выводами.

Основные и общие неисправности стабилизатора

Стабилизатор отключается . Скорее всего, в большинстве случаев, отключение защитное и срабатывает при критическом повышение или понижение напряжения. После восстановления подходящего напряжения - питание восстанавливается сразу или через 5 секунд если установлены такие настройки.
Но следует заметить что не все стабилизаторы так "следят" за нижней границей напряжения и часто при снижению напряжения до "нестабилизируемых" нижних границ напряжение падает без отключений. В таких случаях рекомендуется использование в щитке реле напряжения в котором настраивается верхний и нижний границы нужного вам напряжения, при выходе за их пределы - реле отключит нагрузку от сети.

Стабилизатор может также отключится и при превышению нагрузки (перегрузке) в таком случае оно будет сделано ступенчато, а при двукратной перегрузке будет выполнено моментальное отключение стабилизатора.
Кроме того выключится стабилизатор может при сработке термодатчика от перегрева силовых элементов или трансформатора.

Если стабилизатор часто выключается, нужно проверить входное напряжение, при его допустимых значениях - отключить нагрузку и убедится в том что в ней нет замыканий.
Если без нагрузки стабилизатор работает значит нагрузка неисправна, убедится в этом можно, подключив к стабилизатору эквивалентную нагрузку и если стабилизатор будет с ней работать то в первой нагрузке замыкание, если не будет работать с эквивалентной нагрузкой - то стабилизатор стал неисправным. Также о неисправности будет говорить тот факт если на входе напряжение будет в пределах нормы а стабилизатор не будет включатся.

Выбивает автомат при включение стабилизатора . Срабатывает защита которая ясно дает нам понять о коротком замыкание или значительной перегрузке. Впервую очередь нужно попробовать включить стабилизатор без нагрузки, тем самым сузив круг возможных причин. Если автомат выбивает без нагрузки значит стабилизатору потребуется серьезный ремонт. Прежде всего необходимо обратить внимание на мощность стабилизатора и автомат (по номиналу), может быть автомат на слишком малый ток, а стабилизатор во время включения потребляет большой ток. В некоторых (частых) случаях стабилизатор все же можно заставить работать если убрать заземление на сетевой вилке (подключив стабилизатор с помощью переходника без заземления), но это не выход и скорее всего устройство придется ремонтировать.

Греется трансформатор стабилизатора (без нагрузки) Прежде всего нужно убедится в том что нагрузка выключена, если при этом трансформатор все же продолжает греться то возможно в трансформаторе произошло межвитковое замыкание, или что более вероятней - замыкание где то в переключателях (в зависимости от типа стабилизатора)
Например в релейном стабилизаторе следует обратить внимание на реле, а в симисторном - на силовые ключи. При пробое или замыкание (одного) силового элемента возникнет замыкание на одной из выходных обмоток, шаг напряжения на одной обмотке небольшой но все же достаточный чтоб перегреть трансформатор, а возможно и запустить защиту которая отключит устройство.

Реле можно осмотреть и прозвонить тестером (в выключенном состояние), убедится в отсутствие залипаний.
Симисторные или тиристорные ключи также можно проверить с помощью тестера. Между управляющим электродом и катодом сопротивление должно быть одинаковым при прямом и обратном измерении, а между анодом и катодом – стремиться к бесконечности.

В сервоприводных стабилизаторах, силовых ключей нет, но трансформатор может перегреваться из за забившихся в пространство между витками графитовых опилок, элементов гари и пыли. Такие устройства требуют периодической чистки рабочей контактной части витков трансформатора.

Поломка двигателя сервопривода или некорректная его работа, сюда же можно и причесть и обгорание и износ рабочей щетки что будет сопровождаться чрезмерным искрообразованием.
В сетях с частыми скачками напряжения двигатель сервопривода постоянно работает на износ, такое частое движение быстро вырабатывает определенный ресурс работы реверсного двигателя.
Поломка двигателя часто, за собой влечет также выход из строя выходного каскада управления сервоприводом, силовые транзисторы попросту перегорают.
В некоторых случаях двигатель можно попытаться реанимировать, разобрав и добравшись к его щеткам, очистить их от мелкой пыли и загрязнений. Собрав двигатель снова, произвести смазку редуктора и втулок на его якоре. Такое профилактическое обслуживание может значительно увеличить его ресурс работы, а к тому же уменьшить общий шум от работы сервоприводного стабилизатора.

Выход из строя реле . Часто такая поломка приводит также и к выходу из строя транзисторных ключей соответствующего реле.
В таких случаях и реле и транзистор подлежат замене на новые. В некоторых случаях изношенные контакты реле можно восстановить. Для этого разбирают корпус реле, затем снимают с пружины подвижный контакт. С помощью "нулевочной" наждачной бумаги, с контакта снимаются все нагоревшие частицы, после чего контакты протирают мягкой тряпочкой смоченной в спирте или растворителе.
После восстановления реле, нужно обязательно убедится в исправности управляющих выходных транзисторов (типа SD882 или D882Р).

Помимо описанных выше поломок которые встречаются наиболее часто, часто можно столкнутся и с такими:

Дисплей . Хаотичное отображение на дисплее разных элементов или неполное отображение информации на дисплее может говорить о нарушение контакта между платой и дисплеем. Как правило для соединения там используют "токопроводящую резинку" которая прижимается между платой и стеклом ЖК-дисплея, в процессе постоянного нагрева стабилизатора и повышенной температуры внутри резинка пересыхает а плата может согнутся или незначительно деформироваться что вызовет потерю надежности контакта.
В сегментных дисплеях причины могут быть немножко другие.
В них зачастую причина кроется в плохой пропайке индикаторов и элементов платы. Элементы следует осмотреть на качество пайки, особое внимание уделив кварцевому резонатору и контролеру дисплея. Место соединения платы с дисплеем также осмотреть и при необходимости пропаять шлейф и контакты или очистить "токопроводящую резинку".

Поломка платы управления . Электронная плата управления у любого современного стабилизатора содержит множество радио элементов. Ее ремонт прежде всего, начинается с беглого осмотра всех элементов, их состояния и мест пропайки на плате. Обратить внимание на саму плату, почерневшие дорожки в местах перегрева и едва заметные микротрещины.
Очень часто можно заметить вздувшиеся электролитические конденсаторы. Часто конденсаторы внутри пересыхают и при этом теряют свою электрическую емкость.
Кроме того на плате можно выявить изменения оттенка радиоелементов от сильного перегрева, такие детали нужно выпаивать и проверять с помощью тестера и приборов.
Но как правило визуальный осмотр может только подсказать о масштабах случившейся неисправности, ну а сам ремонт таких плат не ограничивается заменой очевидно испорченных элементов и требует добавочной ревизии разных компонент при помощи особого оборудования. Поэтому, в случае если прозвонка силовых транзисторов и прочих элементов не обнаружила причины неисправности, ремонт платы управления лучше доверить специалистам.

Стабилизатор гудит (шумит) . Почти все стабилизаторы в процессе своей работы издают небольшие шумы, одни типы больше, другие меньше. Количество шума от стабилизатора будет напрямую зависеть от стабильности напряжения в сети, чем больше скачков и изменений напряжения происходит - тем больше стабилизатор должен выравнивать напряжение на выходе.
Наиболее шумными считаются сервоприводные стабилизаторы, постоянное включения реверсивного двигателя и его шум при движение графитового ползунка по обмоткам трансформатора приносят небольшой дискомфорт к которому со временем каждый владелец привыкает. Релейные стабилизаторы также издают щелчки при переключение обмоток трансформатора - тоже шум. Более благоприятными в этом плане можно считать симисторные и тиристорные стабилизаторы.
Едва слышное гудение сопровождает все стабилизаторы, источником звука есть сам преобразующий трансформатор и его гудение будет тем больше, чем больше разница входного и выходного напряжения и чем больше нагрузка в это время.
При повышенных шумах и гудению устройство лучше разобрать и осмотреть, возможно потребуется ремонт, а возможно профилактическое восстановление, например восстановление подвижной части электродвигателя сервоприводного стабилизатора.

Стабилизатор пищит . Здесь важно пищит он под нагрузкой или в холостом режиме. Отключаем нагрузку и прислушиваемся, в некоторых типах стабилизаторов (электронного типа) может быть слышен едва ощутимый писк, ето нормально.
Но если стабилизатор пищит (ощутимо) от повышения нагрузки, это может говорить о малом запасе прочности элементов конструкции аппарата, другими словами, если вы не перегружаете стабилизатор то он все же работает на пределе возможностей.

После успешного ремонта стабилизатор напряжения можно проверить с помощью ЛАТРа.
К ЛАТРу подключают проверяемый стабилизатор, а на выход стабилизатора подключают нагрузку в виде лампочки накаливания (примерно 60вт). Дальше изменяя напряжения на ЛАТРе, наблюдают за работой стабилизатора и параметрами напряжения на выходе.

Напоследок дам несколько советов , которые помогут надолго сохранить прибор в рабочем состоянии:

  • Следите за тем чтобы стабилизатор не работал долгое время при напряжение меньше 160 вольт. По крайней мере чтобы в такие моменты нагрузка на нем была сведена на минимум.
  • При постоянно пониженном напряжение нужно приобретать и использовать специальные стабилизаторы, например у "Ресанта" есть некоторые модели позволяющие работать даже при 90 вольтах в сети.
  • Суммарная мощность нагрузки должна быть хотя бы на 10% меньше мощности стабилизатора. При етом стараться одновременно не включать ее всю на длительное время.
  • Подключая стабилизатор на весь дом необходимо оборудовать в щитке дополнительное УЗО с токовым номиналом не ниже чем у автомата на стабилизаторе.
  • Очень важна правильная установка стабилизатора. Помещение где будет находится стабилизатор должно быть проветриваемым и сухим. Запрещается установка в нишах что будет нарушать воздухообмен и вызывать частый перегрев устройства.

Моменты, во время которых, происходят небольшие помаргивания осветительных ламп, обусловлены некоторыми перепадами мощности тока в процессе переключения щеток трансформатора, этому процессу характерна скачкообразность – от одного крайнего показателя выходного напряжения к другому. Разница, существующая между этими показателями, называется шагом регулировки, и в различных сетевых стабилизаторах, эти цифры могут начинаться с 2-х и заканчиваться 40 Ваттами. В моделях регуляторов попроще, и подешевле, диапазон этих показателей шире. В более сложных и качественных стабилизаторах шаг регулировки меньший.

Причины

Щелчки в стабилизаторе происходят, когда переключаются встроенные реле при изменениях показателей напряжения. В момент переключения реле происходит кратковременная просадка напряжения и лампы освещения начинают мерцать. Сначала лампы потускнеют, а затем начинают ярче гореть, получается эффект мерцания.

Способы решения

Если щелчки в стабилизаторе и мерцание в лампах происходят часто, то можно посоветовать следующие решения:

  • Переместить релейный стабилизатор в подсобное помещение, где резкие щелчки при переключении реле не будут слышны в жилых комнатах. Заменить лампы накаливания на энергосберегающие или светодиодные лампы, которые не моргают.
  • Если переместить невозможно, то замените Ваш релейный стабилизатор на тиристорный, который работает без шума, но стоит дороже.
  • Замерьте напряжение в сети, если напряжение постоянно низкое или наоборот постоянно завышенное без резких колебаний, то можно установить электромеханический стабилизатор, который регулирует напряжение более плавно без щелчков и моргания ламп освещения.

Графическое отображение основных режимов работы стабилизаторов напряжения

В одной из предыдущих статей были описаны напряжения, а также приведены к сети своими руками. В данном материале наводятся основные неполадки устройств стабилизации напряжения и возможности их самостоятельного ремонта.

Нужно помнить, что стабилизатор любого типа – это сложное электрическое или электромеханическое устройство с множеством компонентов внутри, поэтому, чтобы его починить своими руками, необходимо иметь достаточно глубокие познания в радиотехнике. Ремонт стабилизатора напряжения также требует наличия соответствующего измерительного оборудования и инструментов.


Сложное устройство стабилизатора

Степень сложности ремонта различных видов стабилизаторов

Во всех устройствах стабилизации напряжения существует система защиты, которая проверяет входные и выходные параметры на соответствие номинальным значением и условиям эксплуатации. Защитный комплекс у каждого стабилизатора свой, но можно выделить несколько общих параметров , выход за пределы которых не позволит стабилизатору работать:

  • Номинальное входное напряжение (пределы стабилизации);
  • Соответствие выходного напряжения;
  • Превышение тока нагрузки;
  • Температурный режим компонентов;
  • Различные сигналы от внутренних модулей.

Перечень указываемых в технических характеристиках контрольных параметров работы стабилизаторов

Необходимо проверить, нет ли короткого замыкания в нагрузке, входящее напряжение, температурные условия эксплуатации и изучить значение высвечивающихся на дисплеях кодов ошибок

Сложнее всего найти поломку в стабилизаторе на симисторных ключах, которые управляются сложной электроникой. Для ремонта необходимо иметь схему устройства, измерительные инструменты, включая осциллограф. По приведенным осциллограммам в контрольных точках находят неисправность в структурном модуле стабилизатора, после чего нужно проверить каждую радиодеталь в дефектном узле.


Основные узлы симисторного стабилизатора

В релейных стабилизаторах самой частой причиной поломки являются реле, переключающие обмотки трансформатора. Из-за частых переключений контакты реле могут выгореть, заклинить, или может перегореть сама катушка. Если выходное напряжение пропадает или появляется сообщение об ошибке – необходимо проверить все реле.


Силовые ключи релейного стабилизатора

Для малознакомого с радиоэлектроникой мастера будет легче всего починить своими руками электромеханический (сервоприводный ) стабилизатор – его работу и реакцию на изменение напряжения видно невооруженным глазом сразу после снятия защитного кожуха. Данные стабилизаторы ввиду относительной простоты конструкции и высокой точности стабилизации весьма распространены – наиболее популярные марки Luxeon, Rucelf, Ресанта.


Стабилизатор Ресанта, мощность 5 кВт

Перегрев трансформатора стабилизатора

Если трансформатор стабилизатора начал греться без ощутимой нагрузки, то возможно между витками возникло короткое замыкание, называемое межвитковым. Но, учитывая специфику работы данных аппаратов, в которых выводы автотрансформатора или отводы вторичной обмотки трансформатора все время переключаются, чтобы подогнать выходное напряжение под требуемое значение, можно сделать вывод, что замыкание где-то в переключателях.


Коммутационный узел релейного стабилизатора

В релейных стабилизаторах (SVEN, Luxeon, Ресанта) может заклинить одно из реле, и несколько витков трансформатора окажутся короткозамкнутыми . Аналогичная ситуация может возникнуть и в тиристорных (симисторных) стабилизаторах – один из ключей может выйти из строя и будет «коротить» выходные обмотки. Напряжения короткого замыкания между витками, даже с шагом регулировки 1-2В, будет вполне достаточно, чтобы перегреть трансформатор.


Коммутационный узел стабилизатора на симисторах

Необходимо проверить симисторные ключи, чтобы исключить данную поломку. Тиристор или симистор проверяется тестером – между управляющим электродом и катодом сопротивление при прямом и обратном измерении должно быть одинаково, а между анодом и катодом – стремиться к бесконечности. Данная проверка не всегда гарантирует достоверность, поэтому для гарантии необходимо собрать небольшую измерительную схему, как показано на видео:


В сервоприводных стабилизаторах обмотки не переключаются, но соседние витки также могут оказаться замкнутыми из-за смеси сажи, пыли и графитовых опилок, забившихся в пространство между витками. Поэтому, такие сервоприводные стабилизаторы как Ресанта и прочие, требуют периодической профилактической очистки загрязненных контактных площадок.

Ремонт и модификация сервоприводных стабилизаторов

Многие пользователи заметили, что скорость износа и загрязнение контактов сервоприводных стабилизаторов зависит о среды эксплуатации, в частности, от запыленности и влажности. Поэтому мастера придумали способ модификации стабилизаторов Ресанта, устанавливая вентилятор от компьютерного процессора (кулера) напротив наиболее часто используемого сектора автотрансформатора.


Миниатюрный вентилятор для модификации сервоприводного стабилизатора

Постоянно работающий вентилятор не дает пыли оседать на контактных площадках, препятствуя загрязнению и износу за счет удаления абразивных частиц из рабочей зоны. Помимо очищения контактных поверхностей, установленный в стабилизатор Ресанта вентилятор также будет способствовать лучшему охлаждению автотрансформатора.

Ремонт стабилизаторов с сервоприводом, таких как Ресанта, должен начинаться с осмотра рабочей контактной зоны автотрансформатора


Внимательно осмотреть наиболее изношенные участки контактных витков

Если стабилизатор Ресанта после продолжительного времени эксплуатации был на хранении во влажной среде, то открытые незащищенные медные контактные площадки могли окислиться, что мешает контактировать контактному ползунку. Накопленная за время простоя пыль из-за искрения может быть огнеопасной. Коротко о профилактике электромеханических стабилизаторов и демонстрация работы сервопривода на видео:

Этапы ремонта сервоприводного стабилизатора

Сначала лучше снять контактный ползунок с вала сервопривода. После этого следует с помощью мелкой наждачной бумаги очистить контактные площадки до металлического блеска. Чистовую очистку контактов автотрансформатора лучше сделать при помощи обычного ластика. Затем нужно тщательно удалить при помощи кисточки накопившиеся опилки и абразивные частицы.


Устройство контактного узла сервоприводного стабилизатора

Следующим этапом ремонта сервоприводного стабилизатора будет осмотр, очистка и возможная замена контактной графитовой щетки. В процессе работы данная щетка нагревается из-за протекающих сквозь нее токов. Но еще больше нагрев происходит из-за плохого контакта щетки и контактных пластин автотрансформатора. Из-за усиленного нагрева и искрений в процессе перемещения ползунка щетка еще больше выгорает, тем самым загрязняя контактные площадки и промежутки между ними.


Сильное загрязнение контактирующих витков автотрансформатора

Таким образом, ускорение загрязнения набирает лавинообразный характер, что приводит к быстрому износу контактов автотрансформатора и выгоранию контактной щетки, после чего стабилизатор перестанет выдавать напряжение. В зависимости от системы защиты в сервоприводных устройствах стабилизации от фирмы «Ресанта», или от других производителей, в случае обрыва выходного напряжения должна сработать защитная автоматика.


Контактор — силовой элемент защитной автоматики

Поэтому так важна профилактика сервоприводных стабилизаторов. Зачастую ремонт Ресанты заканчивается на очистке контактов и замене контактной щетки. Но, иногда в сервоприводных стабилизаторах выходит из строя сам сервопривод. Причиной поломки сервопривода может быть износ редуктора, перегоревший двигатель или отсутствие напряжения. Вынув двигатель вместе с редуктором необходимо проверить механизм, проворачивая вал.

Ремонт электронных плат приборов стабилизации напряжения

Электронная плата управления стабилизатора любого типа содержит много компонентов, в том числе и микросхем, проверить которые невозможно без специального оборудования. Но стоит внимательно осмотреть саму плату и проверить находящиеся на ней компоненты на наличие следов высокой температуры.


Сложная электронная плата релейного стабилизатора

Перегретые резисторы первыми «бросаются в глаза» и иногда обугливаются до такого состояния, что невозможно распознать их маркировку – придется изучать схему стабилизатора. Перегрев резисторов свидетельствует о пробое в других элементах схемы – чаще всего в силовых транзисторных ключах. При внимательном осмотре транзисторов можно выявить почернение от перегрева, и даже механические трещины.

На самой плате также могут быть замечены следы воздействия внештатных сверхтоков – некоторые дорожки могут обгореть, а контакты отпаяться, или замкнуться между собой из-за растекшегося расплавленного припоя, разогретого большими токами. Кроме этого на плате, могут остаться следы от сильного нагрева деталей – от изменения оттенка до обугливания текстолита.


Пример выгоревшей дорожки на плате

Визуальный осмотр дефектного модуля может подсказать мастеру, в каком направлении производить диагностику. Но, как правило, ремонт электронных плат стабилизаторов не ограничивается заменой явно испорченных деталей и требует дополнительной проверки различных компонентов с помощью специального оборудования. Поэтому, если прозвонка силовых транзисторов и других элементов не выявила причины поломки, электронную плату лучше отнести в мастерскую.

А хотите я немного побуду Вангой? Даже не зная модели вашего щелкающего друга, могу с уверенностью сказать, что он собран по релейной схеме. Вы спросите, откуда я это знаю? Да потому что щелкать в стабилизаторах могут только релюшки.

Для понимания происходящего, посмотрим, как устроен практически каждый стабилизатор.

Все они собраны по автотрансформаторной схеме (ну кроме, стабилизаторов с двойным преобразованием, но их мы пока не будем трогать). Автотрансформатор — это такая штука, которая в зависимости от соотношения витков обмоток может как повышать напряжение, так и понижать его.

Внутри стабилизатора стоит автотрансформатор, содержащий выводы как от повышающих, так и от понижающих обмоток. Все что остается делать — это правильно переключаться между ними. Если напряжение в сети стало чуть выше, чем надо, схема стабилизатора переключается на более низковольтную обмотку автотрансформатора и, таким образом, напряжение на выходе стабилизатора уменьшается. И наоборот, если напряжение в розетке стало ниже определенного порога, стабилизатор перещелкивается на повышающую обмотку трансформатора.

Переключением обмоток автотрансформатора управляет контроллер стабилизатора. А сами переключения осуществляются как раз с помощью набора реле (на схеме обозначены как Q1-Q7). Именно реле и издают в момент коммутации те самые щелкающие звуки, которые мы слышим.

Обычно внутри стабилизатора находится от 4 до 7 релюшек. Вот как они выглядят в реальной жизни:

Теперь понятно, почему щелкает стабилизатор напряжения? И чем чаще прыгает напряжение у вас в розетке, тем чаще будет переключаться стабилизатор. Еще бывает, что в момент щелчков моргает свет или вырубается какое-либо чувствительное к питанию оборудование (например, компьютер или кондиционер).

Почему стабилизатор напряжения ПОСТОЯННО щелкает? Возможные причины

Причин может быть несколько. Перечислим наиболее вероятные (в порядке уменьшения вероятности):

  1. Неисправность одного из реле. Реле имеют ограниченный ресурс по переключению. Потом у них начинают подгорать контакты, сильно возрастает переходное сопротивление. Это приводит к сильной просадке выходного напряжения, особенно при подключении мощной нагрузки. Напряжение проседает, контроллер стабилизатора это замечает и пытается выправить ситуацию, переключившись на следующую ступень. После переключения оказывается, что напряжение слишком высокое и он отыгрывает все назад. В итоге получается бесконечный цикл переключений туда-сюда.
  2. Отвратительное состояние питающей сети (большое количество скруток, плохие контакты, большая протяженность линии при недостаточном сечении проводников). При попытке подключить нагрузку через стабилизатор, в момент коммутации напряжение в сети падает. Стабилизатор обнаруживает этот факт и старается повысить его с помощью переключения на более высоковольтную обмотку автотрансформатора. Но в момент коммутации цепь питания нагрузки на мгновение разрывается, и напряжение в сети подпрыгивает до своего нормального уровня. Стабилизатор это замечает и пытается переключиться на предыдущую ступень. Круг замыкается, начинаются бесконечные щелчки релюшками.
  3. Неисправность схемы управления (контроллера). Тут без комментариев, все очень индивидуально. В норме схема управления должна иметь некоторый гистерезис, чтобы избежать постоянных срабатываний вокруг некоторого порогового значения напряжения.

Имейте в виду, что если у вас идут постоянные переключения (щелчки), ваш стабилизатор долго не протянет. Силовые реле просто не рассчитаны на такой режим работы, контакты обгорят или, что еще хуже, залипнут. В последнем случае могут быть варианты: либо сгорит предохранитель на входе, либо на выход попрет повышенное напряжение. Тут как повезет.

Заключение

Если нужен бесшумный стабилизатор напряжения, смотрите в сторону электронных или электромеханических устройств. В стабилизаторах электронного типа переключение между обмотками осуществляется при помощи полупроводниковых приборов (т.е. вместо реле используются тиристоры или симимсторы). А в электромеханических переключение организовано по принципу ЛАТРа — специальный ползунок движется прямо по виткам обмотки трансформатора. Так как реле в таких стабилизаторах отсутствуют, то и работают они без щелчков.

Вот как устроен электромеханический стабилизатор внутри:

Иногда вместо ролика ставят обычные щетки (как в электродвигателях). Такая конструкция менее долговечна, но зато дешевле.

Не смотря на все достоинства электронных и электромеханических стабилизаторов, они могут сильно гудеть (особенно под большой нагрузкой). Это гудит сам автотрансформатор и, увы, никуда от этого не денешься. Особенно этим прославились вездесущие Ресанты — они порой так зверски гудят, что на щелчки даже внимания не обращаешь.

Ну а если вам сильно надоело слушать, как гудит стабилизатор напряжения, можете потратиться на приборы с двойным преобразованием. Они не гудят и не щелкают, и вообще работают совершенно бесшумно. В них реализован совершенно иной принип стабилизации — преобразование сетевого напряжения в постоянное, а затем генерация переменного напряжения нужной формы (синус) и амплитуды (220В).

Единственный недостаток стабилизаторов двойного преобразования — это цена. Стоимость таких приборов колеблется от 7 тыс. руб. (350 Вт) до 170 000 руб (20 кВт). Что очень дорого на мой взгляд.

Нередко после покупки и установки стабилизатора напряжения пользователи начинают жаловаться на постоянные щелчки, издаваемые прибором. Ответы на вопрос, почему стабилизатор напряжения постоянно щёлкает, могут быть разными.

Принцип действия стабилизатора

Поскольку щёлкать в стабилизаторе способны только реле, значит, сделан он по релейной схеме. Каждый релейный стабилизатор имеет в своём строении автотрансформатор, повышающий или понижающий напряжение исходя из соотношения витков обмоток. При приближении значения напряжения к верхней границе диапазона схема устройства переключается на обмотку автотрансформатора с более низковольтным значением, и, как следствие, выходное напряжение становится ниже. Таким же образом это действует и в противоположном направлении: при отклонении напряжения в сети в сторону нижнего порога стабилизирующее устройство переключается на повышающую обмотку автотрансформатора.

Процесс переключения обмоток трансформатора курирует специальное устройство – контроллер стабилизатора, а переключения производятся посредством набора силовых реле. Именно эти реле в моменты подсоединения и производят те самые щелчки, которые слышит пользователь.

В стандартном стабилизаторе может находиться от четырёх до семи силовых реле. И чем больше скачков напряжения в сети электропитания, тем чаще происходят переключения и слышны щелчки. Также в эти мгновения может моргать свет и выключаться высокочувствительная техника.

Для регулярных щелчков стабилизатора может быть несколько причин:

  1. Выход из строя одного из силовых реле. Поскольку ресурс на переключение у реле ограничен, по исчерпании его начинается подгорание контактов, повышение переходного сопротивления. Это провоцирует большую просадку напряжения на выходе стабилизатора, и чем больше нагрузка – тем больше просадка. Пытаясь исправить ситуацию, контроллер начинает переключаться на следующую ступень, где напряжение на самом деле выше и контроллеру приходится снова переключаться на предыдущее реле. Таким путём образуется замкнутый круг переключений и щелчков.
  2. Плохое состояние сети электрического питания. Это могут быть плохие контакты, наличие множества скруток, линия большой протяжённости с малым количеством сечений проводников. При попытках подключения нагрузки через устройство стабилизации в момент соединения сетевое напряжение понижается. Обнаружив этот момент, стабилизатор начинает попытки повышать его посредством переключения к более высоковольтной автотрансформаторной обмотке. Но в момент соединения цепь питания потребителей на секунды разъединяется и сетевое напряжение возвращается на свой нормальный уровень. Заметив это, прибор стабилизации снова переключается на предыдущий уровень цепи. Таким образом создаётся бесконечный цикл переключений между силовыми реле.
  3. Неполадке в управляющей схеме (контроллере). Проблема индивидуальна по причине различий между схемами для каждого отдельного стабилизатора. Однако обычно контроллер должен иметь некоторый сдвиг во избежание постоянного срабатывания в пределах некоторых значений напряжения.

Непрекращающиеся щелчки способны привести к быстрому выходу прибора из строя. Поскольку реле не предназначены для такого режима работы, контакты могут быстро обгореть либо залипнуть. Залипание же приведёт либо к сгоранию предохранителя на входе либо к тому, что на выход стабилизатора будет подаваться повышенное напряжение, что чревато уже выходом из строя приборов-потребителей.



Рекомендуем почитать

Наверх