Использование массива raid 0 из нескольких винчестеров. Дисковые массивы RAID: виды, назначение

Бытовая техника 17.05.2019
Бытовая техника

В последнее время в мировой компьютерной прессе стало появляться довольно много статей на тему: «Почему RAID-5 это плохо» (пример раз , два , и другие)

Постараюсь, без ныряния в инженерные и терминологические дебри объяснить, почему до сих пор RAID-5 вроде работал, а теперь вдруг перестал.

Емкость жестких дисков за последние несколько лет растет без особых тенденций к остановке. Однако, хотя емкость дисков чуть ли не удваивается каждый год, прирост их быстродействия, то есть скорости передачи данных, за тот же срок увеличивается всего в проценты. Да, действительно, на дисках появляются интерфейсы SATA, SATA-II, и ждем уже SATA-III, но стали ли диски быстрее работать, а не просто получили новый интерфейс с бубенчиками и новыми круглыми цифрами теоретических показателей вида "цифра максимальной скорости на спидометре «Запорожца» ?

В настоящее время практически все производители выпускают жесткие диски двух основных классов.
Это так называемые Desktop-диски, для настольных систем, и диски Enterprise, предназначенные для серверов и прочих критичных случаев. Кроме того, диски класса Enterprise также делятся на диски SATA (скорость оборотов 7200RPM) и SAS или FC (со скоростями вращения 10K и 15K RPM).

Надежность процесса передачи данных принято измерять параметром BER - Bit Error Rate(Ratio) . Это вероятность сбоя, из расчета некоего объема прочитанных головками диска бит.
Как правило, диски Desktop-class имеют указанную производителем величину BER равную 10^14 степени , постепенно для все больших дисков, в особенности новых серий, указывают величины надежности в 10^15. Это число означает, что производитель прогнозирует вероятность сбоя при чтении не хуже, чем одного сбойного бита на 10^14 степени прочитанных диском бит. Единица с 14 нулями. Сто тысяч миллиардов бит.
Цифра огромная, казалось бы. Но так ли велика она на самом деле?

Несложная математика уровня calc.exe говорит нам, что 10^14 бит это всего лишь около 11TB данных. Это означает, что производитель жестких дисков говорит нам таким образом, что считав с диска с параметром BER 10^14, то есть обычного, десктопного класса диска, примерно 11TB, мы, с точки зрения производителя, наверняка получим где-нибудь сбойный бит. По крайней мере он, производитель, на это у себя рассчитывает.
Сбойный бит чтения означает сбойный блок, размером 512 байт, на который он пришелся. И пошло-поехало.
11 терабайт это же уже и не так много?

И это не означает, что надо прочитать ровно 11TB, BER это только вероятность, которая стремится к 100% к 11-му терабайту. На меньших объемах она просто пропорционально уменьшается.
Да, диски с BER равным 10^15 имеют вероятность ошибки в 10 раз лучше (110TB считанного на один сбойный бит), но и это только временное улучшение. Как мы помним, емкость дисков удваивается с каждым новым поколением, то есть примерно каждые полтора-два года, растут и емкости RAID, а BER10^15 для SATA достигнут только в последний год-полтора.

Так, например, для 6-дискового RAID-5 с дисками 1TB величина отказа по причине BER оценивается в 4-5%, а для 4TB дисков она же будет достигать уже 16-20%.

И прочее, прочее, прочее, прочее. Так вот, сегодня поговорим про RAID массивах на их основе.

Как известно, эти самые жесткие диски так же имеют некий запас прочности после которого выходят из строя, а так же характеристики влияющие на производительность.

Как следствие, наверняка многие из Вас, так или иначе, однажды слышали о неких рейд-массивах, которые можно делать из обычных жестких дисков с целью ушустрения работы этих самых дисков и компьютера в целом или обеспечения повышенной надежности хранения данных.

Наверняка так же Вы знаете (а если и не знаете, то не беда) о том, что эти массивы имеют разные порядковые номера (0, 1, 2, 3, 4 и пр.), а так же выполняют вполне себе различные функции. Оное явление действительно имеет место быть в природе и, как Вы думаю уже догадались, как раз о этих самых RAID массивах я и хочу Вам рассказать в этой статье. Точнее уже рассказываю;)

Поехали.

Что такое RAID и зачем оно нужно?

RAID - это дисковый массив (т.е. комплекс или, если хотите, связка) из нескольких устройств, - жестких дисков. Как я и говорил выше, этот массив служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (или и то и другое).

Собственно, то чем именно занимается оная связка из дисков, т.е ускорением работы или повышением безопасности данных, - зависит от Вас, а точнее, от выбора текущей конфигурации рейда(ов). Разные типы этих конфигураций как раз и отмечаются разными номерами: 1, 2, 3, 4 и, соответственно, выполняют разные функции.

Просто, например, в случае построения 0 -вой версии (описание вариаций 0, 1, 2, 3 и пр., - читайте ниже) Вы получите ощутимый прирост производительности. Да и вообще жесткий диск нынче как раз таки узкий канал в быстродействии системы.

Почему так сложилось в общем и целом

Жесткие диски же растут разве что в объеме ибо скорость оборота головки оных (за исключением редких моделей типа Raptor "ов) замерла уже довольно давно на отметке в 7200 , кэш тоже не то чтобы растет, архитектура остается почти прежней.

В общем в плане производительности диски стоят на месте (ситуацию могут спасти разве что развивающиеся ), а ведь они играют весомую роль в работе системы и, местами, полновесных приложений.

В случае же построения единичного (в смысле за номером 1 ) рейда Вы чуток потеряете в производительности, но зато получите некую ощутимую гарантию безопасности Ваших данных, ибо оные будут полностью дублироваться и, собственно, даже в случае выхода из строя одного диска, - всё целиком и полностью будет находится на втором без всяких потерь.

В общем, повторюсь, рейды будут полезны всем и каждому. Я бы даже сказал, что обязательны:)

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

Что такое RAID в физическом смысле

Физически RAID -массив представляет собой от двух до n -го количества жестких дисков подключенных поддерживающей возможность создания RAID (или к соответствующему контроллеру, что реже ибо оные дороги для рядового пользователя (контроллеры обычно используются на серверах в силу повышенной надежности и производительности)), т.е. на глаз ничего внутри системника не изменяется, никаких лишних подключений или соединений дисков между собой или с чем-то еще попросту нет.

В общем в аппаратной части всё почти как всегда, а изменяется лишь программный подход, который, собственно, и задает, путем выбора типа рейда, как именно должны работать подключенные диски.

Программно же, в системе, после создания рейда, тоже не появляется никаких особенных причуд. По сути, вся разница в работе с рейдом заключается только в небольшой настройке , которая собственно организует рейд (см.ниже) и в использовании драйвера. В остальном ВСЁ совершенно тоже самое – в "Мой компьютер" те же C, D и прочие диски, всё те же папки, файлы.. В общем и программно, на глаз, полная идентичность.

Установка массива не представляет собой ничего сложного: просто берем мат.плату, которая поддерживает технологию RAID , берем два полностью идентичных, - это важно! , - как по характеристикам (размеру, кэшу, интерфейсу и пр) так и по производителю и модели, диска и подключаем их к оной мат.плате. Далее просто включаем компьютер, заходим в BIOS и выставляем параметр SATA Configuration : RAID .

После этого в процессе загрузки компьютера (как правило, до загрузки Windows ) появляется панель отображающая информацию о диска в рейде и вне него, где, собственно нужно нажать CTR-I , чтобы настроить рейд (добавить диски в него, удалить и тд и тп). Собственно, вот и все. Дальше идет и прочие радости жизни, т.е, опять же, всё как всегда.

Важное примечание, которое стоит помнить

При создании или удалении рейда (1 -го рейда это вроде не касается, но не факт) неизбежно удаляется вся информация с дисков, а посему просто проводить эксперимент, создавая и удаляя различные конфигурации, явно не стоит. Посему, перед созданием рейда предварительно сохраните всю нужную информацию (если она есть), а потом уже экспериментируйте.

Что до конфигураций.. Как я уже говорил, RAID массивов существует несколько видов (как минимум из основного базиса, - это RAID 1, RAID 2, RAID 3, RAID 4, RAID 5, RAID 6 ). Для начала я расскажу о двух, наиболее понятных и популярных среди обычных пользователей:

  • RAID 0 - дисковый массив для увеличения скорости\записи.
  • RAID 1 - зеркальный дисковый массив.

А в конце статьи быстренько пробегусь по прочим.

RAID 0 - что это и с чем его едят?

И так.. RAID 0 (он же, страйп («Striping»)) - используется от двух до четырех (больше, - реже) жестких дисков, которые совместно обрабатывают информацию, что повышает производительность. Чтобы было понятно, - таскать мешки одному человеку дольше и сложнее чем вчетвером (хотя мешки остаются все теми же по своим физ свойствам, меняются лишь мощности с ними взаимодействующие). Программно же, информация на рейде такого типа, разбивается на блоки данных и записывается на оба/несколько дисков поочередно.

Один блок данных на один диск, другой блок данных на другой и тд. Таким образом существенно повышается производительность (от количества дисков зависит кратность увеличения производительности, т.е 4-ые диска будут бегать шустрее чем два), но страдает безопасность данных на всём массиве. При выходе из строя любого из входящих в такой RAID винчестеров (т.е. жестких дисков) практически полностью и безвозвратно пропадает вся информация.

Почему? Дело в том, что каждый файл состоит из некоторого количества байт.. каждый из которых несет в себе информацию. Но в RAID 0 массиве байты одного файла могут быть расположены на нескольких дисках. Соответственно при "смерти" одного из дисков потеряется произвольное количество байтов файла и восстановить его будет просто невозможно. Но файл то не один.

В общем при использовании такого рейд-массива настоятельно рекомендуется делать постоянные ценной информации на внешний носитель. Рейд действительно обеспечивает ощутимую скорость - это я Вам говорю на собственном опыте, т.к у меня дома уже годами установлено такое счастье.

RAID 1 - что такое и с чем его едят?

Что же до RAID 1 (Mirroring - «зеркало»).. Собственно, начну с недостатка. В отличии от RAID 0 получается, что Вы как бы "теряете" объем второго жесткого диска (он используется для записи на него полной (байт в байт) копии первого жесткого диска в то время как RAID 0 это место полностью доступно).

Преимущество же, как Вы уже поняли, в том, что он имеет высокую надежность, т.е все работает (и все данные существуют в природе, а не исчезают с выходом из строя одного из устройств) до тех пор пока функционирует хотя бы один диск, т.е. если даже грубо вывести из строя один диск - Вы не потеряете ни байта информации, т.к. второй является чистой копией первого и заменяет его при выходе из строя. Такой рейд частенько используется в серверах в силу безумнейшей жизнеспособности данных, что важно.

При подобном подходе в жертву приносится производительность и, по личным ощущениям, оная даже меньше чем при использовании одного диска без всяких там рейдов. Впрочем, для некоторых надежность куда важнее производительности.

RAID 2, 3, 4, 5, 6 - что такое и с чем едят их?

Описание этих массивов тут по стольку по скольку, т.е. чисто для справки, да и то в сжатом (по сути описан только второй) виде. Почему так? Как минимум в силу низкой популярности этих массивов среди рядового (да и в общем-то любого другого) пользователя и, как следствие, малого опыта использования оных мною.

RAID 2 зарезервирован для массивов, которые применяют некий код Хемминга (не интересовался что это, посему рассказывать не буду). Принцип работы примерно такой: данные записываются на соответствующие устройства так же, как и в RAID 0 , т.е они разбиваются на небольшие блоки по всем дискам, которые участвуют в хранении информации.

Оставшиеся же (специально выделенные под оное) диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо винчестера из строя возможно восстановление информации. Тобишь в массивах такого типа диски делятся на две группы - для данных и для кодов коррекции ошибок

Например, у Вас два диска являют собой место под систему и файлы, а еще два будут полностью отведены под данные коррекции на случай выхода из строя первых двух дисков. По сути это что-то вроде нулевого рейда, только с возможностью хоть как-то спасти информацию в случае сбоев одного из винчестеров. Редкостно затратно, - четыре диска вместо двух с весьма спорным приростом безопасности.

RAID 3, 4, 5, 6 .. Про них, как бы странно это не звучало на страницах этого сайта, попробуйте почитать на Википедии. Дело в том, что я в жизни сталкивался с этими массивами крайне редко (разве что пятый попадался под руку чаще остальных) и описать доступными словами принципы их работы не могу, а перепечатывать статью, с выше предложенного ресурса решительно не желаю, как минимум, в силу наличия в оных зубодробительных формулировок, которые даже мне понятны со скрипом.

Какой RAID все же выбрать?

Если вы играете в игры, часто копируете музыку, фильмы, устанавливаете ёмкие ресурсопотребляющие программы, то Вам безусловно пригодиться RAID 0 . Но будьте внимательны при выборе жестких дисков, - в этом случае их качество особенно важно, - или же обязательно делайте бэкапы на внешний носитель.

Если же вы работаете с ценной информацией, которую потерять равносильно смерти, то Вам безусловно нужен RAID 1 - с ним потерять информацию крайне сложно.

Повторюсь, что очень желательно, чтобы диски устанавливаемые в RAID массив были пол идентичны. Размер, фирма, серия, объём кэша - всё, желательно, должно быть одинаковым.

Послесловие

Вот такие вот дела.

Кстати, как собрать это чудо я писал в статье: "Как создать RAID-массив штатными методами ", а про пару параметров в материале "RAID 0 из двух SSD, - практические тесты с Read Ahead и Read Cache ". Пользуйтесь поиском.

Искренне надеюсь, что эта статья Вам окажется полезной и Вы обязательно сделаете себе рейд того или иного типа. Поверьте, оное того стоит.

По вопросам создания и настройки оных, в общем-то, можете обращаться ко мне в комментариях, - попробую помочь (при наличии в сети инструкции к Вашей мат.плате). Так же буду рад любым дополнениям, пожеланиям, мыслям и всём таком прочем.

Оформление запроса

Пожалуйста, заполните контактные поля формы


Получать IT-новости

Поля, помеченные * обязательны для заполнения

Описание RAID-массивов ( , )

Описание RAID 0


Дисковый массив повышенной производительности без отказоустойчивости
Striped Disk Array without Fault Tolerance

Массив RAID 0 наиболее производительный и наименее защищенный из всех RAID-ов. Данные разбиваются на блоки пропорционально количеству дисков, что приводит к более высокой пропускной способности. Высокая производительность данной структуры обеспечивается параллельной записью и отсутствием избыточного копирования. Отказ любого диска в массиве приводит к потере всех данных. Этот уровень называется striping.

Преимущества:
- · наивысшая производительность для приложений требующих интенсивной обработки запросов ввода/вывода и данных большого объема;
- · простота реализации;
- · низкая стоимость на единицу объема.
Недостатки:
- · не отказоустойчивое решение;
- · отказ одного диска влечет за собой потерю всех данных массива.

Описание RAID 1


Дисковый массив с дублированием или зеркалирование
Duplexing & Mirroring
RAID 1 - mirroring - зеркальное отражение двух дисков. Избыточность структуры данного массива обеспечивает его высокую отказоустойчивость. Массив отличается высокой себестоимостью и низкой производительностью.

Преимущества:
- · простота реализации;
- · простота восстановления массива в случае отказа (копирование);
- · достаточно высокое быстродействие для приложений с большой интенсивностью запросов.
Недостатки:
- · высокая стоимость на единицу объема - 100% избыточность;
- · невысокая скорость передачи данных.

Описание RAID 2


Отказоустойчивый дисковый массив с использованием кода Хемминга
Hamming Code ECC
RAID 2 - использует коды исправления ошибок Хемминга (Hamming Code ECC). Коды позволяют исправлять одиночные и обнаруживать двойные неисправности.

Преимущества:
- · быстрая коррекция ошибок ("на лету");
- · очень высокая скорость передачи данных больших объемов;
- · при увеличении количества дисков, накладные расходы уменьшаются;
- · достаточно простая реализация.
Недостатки:
- · высокая стоимость при малом количестве дисков;
- · низкая скорость обработки запросов (не подходит для систем ориентированных на обработку транзакций).

Описание RAID 3


Отказоустойчивый массив с параллельной передачей данных и четностью
Parallel Transfer Disks with Parity

RAID 3 - данные хранятся по принципу striping на уровне байтов с контрольной суммой (КС) на одном из дисков. Массив не имеет проблему некоторой избыточности как в RAID 2-го уровня. Диски с контрольной суммой используемые в RAID 2, необходимы для определения ошибочного заряда. Однако большинство современных контроллеров способны определить, когда диск отказал при помощи спец сигналов или дополнительного кодирования информации, записанной на диск и используемой для исправления случайных сбоев.

Преимущества:
- · очень высокая скорость передачи данных;
- · отказ диска мало влияет на скорость работы массива;
- · малые накладные расходы для реализации избыточности.
Недостатки:
- · непростая реализация;
- · низкая производительность при большой интенсивности запросов данных небольшого объема.

В интернете есть масса статей с описанием RAID. Например, эта описывает все очень подробно. Но как обычно, читать все не хватает времени, поэтому надо что-нибудь коротенькое для понимания - а надо оно или нет, и что лучше использовать применительно к работе с СУБД (InterBase, Firebird или что то иное - на самом деле все равно). Перед вашими глазами - именно такой материал.

В первом приближении RAID это объединение дисков в один массив. SATA, SAS, SCSI, SSD - неважно. Более того, практически каждая нормальная материнская плата сейчас поддерживает возможность организации SATA RAID. Пройдемся по списку, какие бывают RAID и зачем они. (Хотел бы сразу заметить, что в RAID нужно объединять одинаковые диски. Объединение дисков от разных производителей, от одного но разных типов, или разных размеров - это баловство для человека, сидящего на домашнем компьютере).

RAID 0 (Stripe)

Грубо говоря, это последовательное объединение двух (или более) физических дисков в один "физический" диск. Годится разве что для организации огромных дисковых пространств, например, для тех, кто работает с редактированием видео. Базы данных на таких дисках держать нет смысла - в самом деле, если даже у вас база данных имеет размер 50 гигабайт, то почему вы купили два диска размером по 40 гигабайт, а не 1 на 80 гигабайт? Хуже всего то, что в RAID 0 любой отказ одного из дисков ведет к полной неработоспособности такого RAID, потому что данные записываются поочередно на оба диска, и соответственно, RAID 0 не имеет средств для восстановления в случае сбоев.

Конечно, RAID 0 дает ускорение в работе из-за чередования чтения/записи.

RAID 0 часто используют для размещения временных файлов.

RAID 1 (Mirror)

Зеркалирование дисков. Если Shadow в IB/FB это программное зеркалирование (см. Operations Guide.pdf), то RAID 1 - аппаратное зеркалирование, и ничего более. Упаси вас от использования программного зеркалирования средствами ОС или сторонним ПО. Надо или "железный" RAID 1, или shadow.

При сбое тщательно проверяйте, какой именно диск сбойнул. Самый частый случай погибания данных на RAID 1 - это неверные действия при восстановлении (в качестве "целого" указан не тот диск).

Насчет производительности - по записи выигрыш 0, по чтению - возможно до 1.5 раз, т. к. чтение может производиться "параллельно" (поочередно с разных дисков) . Для баз данных ускорение мало, в то время как при параллельном обращении к разным (!) частям (файлам) диска ускорение будет абсолютно точно.

RAID 1+0

Под RAID 1+0 имеют в виду вариант RAID 10, когда два RAID 1 объединяются в RAID 0. Вариант, когда два RAID 0 объединяются в RAID 1 называется RAID 0+1, и "снаружи" представляет собой тот же RAID 10.

RAID 2-3-4

Эти RAID являются редкими, т. к. в них используются коды Хэмминга, либо разбиение байт на блоки + контрольные суммы и т. п., но общее резюме таково - эти RAID дают только надежность, при 0-вом увеличении производительности, и иногда даже ее ухудшении.

RAID 5

Для него нужно минимально 3 диска. Данные четности распределяются по всем дискам массива

Обычно говорится, что "RAID5 использует независимый доступ к дискам, так что запросы к разным дискам могут выполняться параллельно". Следует иметь в виду, что речь идет, конечно, о параллельных запросах на ввод-вывод. Если такие запросы идут последовательно (в SuperServer), то конечно, эффекта распараллеливания доступа на RAID 5 вы не получите. Разумеется, RAID5 даст прирост производительности, если с массивом будут работать операционная система и другие приложения (например, на нем будет находиться виртуальная память, TEMP и т. п.).

Вообще RAID 5 раньше был наиболее часто используемым массивом дисков для работы с СУБД. Сейчас такой массив можно организовать и на SATA дисках, причем он получится существенно дешевле, чем на SCSI. Цены и контроллеры вы можете посмотреть в статьях
Причем, следует обратить внимание на объем покупаемых дисков - например, в одной из упомянутых статей RAID5 собирается из 4-х дисков объемом 34 гиг, при этом объем "диска" получается 103 гигабайта.

Тестирование пяти контроллеров SATA RAID - http://www.thg.ru/storage/20051102/index.html .

Adaptec SATA RAID 21610SA в массивах RAID 5 - http://www.ixbt.com/storage/adaptec21610raid5.shtml .

Почему RAID 5 - это плохо - https://geektimes.ru/post/78311/

Внимание! При закупке дисков для RAID5 обычно берут 3 диска, по минимуму (скорее из-за цены). Если вдруг по прошествии времени один из дисков откажет, то может возникнуть ситуация, когда не удастся приобрести диск, аналогичный используемым (перестали выпускаться, временно нет в продаже, и т. п.). Поэтому более интересной идеей кажется закупка 4-х дисков, организация RAID5 из трех, и подключение 4-го диска в качестве резервного (для бэкапов, других файлов и прочих нужд).

Объем дискового массива RAID5 расчитывается по формуле (n-1)*hddsize, где n - число дисков в массиве, а hddsize - размер одного диска. Например, для массива из 4-х дисков по 80 гигабайт общий объем будет 240 гигабайт.

Есть по поводу "непригодности" RAID5 для баз данных. Как минимум его можно рассматривать с той точки зрения, что для получения хорошей производительности RAID5 необходимо использовать специализированный контроллер, а не то, что есть по умолчанию на материнской плате.

Статья RAID-5 must die . И еще о потерях данных на RAID5 .

Примечание. На 05.09.2005 стоимость SATA диска Hitachi 80Gb составляет 60 долларов.

RAID 10, 50

Дальше идут уже комбинации из перечисленных вариантов. Например, RAID 10 это RAID 0 + RAID 1. RAID 50 - это RAID 5 + RAID 0.

Интересно, что комбинация RAID 0+1 в плане надежности оказывается хуже, чем RAID5. В копилке службы ремонта БД есть случай сбоя одного диска в системе RAID0 (3 диска) + RAID1 (еще 3 таких же диска). При этом RAID1 не смог "поднять" резервный диск. База оказалась испорченной без шансов на ремонт.

Для RAID 0+1 требуется 4 диска, а для RAID 5 - 3. Подумайте об этом.

RAID 6

В отличие от RAID 5, который использует четность для защиты данных от одиночных неисправностей, в RAID 6 та же четность используется для защиты от двойных неисправностей. Соответственно, процессор более мощный, чем в RAID 5, и дисков требуется уже не 3, а минимум 5 (три диска данных и 2 диска контроля четности). Причем, количество дисков в raid6 не имеет такой гибкости, как в raid 5, и должно быть равно простому числу (5, 7, 11, 13 и т. д.)

Допустим одновременный сбой двух дисков, правда, такой случай является весьма редким.

По производительности RAID 6 я данных не видел (не искал), но вполне может быть, что из-за избыточного контроля производительность может быть на уровне RAID 5.

Rebuild time

У любого массива RAID, который остается работоспособным при сбое одного диска, существует такое понятие, как rebuild time . Разумеется, когда вы заменили сдохший диск на новый, контроллер должен организовать функционирование нового диска в массиве, и на это потребуется определенное время.

Во время "подключения" нового диска, например, для RAID 5, контроллер может допускать работу с массивом. Но скорость работы массива в этом случае будет весьма низкой, как минимум потому, что даже при "линейном" наполнении нового диска информацией запись на него будет "отвлекать" контроллер и головки диска на операции синхронизации с остальными дисками массива.

Время восстановления функционирования массива в нормальном режиме напрямую зависит от объема дисков. Например, Sun StorEdge 3510 FC Array при размере массива 2 терабайта в монопольном режиме делает rebuild в течение 4.5 часов (при цене железки около $40000). Поэтому, при организации массива и планировании восстановления при сбое нужно в первую очередь думать именно о rebuild time. Если ваша база данных и бэкапы занимают не более 50 гигабайт, и рост в год составляет 1-2 гигабайта, то вряд ли имеет смысл собирать массив из 500-гигабайтных дисков. Достаточно будет и 250-гигабайтных, при этом даже для raid5 это будет минимум 500 гигабайт места для размещения не только базы данных, но и фильмов. Зато rebuild time для 250 гигабайтных дисков будет примерно в 2 раза меньше, чем для 500 гигабайтных.

Резюме

Получается, что самым осмысленным является использование либо RAID 1, либо RAID 5. Однако, самая частая ошибка, которую делают практически все - это использование RAID "подо все". То есть, ставят RAID, на него наваливают все что есть, и... получают в лучшем случае надежность, но никак не улучшение производительности.

Еще часто не включают write cache, в результате чего запись на raid происходит медленнее, чем на обычный одиночный диск. Дело в том, что у большинства контроллеров эта опция по умолчанию выключена, т.к. считается, что для ее включения желательно наличие как минимум батарейки на raid-контроллере, а также наличие UPS.

Текст
В старой статье hddspeed.htmLINK (и в doc_calford_1.htmLINK) показано, как можно получить существенное увеличение производительности путем использования нескольких физических дисков, даже для IDE. Соответственно, если вы организуете RAID - положите на него базу, а остальное (temp, OS, виртуалка) делайте на других винчестерах. Ведь все равно, RAID сам по себе является одним "диском", пусть даже и более надежным и быстродействующим.
признан устаревшим. Все вышеупомянутое вполне имеет право на существование на RAID 5. Однако перед таким размещением необходимо выяснить - каким образом можно делать backup/restore операционной системы, и сколько по времени это будет занимать, сколько времени займет восстановление "умершего" диска, есть ли (будет ли) под рукой диск для замены "умершего" и так далее, т. е. надо будет заранее знать ответы на самые элементарные вопросы на случай сбоя системы.

Я все-таки советую операционную систему держать на отдельном SATA-диске, или если хотите, на двух SATA-дисках, связанных в RAID 1. В любом случае, располагая операционную систему на RAID, вы должны спланировать ваши действия, если вдруг прекратит работать материнская плата - иногда перенос дисков raid-массива на другую материнскую плату (чипсет, raid-контроллер) невозможен из-за несовместимости умолчательных параметров raid.

Размещение базы, shadow и backup

Несмотря на все преимущества RAID, категорически не рекомендуется, например, делать backup на этот же самый логический диск. Мало того что это плохо влияет на производительность, но еще и может привести к проблемам с отсутствием свободного места (на больших БД) - ведь в зависимости от данных файл backup может быть эквивалентным размеру БД, и даже больше. Делать backup на тот же физический диск - еще куда ни шло, хотя самый оптимальный вариант - backup на отдельный винчестер.

Объяснение очень простое. Backup - это чтение данных из файла БД и запись в файл бэкапа. Если физически все это происходит на одном диске (даже RAID 0 или RAID 1), то производительность будет хуже, чем если чтение производится с одного диска, а запись - на другой. Еще больше выигрыш от такого разделения - когда backup делается во время работы пользователей с БД.

То же самое в отношении shadow - нет никакого смысла класть shadow, например, на RAID 1, туда же где и база, даже на разные логические диски. При наличии shadow сервер пишет страницы данных как в файл базы так и в файл shadow. То есть, вместо одной операции записи производятся две. При разделении базы и shadow по разным физическим дискам производительность записи будет определяться самым медленным диском.

Перенос центра тяжести с процессоро-ориентированных на дата-ориентированные приложения обуславливает повышение значимости систем хранения данных. Вместе с этим проблема низкой пропускной способности и отказоустойчивости характерная для таких систем всегда была достаточно важной и всегда требовала своего решения.

В современной компьютерной индустрии в качестве вторичной системы хранения данных повсеместно используются магнитные диски, ибо, несмотря на все свои недостатки, они обладают наилучшими характеристиками для соответствующего типа устройств при доступной цене.

Особенности технологии построения магнитных дисков привели к значительному несоответствию между увеличением производительности процессорных модулей и самих магнитных дисков. Если в 1990 г. лучшими среди серийных были 5.25″ диски со средним временем доступа 12мс и временем задержки 5 мс (при оборотах шпинделя около 5 000 об/м 1), то сегодня пальма первенства принадлежит 3.5″ дискам со средним временем доступа 5 мс и временем задержки 1 мс (при оборотах шпинделя 10 000 об/м). Здесь мы видим улучшение технических характеристик на величину около 100%. В тоже время, быстродействие процессоров увеличилось более чем на 2 000%. Во многом это стало возможно благодаря тому, что процессоры имеют прямые преимущества использования VLSI (сверхбольшой интеграции). Ее использование не только дает возможность увеличивать частоту, но и число компонент, которые могут быть интегрированы в чип, что дает возможность внедрять архитектурные преимущества, которые позволяют осуществлять параллельные вычисления.

1 - Усредненные данные.

Сложившуюся ситуацию можно охарактеризовать как кризис ввода-вывода вторичной системы хранения данных.

Увеличиваем быстродействие

Невозможность значительного увеличения технологических параметров магнитных дисков влечет за собой необходимость поиска других путей, одним из которых является параллельная обработка.

Если расположить блок данных по N дискам некоторого массива и организовать это размещение так, чтобы существовала возможность одновременного считывания информации, то этот блок можно будет считать в N раз быстрее, (без учёта времени формирования блока). Поскольку все данные передаются параллельно, это архитектурное решение называется parallel-access array (массив с параллельным доступом).

Массивы с параллельным доступом обычно используются для приложений, требующих передачи данных большого размера.

Некоторые задачи, наоборот, характерны большим количеством малых запросов. К таким задачам относятся, например, задачи обработки баз данных. Располагая записи базы данных по дискам массива, можно распределить загрузку, независимо позиционируя диски. Такую архитектуру принято называть independent-access array (массив с независимым доступом).

Увеличиваем отказоустойчивость

К сожалению, при увеличении количества дисков в массиве, надежность всего массива уменьшается. При независимых отказах и экспоненциальном законе распределения наработки на отказ, MTTF всего массива (mean time to failure - среднее время безотказной работы) вычисляется по формуле MTTF array = MMTF hdd /N hdd (MMTF hdd - среднее время безотказной работы одного диска; NHDD - количество дисков).

Таким образом, возникает необходимость повышения отказоустойчивости дисковых массивов. Для повышения отказоустойчивости массивов используют избыточное кодирование. Существует два основных типа кодирования, которые применяются в избыточных дисковых массивах - это дублирование и четность.

Дублирование, или зеркализация - наиболее часто используются в дисковых массивах. Простые зеркальные системы используют две копии данных, каждая копия размещается на отдельных дисках. Это схема достаточно проста и не требует дополнительных аппаратных затрат, но имеет один существенный недостаток - она использует 50% дискового пространства для хранения копии информации.

Второй способ реализации избыточных дисковых массивов - использование избыточного кодирования с помощью вычисления четности. Четность вычисляется как операция XOR всех символов в слове данных. Использование четности в избыточных дисковых массивах уменьшает накладные расходы до величины, исчисляемой формулой: НР hdd =1/N hdd (НР hdd - накладные расходы; N hdd - количество дисков в массиве).

История и развитие RAID

Несмотря на то, что системы хранения данных, основанные на магнитных дисках, производятся уже 40 лет, массовое производство отказоустойчивых систем началось совсем недавно. Дисковые массивы с избыточностью данных, которые принято называть RAID (redundant arrays of inexpensive disks - избыточный массив недорогих дисков) были представлены исследователями (Петтерсон, Гибсон и Катц) из Калифорнийского университета в Беркли в 1987 году. Но широкое распространение RAID системы получили только тогда, когда диски, которые подходят для использования в избыточных массивах стали доступны и достаточно производительны. Со времени представления официального доклада о RAID в 1988 году, исследования в сфере избыточных дисковых массивов начали бурно развиваться, в попытке обеспечить широкий спектр решений в сфере компромисса - цена-производительность-надежность.

С аббревиатурой RAID в свое время случился казус. Дело в том, что недорогими дисками во время написания статьи назывались все диски, которые использовались в ПК, в противовес дорогим дискам для мейнфрейм (универсальная ЭВМ). Но для использования в массивах RAID пришлось использовать достаточно дорогостоящую аппаратуру по сравнению с другой комплектовкой ПК, поэтому RAID начали расшифровывать как redundant array of independent disks 2 - избыточный массив независимых дисков.

2 - Определение RAID Advisory Board

RAID 0 был представлен индустрией как определение не отказоустойчивого дискового массива. В Беркли RAID 1 был определен как зеркальный дисковый массив. RAID 2 зарезервирован для массивов, которые применяют код Хемминга. Уровни RAID 3, 4, 5 используют четность для защиты данных от одиночных неисправностей. Именно эти уровни, включительно по 5-й были представлены в Беркли, и эта систематика RAID была принята как стандарт де-факто.

Уровни RAID 3,4,5 достаточно популярны, имеют хороший коэффициент использования дискового пространства, но у них есть один существенный недостаток - они устойчивы только к одиночным неисправностям. Особенно это актуально при использовании большого количества дисков, когда вероятность одновременного простоя более чем одного устройства увеличивается. Кроме того, для них характерно длительное восстановление, что также накладывает некоторые ограничения для их использования.

На сегодняшний день разработано достаточно большое количество архитектур, которые обеспечивают работоспособность массива при одновременном отказе любых двух дисков без потери данных. Среди всего множества стоит отметить two-dimensional parity (двухпространственная четность) и EVENODD, которые для кодирования используют четность, и RAID 6, в котором используется кодирование Reed-Solomon.

В схеме использующей двухпространственную четность, каждый блок данных участвует в построении двух независимых кодовых слов. Таким образом, если из строя выходит второй диск в том же кодовом слове, для реконструкции данных используется другое кодовое слово.

Минимальная избыточность в таком массиве достигается при равном количестве столбцов и строчек. И равна: 2 x Square (N Disk) (в «квадрат»).

Если же двухпространственный массив не будет организован в «квадрат», то при реализации вышеуказанной схемы избыточность будет выше.

Архитектура EVENODD имеет похожую на двухпространственную четность схему отказоустойчивости, но другое размещение информационных блоков, которое гарантирует минимальное избыточное использование емкостей. Так же как и в двухпространственной четности каждый блок данных участвует в построении двух независимый кодовых слов, но слова размещены таким образом, что коэффициент избыточности постоянен (в отличие от предыдущей схемы) и равен: 2 x Square (N Disk).

Используя два символа для проверки, четность и недвоичные коды, слово данных может быть сконструировано таким образом, чтобы обеспечить отказоустойчивость при возникновении двойной неисправности. Такая схема известна как RAID 6. Недвоичный код, построенный на основе Reed-Solomon кодирования, обычно вычисляется с использованием таблиц или как итерационный процесс с использованием линейных регистров с обратной связью, а это - относительно сложная операция, требующая специализированных аппаратных средств.

Учитывая то, что применение классических вариантов RAID, реализующих для многих приложений достаточную отказоустойчивость, имеет часто недопустимо низкое быстродействие, исследователи время от времени реализуют различные ходы, которые помогают увеличить быстродействие RAID систем.

В 1996 г. Саведж и Вилкс предложили AFRAID - часто избыточный массив независимых дисков (A Frequently Redundant Array of Independent Disks). Эта архитектура в некоторой степени приносит отказоустойчивость в жертву быстродействию. Делая попытку компенсировать проблему малой записи (small-write problem), характерную для массивов RAID 5-го уровня, разрешается оставлять стрипинг без вычисления четности на некоторый период времени. Если диск, предназначенный для записи четности, занят, то ее запись откладывается. Теоретически доказано, что 25% уменьшение отказоустойчивости может увеличить быстродействие на 97%. AFRAID фактически изменяет модель отказов массивов устойчивых к одиночным неисправностям, поскольку кодовое слово, которое не имеет обновленной четности, восприимчиво к отказам дисков.

Вместо того чтобы приносить в жертву отказоустойчивость, можно использовать такие традиционные способы увеличения быстродействия, как кэширование. Учитывая то, что дисковый трафик имеет пульсирующий характер, можно использовать кеш память с обратной записью (writeback cache) для хранения данных в момент, когда диски заняты. И если кеш-память будет выполнена в виде энергонезависимой памяти, тогда, в случае исчезновения питания, данные будут сохранены. Кроме того, отложенные дисковые операции, дают возможность объединить в произвольном порядке малые блоки для выполнения более эффективных дисковых операций.

Существует также множество архитектур, которые, принося в жертву объем, увеличивают быстродействие. Среди них - отложенная модификация на log диск и разнообразные схемы модификации логического размещение данных в физическое, которые позволяют распределять операции в массиве более эффективно.

Один из вариантов - parity logging (регистрация четности), который предполагает решение проблемы малой записи (small-write problem) и более эффективного использования дисков. Регистрация четности предполагает отложение изменения четности в RAID 5, записывая ее в FIFO log (журнал регистраций типа FIFO), который размещен частично в памяти контроллера и частично на диске. Учитывая то, что доступ к полному треку в среднем в 10 раз более эффективен, чем доступ к сектору, с помощью регистрации четности собираются большие количества данных модифицированной четности, которые потом все вместе записываются на диск, предназначенный для хранения четности по всему треку.

Архитектура floating data and parity (плавающие данные и четность), которая разрешает перераспределить физическое размещение дисковых блоков. Свободные сектора размещаются на каждом цилиндре для уменьшения rotational latency (задержки вращения), данные и четность размещаются на этих свободных местах. Для того, чтобы обеспечить работоспособность при исчезновении питания, карту четности и данных нужно сохранять в энергонезависимой памяти. Если потерять карту размещения все данные в массиве будут потеряны.

Virtual stripping - представляет собой архитектуру floating data and parity с использованием writeback cache. Естественно реализуя положительные стороны обеих.

Кроме того, существуют и другие способы повышения быстродействия, например распределение RAID операций. В свое время фирма Seagate встроила поддержку RAID операций в свои диски с интерфейсом Fibre Chanel и SCSI. Что дало возможность уменьшить трафик между центральным контроллером и дисками в массиве для систем RAID 5. Это было кардинальным новшеством в сфере реализаций RAID, но технология не получила путевки в жизнь, так как некоторые особенности Fibre Chanel и SCSI стандартов ослабляют модель отказов для дисковых массивов.

Для того же RAID 5 была представлена архитектура TickerTAIP. Выглядит она следующим образом - центральный механизм управления originator node (узел-инициатор) получает запросы пользователя, выбирает алгоритм обработки и затем передает работу с диском и четность worker node (рабочий узел). Каждый рабочий узел обрабатывает некоторое подмножество дисков в массиве. Как и в модели фирмы Seagate, рабочие узлы передают данные между собой без участия узла-инициатора. В случае отказа рабочего узла, диски, которые он обслуживал, становятся недоступными. Но если кодовое слово построено так, что каждый его символ обрабатывается отдельным рабочим узлом, то схема отказоустойчивости повторяет RAID 5. Для предупреждения отказов узла-инициатора он дублируется, таким образом, мы получаем архитектуру, устойчивую к отказам любого ее узла. При всех своих положительных чертах эта архитектура страдает от проблемы «ошибки записи» («;write hole»). Что подразумевает возникновение ошибки при одновременном изменении кодового слова несколькими пользователями и отказа узла.

Следует также упомянуть достаточно популярный способ быстрого восстановления RAID - использование свободного диска (spare). При отказе одного из дисков массива, RAID может быть восстановлен с использованием свободного диска вместо вышедшего из строя. Основной особенностью такой реализации есть то, что система переходит в свое предыдущее (отказоустойчивое состояние без внешнего вмешательства). При использовании архитектуры распределения свободного диска (distributed sparing), логические блоки spare диска распределяются физически по всем дискам массива, снимая необходимость перестройки массива при отказе диска.

Для того чтобы избежать проблемы восстановления, характерной для классических уровней RAID, используется также архитектура, которая носит название parity declustering (распределение четности). Она предполагает размещение меньшего количества логических дисков с большим объемом на физические диски меньшего объема, но большего количества. При использовании этой технологии время реакции системы на запрос во время реконструкции улучшается более чем вдвое, а время реконструкции - значительно уменьшается.

Архитектура основных уровней RAID

Теперь давайте рассмотрим архитектуру основных уровней (basic levels) RAID более детально. Перед рассмотрением примем некоторые допущения. Для демонстрации принципов построения RAID систем рассмотрим набор из N дисков (для упрощения N будем считать четным числом), каждый из которых состоит из M блоков.

Данные будем обозначать - D m,n , где m - число блоков данных, n - число подблоков, на которые разбивается блок данных D.

Диски могут подключаться как к одному, так и к нескольким каналам передачи данных. Использование большего количества каналов увеличивает пропускную способность системы.

RAID 0. Дисковый массив без отказоустойчивости (Striped Disk Array without Fault Tolerance)

Представляет собой дисковый массив, в котором данные разбиваются на блоки, и каждый блок записываются (или же считывается) на отдельный диск. Таким образом, можно осуществлять несколько операций ввода-вывода одновременно.

Преимущества :

  • наивысшая производительность для приложений требующих интенсивной обработки запросов ввода/вывода и данных большого объема;
  • простота реализации;
  • низкая стоимость на единицу объема.

Недостатки :

  • не отказоустойчивое решение;
  • отказ одного диска влечет за собой потерю всех данных массива.

RAID 1. Дисковый массив с дублированием или зеркалка (mirroring)

Зеркалирование - традиционный способ для повышения надежности дискового массива небольшого объема. В простейшем варианте используется два диска, на которые записывается одинаковая информация, и в случае отказа одного из них остается его дубль, который продолжает работать в прежнем режиме.

Преимущества :

  • простота реализации;
  • простота восстановления массива в случае отказа (копирование);
  • достаточно высокое быстродействие для приложений с большой интенсивностью запросов.

Недостатки :

  • высокая стоимость на единицу объема - 100% избыточность;
  • невысокая скорость передачи данных.

RAID 2. Отказоустойчивый дисковый массив с использованием кода Хемминга (Hamming Code ECC).

Избыточное кодирование, которое используется в RAID 2, носит название кода Хемминга. Код Хемминга позволяет исправлять одиночные и обнаруживать двойные неисправности. Сегодня активно используется в технологии кодирования данных в оперативной памяти типа ECC. И кодировании данных на магнитных дисках.

В данном случае показан пример с фиксированным количеством дисков в связи с громоздкостью описания (слово данных состоит из 4 бит, соответственно ECC код из 3-х).

Преимущества :

  • быстрая коррекция ошибок («на лету»);
  • очень высокая скорость передачи данных больших объемов;
  • при увеличении количества дисков, накладные расходы уменьшаются;
  • достаточно простая реализация.

Недостатки :

  • высокая стоимость при малом количестве дисков;
  • низкая скорость обработки запросов (не подходит для систем ориентированных на обработку транзакций).

RAID 3. Отказоустойчивый массив с параллельной передачей данных и четностью (Parallel Transfer Disks with Parity)

Данные разбиваются на подблоки на уровне байт и записываются одновременно на все диски массива кроме одного, который используется для четности. Использование RAID 3 решает проблему большой избыточности в RAID 2. Большинство контрольных дисков, используемых в RAID уровня 2, нужны для определения положения неисправного разряда. Но в этом нет нужды, так как большинство контроллеров в состоянии определить, когда диск отказал при помощи специальных сигналов, или дополнительного кодирования информации, записанной на диск и используемой для исправления случайных сбоев.

Преимущества :

  • очень высокая скорость передачи данных;
  • отказ диска мало влияет на скорость работы массива;

Недостатки :

  • непростая реализация;
  • низкая производительность при большой интенсивности запросов данных небольшого объема.

RAID 4. Отказоустойчивый массив независимых дисков с разделяемым диском четности (Independent Data disks with shared Parity disk)

Данные разбиваются на блочном уровне. Каждый блок данных записывается на отдельный диск и может быть прочитан отдельно. Четность для группы блоков генерируется при записи и проверяется при чтении. RAID уровня 4 повышает производительность передачи небольших объемов данных за счет параллелизма, давая возможность выполнять более одного обращения по вводу/выводу одновременно. Главное отличие между RAID 3 и 4 состоит в том, что в последнем, расслоение данных выполняется на уровне секторов, а не на уровне битов или байтов.

Преимущества :

  • очень высокая скорость чтения данных больших объемов;
  • высокая производительность при большой интенсивности запросов чтения данных;
  • малые накладные расходы для реализации избыточности.

Недостатки :

  • очень низкая производительность при записи данных;
  • низкая скорость чтения данных малого объема при единичных запросах;
  • асимметричность быстродействия относительно чтения и записи.

RAID 5. Отказоустойчивый массив независимых дисков с распределенной четностью (Independent Data disks with distributed parity blocks)

Этот уровень похож на RAID 4, но в отличие от предыдущего четность распределяется циклически по всем дискам массива. Это изменение позволяет увеличить производительность записи небольших объемов данных в многозадачных системах. Если операции записи спланировать должным образом, то, возможно, параллельно обрабатывать до N/2 блоков, где N - число дисков в группе.

Преимущества :

  • высокая скорость записи данных;
  • достаточно высокая скорость чтения данных;
  • высокая производительность при большой интенсивности запросов чтения/записи данных;
  • малые накладные расходы для реализации избыточности.

Недостатки :

  • скорость чтения данных ниже, чем в RAID 4;
  • низкая скорость чтения/записи данных малого объема при единичных запросах;
  • достаточно сложная реализация;
  • сложное восстановление данных.

RAID 6. Отказоустойчивый массив независимых дисков с двумя независимыми распределенными схемами четности (Independent Data disks with two independent distributed parity schemes)

Данные разбиваются на блочном уровне, аналогично RAID 5, но в дополнение к предыдущей архитектуре используется вторая схема для повышения отказоустойчивости. Эта архитектура является устойчивой к двойным отказам. Однако при выполнении логической записи реально происходит шесть обращений к диску, что сильно увеличивает время обработки одного запроса.

Преимущества :

  • высокая отказоустойчивость;
  • достаточно высокая скорость обработки запросов;
  • относительно малые накладные расходы для реализации избыточности.

Недостатки :

  • очень сложная реализация;
  • сложное восстановление данных;
  • очень низкая скорость записи данных.

Современные RAID контроллеры позволяют комбинировать различные уровни RAID. Таким образом, можно реализовать системы, которые объединяют в себе достоинства различных уровней, а также системы с большим количеством дисков. Обычно это комбинация нулевого уровня (stripping) и какого либо отказоустойчивого уровня.

RAID 10. Отказоустойчивый массив с дублированием и параллельной обработкой

Эта архитектура являет собой массив типа RAID 0, сегментами которого являются массивы RAID 1. Он объединяет в себе очень высокую отказоустойчивость и производительность.

Преимущества :

  • высокая отказоустойчивость;
  • высокая производительность.

Недостатки :

  • очень высокая стоимость;
  • ограниченное масштабирование.

RAID 30. Отказоустойчивый массив с параллельной передачей данных и повышенной производительностью.

Представляет собой массив типа RAID 0, сегментами которого являются массивы RAID 3. Он объединяет в себе отказоустойчивость и высокую производительность. Обычно используется для приложений требующих последовательной передачи данных больших объемов.

Преимущества :

  • высокая отказоустойчивость;
  • высокая производительность.

Недостатки :

  • высокая стоимость;
  • ограниченное масштабирование.

RAID 50. Отказоустойчивый массив с распределенной четностью и повышенной производительностью

Являет собой массив типа RAID 0, сегментами которого являются массивы RAID 5. Он объединяет в себе отказоустойчивость и высокую производительность для приложений с большой интенсивностью запросов и высокую скорость передачи данных.

Преимущества :

  • высокая отказоустойчивость;
  • высокая скорость передачи данных;
  • высокая скорость обработки запросов.

Недостатки :

  • высокая стоимость;
  • ограниченное масштабирование.

RAID 7. Отказоустойчивый массив, оптимизированный для повышения производительности. (Optimized Asynchrony for High I/O Rates as well as High Data Transfer Rates). RAID 7® является зарегистрированной торговой маркой Storage Computer Corporation (SCC)

Для понимания архитектуры RAID 7 рассмотрим ее особенности:

  1. Все запросы на передачу данных обрабатываются асинхронно и независимо.
  2. Все операции чтения/записи кэшируются через высокоскоростную шину x-bus.
  3. Диск четности может быть размещен на любом канале.
  4. В микропроцессоре контроллера массива используется операционная система реального времени ориентированная на обработку процессов.
  5. Система имеет хорошую масштабируемость: до 12 host-интерфейсов и до 48 дисков.
  6. Операционная система контролирует коммуникационные каналы.
  7. Используются стандартные SCSI диски, шины, материнские платы и модули памяти.
  8. Используется высокоскоростная шина X-bus для работы с внутренней кеш памятью.
  9. Процедура генерации четности интегрирована в кеш.
  10. Диски, присоединенные к системе, могут быть задекларированы как отдельно стоящие.
  11. Для управления и мониторинга системы можно использовать SNMP агент.

Преимущества :

  • высокая скорость передачи данных и высокая скорость обработки запросов (1.5 - 6 раз выше других стандартных уровней RAID);
  • высокая масштабируемость хост интерфейсов;
  • скорость записи данных увеличивается с увеличением количества дисков в массиве;
  • для вычисления четности нет необходимости в дополнительной передаче данных.

Недостатки :

  • собственность одного производителя;
  • очень высокая стоимость на единицу объема;
  • короткий гарантийный срок;
  • не может обслуживаться пользователем;
  • нужно использовать блок бесперебойного питания для предотвращения потери данных из кеш памяти.

Рассмотрим теперь стандартные уровни вместе для сравнения их характеристик. Сравнение производится в рамках архитектур, упомянутых в таблице.

RAID Минимум
дисков
Потребность
в дисках
Отказо-
устойчивость
Скорость
передачи данных
Интенсивность
обработки
запросов
Практическое
использование
0 2 N очень высокая
до N х 1 диск
Графика, видео
1 2 2N * R > 1 диск
W = 1 диск
до 2 х 1 диск
W = 1 диск
малые файл-серверы
2 7 2N ~ RAID 3 Низкая мейнфреймы
3 3 N+1 Низкая Графика, видео
4 3 N+1 R W R = RAID 0
W
файл-серверы
5 3 N+1 R W R = RAID 0
W
серверы баз данных
6 4 N+2 самая высокая низкая R > 1 диск
W
используется крайне редко
7 12 N+1 самая высокая самая высокая разные типы приложений

Уточнения :

  • * - рассматривается обычно используемый вариант;
  • k - количество подсегментов;
  • R - чтение;
  • W - запись.

Некоторые аспекты реализации RAID систем

Рассмотрим три основных варианта реализации RAID систем:

  • программная (software-based);
  • аппаратная - шинно-ориентированная (bus-based);
  • аппаратная - автономная подсистема (subsystem-based).

Нельзя однозначно сказать, что какая-либо реализация лучше, чем другая. Каждый вариант организации массива удовлетворяет тем или иным потребностям пользователя в зависимости от финансовых возможностей, количества пользователей и используемых приложений.

Каждая из вышеперечисленных реализаций базируется на исполнении программного кода. Отличаются они фактически тем, где этот код исполняется: в центральном процессоре компьютера (программная реализация) или в специализированном процессоре на RAID контроллере (аппаратная реализация).

Главное преимущество программной реализации - низкая стоимость. Но при этом у нее много недостатков: низкая производительность, загрузка дополнительной работой центрального процессора, увеличение шинного трафика. Программно обычно реализуют простые уровни RAID - 0 и 1, так как они не требуют значительных вычислений. Учитывая эти особенности, RAID системы с программной реализацией используются в серверах начального уровня.

Аппаратные реализации RAID соответственно стоят больше чем программные, так как используют дополнительную аппаратуру для выполнения операций ввода вывода. При этом они разгружают или освобождают центральный процессор и системную шину и соответственно позволяют увеличить быстродействие.

Шинно-ориентированные реализации представляют собой RAID контроллеры, которые используют скоростную шину компьютера, в который они устанавливаются (в последнее время обычно используется шина PCI). В свою очередь шинно-ориентированные реализации можно разделить на низкоуровневые и высокоуровневые. Первые обычно не имеют SCSI чипов и используют так называемый RAID порт на материнской плате со встроенным SCSI контроллером. При этом функции обработки кода RAID и операций ввода/вывода распределяются между процессором на RAID контроллере и чипами SCSI на материнской плате. Таким образом, центральный процессор освобождается от обработки дополнительного кода и уменьшается шинный трафик по сравнению с программным вариантом. Стоимость таких плат обычно небольшая, особенно если они ориентированы на системы RAID - 0 или 1 (есть также реализации RAID 3, 5, 10, 30, 50, но они дороже), благодаря чему они понемногу вытесняют программные реализации с рынка серверов начального уровня. Высокоуровневые контроллеры с шинной реализацией имеют несколько другую структуру, чем их младшие братья. Они берут на себя все функции, связанные с вводом/выводом и исполнением RAID кода. Кроме того, они не так зависимы от реализации материнской платы и, как правило, имеют больше возможностей (например, возможность подключения модуля для хранения информации в кеш в случае отказа материнской платы или исчезновения питания). Такие контроллеры обычно стоят дороже низкоуровневых и используются в серверах среднего и высокого уровня. Они, как правило, реализуют RAID уровней 0,1, 3, 5, 10, 30, 50. Учитывая то, что шинно-ориентированные реализации подключаются прямо к внутренней PCI шине компьютера, они являются наиболее производительными среди рассматриваемых систем (при организации одно-хостовых систем). Максимальное быстродействие таких систем может достигать 132 Мбайт/с (32bit PCI) или же 264 Мбайт/с (64bit PCI) при частоте шины 33MHz.

Вместе с перечисленными преимуществами шинно-ориентированная архитектура имеет следующие недостатки:

  • зависимость от операционной системы и платформы;
  • ограниченная масштабируемость;
  • ограниченные возможности по организации отказоустойчивых систем.

Всех этих недостатков можно избежать, используя автономные подсистемы. Эти системы имеют полностью автономную внешнюю организацию и в принципе являют собой отдельный компьютер, который используется для организации систем хранения информации. Кроме того, в случае удачного развития технологии оптоволоконных каналов быстродействие автономных систем ни в чем не будет уступать шинно-ориентированным системам.

Обычно внешний контроллер ставится в отдельную стойку и в отличие от систем с шинной организацией может иметь большое количество каналов ввода/вывода, в том числе и хост-каналов, что дает возможность подключать к системе несколько хост-компьютеров и организовывать кластерные системы. В системах с автономным контроллером можно реализовать горячее резервирование контроллеров.

Одним из недостатков автономных систем остается их большая стоимость.

Учитывая вышесказанное, отметим, что автономные контроллеры обычно используются для реализации высокоемких хранилищ данных и кластерных систем.



Рекомендуем почитать

Наверх