Линейный усилитель с нулевым потенциалом на входе. Операционный усилитель? Это очень просто

Инструмент 14.06.2019
Инструмент

Неинвертирующий усилитель (НУ) – это усилитель, обладающий стабильным коэффициентом усиления при нулевой разности фаз между входными и выходными сигналами.

В НУ (рис. 5.3) имеет место последовательная ООС по напряжению. При идеальном ОУ (K д = К oc сф = ¥, R ВХ = ¥ и R ВЫХ = 0) R ВЫХ. F = 0 (связь отрицательная и по напряжению), R ВХ. F = ¥ (последовательная ООС).

, (5.6)

и согласно рис. 5.4,

Подставляя (5.7) в (5.6), получим

. (5.8)

Коэффициент усиления НУ не зависит от сопротивления источника сигнала R С , так как входное сопротивление НУ равно ¥, и ток через R С не протекает, то падение напряжения на этом сопротивлении отсутствует и . При R 2 = 0, R 1 = ¥ K e F = 1. Значит, выходное напряжение полностью повторяет входное (только на более высоком уровне мощности). Отсюда и название – повторитель напряжения.

Единичный коэффициент передачи, бесконечно большое входное сопротивление и нулевое выходное делает повторитель идеальным буферным каскадом (трансформатором полного сопротивления).

Метод резистивной балансировки этой схемы зависит от обстоятельств. Если R С = 0, то симметрирующий резистор R СМ включается последовательно с неинвертирующим входом (рис. 5.5).

При этом Du ВЫХ описывается выражением (5.5). Ненулевое, но известное и фиксированное внутреннее сопротивление R C можно было бы сбалансировать только резисторами ОС, при условии, что R 1 R 2 /(R 1 +R 2)=R C . Однако при этом будет изменяться и коэффициент усиления схемы (5.8). Проще резисторы R 1 и R 2 выбрать исходя из требуемого коэффициента усиления, а токовую балансировку схемы обеспечить R CM , включённым последовательно с инвертирующим входом (рис. 5.6). Для этой схемы

. (5.9)

Если имеет неопределённое и нестабильное значение, то лучше применить ОУ с входным каскадом (дифференциальным) на полевых транзисторах.



Для уменьшения потенциальной составляющей выходной статической погрешности Du ВЫХ нужно либо использовать соответствующие выводы ОУ, либо при их отсутствии, осуществлять балансировку схемы по входу (рис. 5.7). Настройка нуля в этой схеме немного снижает его коэффициент усиления.

Конец работы -

Эта тема принадлежит разделу:

Аналоговые электронные устройства

Аналоговые электронные устройства. Часть II. Конспект лекций для студентов специальности “Радиотехника” всех форм обучения..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Назначение, параметры
Компараторы являются простейшими аналого-цифровыми преобразователями (АЦП), т.е. устройствами, преобразующими непрерывный сигнал в дискретный.Они предназначены для сравнения входного сиг

Особенности применения полупроводниковых компараторов
Компараторы, получившие наибольшее распространение, можно разделить на четыре группы: общего применения (К521СА2, К521СА5) , прецизионные (К521СА3, К597СА3), быстродействующие (К597СА1, К597СА2) и

Специализированные компараторы на операционных усилителях
При сравнении низкочастотных сигналов с высокой точностью (десятки микровольт) при минимальной потребляемой мощности использование компараторов на базе ОУ часто оказывается более предпочтительное,


Практическое применение операционных усилителей.Часть первая.

Часть первая.

Всем привет.
В этой статье мы обсудим некоторые аспекты практического применения операционных усилителей в повседневной жизни радиолюбителя.
Не растекаясь мыслею по древу и не вдаваясь в дремучие теоретические основы работы вышеозначенного усилителя, давайте все же обозначим некоторые основные термины и понятия, с которыми нам предстоит столкнуться в дальнейшем.
Итак - операционный усилитель. Далее будем называть его ОУ, а то очень лень писать каждый раз полностью.
На принципиальных схемах, чаще всего, он обозначается следующим образом:

На рисунке обозначены три самых главных вывода ОУ - два входа и выход. Разумеется, есть еще выводы питания и иногда выводы частотной коррекции, хотя последнее встречается все реже - у большинства современных ОУ она встроенная. Два входа ОУ - Инвертирующий и Неинвертирующий названы так по присущим им свойствам. Если подать сигнал на Инвертирующий вход, то на выходе мы получим инвертированный сигнал, то бишь сдвинутый по фазе на 180 градусов - зеркальный; если же подать сигнал на Неинвертирующий вход, то на выходе мы получим фазово не измененный сигнал.

Так же как и основных выводов, основных свойств ОУ тоже три - можно назвать их ТриО (или ООО - кому как нравится): Очень высокое сопротивление входа, Очень высокий коэффициент усиления (10000 и более), Очень низкое сопротивление выхода. Еще один очень важный параметр ОУ называется скорость нарастания напряжения на выходе (slew rate на буржуинском). Обозначает он фактически быстродействие данного ОУ - как быстро он сможет изменить напряжение на выходе при изменение оного на входе.
Измеряется этот параметр в вольтах в секунду (В/сек).
Этот параметр важен прежде всего для товарищей, конструирующих УЗЧ, поскольку, если ОУ недостаточно быстрый, то он не будет успевать за входным напряжением на высоких частотах и возникнут изрядные нелинейные искажения. У большинства современных ОУ общего назначения скорость нарастания сигнала от 10В/мксек и выше. У быстродействующих ОУ этот параметр может достигать значения 1000В/мксек.
Оценить - подходит ли тот или иной ОУ для ваших целей по скорости нарастания сигнала можно по формуле:

где, fmax - частота синусоидального сигнала, Vmax - скорость нарастания сигнала, Uвых - максимальное выходное напряжение.
Ну да не будем больше тянуть кота за хвост - приступим к главной задаче этого опуса - куда, собственно, эти клевые штуки можно воткнуть и что из этого можно получить.

Первая схема включения ОУ - инвертирующий усилитель .

Наиболее популярная и часто встречающаяся схема усилителя на ОУ. Входной сигнал подается на инвертирующий вход, а неинвертирующий вход подключается к общему проводу.
Коэффициент усиления определяется соотношением резисторов R1 и R2 и считается по формуле:

Почему "минус"? Потому что, как мы помним, в инвертирующем усилителе фаза выходного сигнала "зеркальна" фазе входного.
Входное сопротивление определяется резистором R1. Ежели его сопротивление, например 100кОм, то и входное сопротивление усилителя будет 100кОм.

Следующая схема - инвертирующий усилитель с повышенным входным сопротивлением .
Предыдущая схема всем хороша, за исключением одного нюанса - соотношение входного сопротивления и коэффициента усиления может не подойти для реализации какого-либо специфического проекта. Ведь что получается - допустим, нам нужен усилитель с К=100. Тогда, исходя из того, что значения резисторов должны быть в разумных пределах берем R2=1Мом, а R1=10кОм. То есть, входное сопротивление усилителя будет равным 10 кОм, что в некоторых случаях недостаточно.
В этих самых случая можно применить следующую схему:

В данном случае, коэффициент усиления считается по следующей формуле:

То есть, при том же коэффициенте усиление сопротивление R1 можно увеличить, а значит и повысить входное сопротивление усилителя.

Коэффициент усиления определяется так:

В данном случае, как видите, никаких минусов нет - фаза сигнала на входе и на выходе совпадает.
Основное отличие от инвертирующего усилителя заключается в повышенном входном сопротивлении, которое может достигать 10Мом и выше.
Если при реализации данной схемы в практических конструкциях, необходимо предусмотреть развязку с предыдущими каскадами по постоянному току - установить разделительный конденсатор, то нужно между входом ОУ и общим проводом включить резистор сопротивлением около 100кОм, как показано на рисунке.

Операционные усилители часто используются для выполнения различных операций: суммирования сигналов, дифференцирования, интегрирования, инвертирования и т. д. А также операционные усилители были разработаны как усовершенствованные
балансные схемы усиления.

Операционный усилитель – универсальный функциональный элемент, широко используемый в современных схемах формирования и преобразования информационных сигналов различного назначения как в аналоговой, так и в цифровой технике. Давайте далее рассмотрим виды усилителей.

Инвертирующий усилитель

Рассмотрим схему простого инвертирующего усилителя:

а) падение напряжения на резисторе R2 равно Uвых,

б) падение напряжения на резисторе R1 равно Uвх.

Uвых/R2 = -Uвх/R1, или коэффициент усиления по напряжению = Uвых/Uвх = R2/R1.

Для того чтобы понять, как работает обратная связь, представим себе, что на вход подан некоторый уровень напряжения, скажем 1 В. Для конкретизации допустим, что резистор R1 имеет сопротивление 10 кОм, а резистор R2 — 100 кОм. Теперь представим себе, что напряжение на выходе решило выйти из повиновения и стало равно 0 В. Что произойдет? Резисторы R1 и R2 образуют делитель напряжения, с помощью которого потенциал инвертирующего входа поддерживается равным 0,91 В. Операционный усилитель фиксирует рассогласование по входам, и напряжение на его выходе начинает уменьшаться. Изменение продолжается до тех пор, пока выходное напряжение не достигнет значения -10 В, в этот момент потенциалы входов ОУ станут одинаковыми и равными потенциалу земли. Аналогично, если напряжение на выходе начнет уменьшаться и дальше и станет более отрицательным, чем -10 В, то потенциал на инвертирующем входе станет ниже потенциала земли, в результате выходное напряжение начнет расти.

Недостаток этой схемы состоит в том, что она обладает малым входным импедансом, особенно для усилителей с большим коэффициентом усиления по напряжению (при замкнутой цепи ОС), в которых резистор R1, как правило, бывает небольшим. Этот недостаток устраняет схема, представленная ниже, на рис. 4.

Неинвертирующий усилитель. Усилитель постоянного тока.

Рассмотрим схему на рис. 4. Анализ ее крайне прост: UA = Uвх. Напряжение UA снимается с делителя напряжения: UA = Uвых R1 / (R1 + R2). Если UA = Uвх, то коэффициент усиления = Uвых / Uвх = 1 + R2 / R1. Это неинвертирующий усилитель. В приближении, которым мы воспользуемся, входной импеданс этого усилителя бесконечен (для ОУ типа 411 он составляет 1012 Ом и больше, для ОУ на биполярных транзисторах обычно превышает 108 Ом). Выходной импеданс, как и в предыдущем случае, равен долям ома. Если, как в случае с инвертирующим усилителем, мы внимательно рассмотрим поведение схемы при изменении напряжения на входах, то увидим, что она работает, как обещано.

Усилитель переменного тока

Схема выше также представляет собой усилитель постоянного тока. Если источник сигнала и усилитель связаны между собой по переменному току, то для входного тока (очень небольшого по величине) нужно предусмотреть заземление, как показано на рис. 5. Для представленных на схеме величин компонентов коэффициент усиления по напряжению равен 10, а точке -3 дБ соответствует частота 16 Гц.

Усилитель переменного тока. Если усиливаются только сигналы переменного тока, то можно уменьшить коэффициент усиления для сигналов постоянного тока до единицы, особенно если усилитель обладает большим коэффициентом усиления по напряжению. Это позволяет уменьшить влияние всегда существующего конечного «приведенного ко входу напряжения сдвига».

Для схемы, представленной на рис. 6, точке -3 дБ соответствует частота 17 Гц; на этой частоте импеданс конденсатора равен 2,0 кОм. Обратите внимание, что конденсатор должен быть большим. Если для построения усилителя переменного тока использовать неинвертирующий усилитель с большим усилением, то конденсатор может оказаться чрезмерно большим. В этом случае лучше обойтись без конденсатора и настроить напряжение сдвига так, чтобы оно было равно нулю. Можно воспользоваться другим методом — увеличить сопротивления резисторов R1 и R2 и использовать T-образную схему делителя.

Несмотря на высокий входной импеданс, к которому всегда стремятся разработчики, схеме неинвертирующего усилителя не всегда отдают предпочтение перед схемой инвертирующего усилителя. Как мы увидим в дальнейшем, инвертирующий усилитель не предъявляет столь высоких требований к ОУ и, следовательно, обладает несколько лучшими характеристиками. Кроме того, благодаря мнимому заземлению удобно комбинировать сигналы без их взаимного влияния друг на друга. И наконец, если рассматриваемая схема подключена к выходу (стабильному) другого ОУ, то величина входного импеданса для вас безразлична — это может быть 10 кОм или бесконечность, так как в любом случае предыдущий каскад будет выполнять свои функции по отношению к последующему.

Повторитель

На рис. 7 представлен повторитель, подобный эммитерному, на основе операционного усилителя.

Он представляет собой не что иное, как неинвертирующий усилитель, в котором сопротивление резистора R1 равно бесконечности, а сопротивление резистора R2 — нулю (коэффициент усиления = 1). Существуют специальные операционные усилители, предназначенные для использования только в качестве повторителей, они обладают улучшенными характеристиками (в основном более высоким быстродействием), примером такого операционного усилителя является схема типа LM310 или OPA633, а также схемы упрощенного типа, например схема типа TL068 (она выпускается в транзисторном корпусе с тремя выводами).

Усилитель с единичным коэффициентом усиления называют иногда буфером, так как он обладает изолирующими свойствами (большим входным импедансом и малым выходным).

Основные предостережения при работе с ОУ

1. Правила справедливы для любого операционного усилителя при условии, что он находится в активном режиме, т.е. его входы и выходы не перегружены.

Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал будет срезаться вблизи уровня UКК или UЭЭ. В то время когда напряжение на выходе оказывается фиксированным на уровне напряжения среза, напряжение на входах не может не изменяться. Размах напряжения на выходе операционного усилителя не может быть больше диапазона напряжения питания (обычно размах меньше диапазона питания на 2 В, хотя в некоторых ОУ размах выходного напряжения ограничен одним или другим напряжением питания). Аналогичное ограничение накладывается на выходной диапазон устойчивости источника тока на основе операционного усилителя. Например, в источнике тока с плавающей нагрузкой максимальное падение напряжения на нагрузке при «нормальном» направлении тока (направление тока совпадает с направлением приложенного напряжения) составляет UКК — Uвх, а при обратном направлении тока (нагрузка в таком случае может быть довольно странной, например, она может содержать переполюсованные батареи для получения прямого тока заряда или может быть индуктивной и работать с токами, меняющими направление) -Uвх — UЭЭ.

2. Обратная связь должна быть отрицательной. Это означает (помимо всего прочего), что нельзя путать инвертирующий и неинвертирующий входы.

3. В схеме операционного усилителя обязательно должна быть предусмотрена цепь обратной связи по постоянному току, в противном случае операционный усилитель обязательно попадет в режим насыщения.

4. Многие операционные усилители имеют довольно малое предельно допустимое дифференциальное входное напряжение. Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения. Если пренебречь этим условием, то возникнут большие входные токи, которые приведут к ухудшению характеристик или даже к разрушению операционного усилителя.

Понятие «обратная связь» (ОС) относится к числу распространенных, оно давно вышло за рамки узкой области техники и употребляется сейчас в широком смысле. В системах управления обратная связь используется для сравнения выходного сигнала с заданным значением и выполнения соответствующей коррекции. В качестве «системы» может выступать что угодно, например процесс управления движущимся по дороге автомобилем — за выходными данными (положением машиты и ее скоростью) следит водитель, который сравнивает их с ожидаемыми значениями и соответственно корректирует входные данные (с помощью руля, переключателя скоростей, тормоза). В усилительной схеме выходной сигнал должен быть кратен входному, поэтому в усилителе с обратной связью входной сигнал сравнивается с определенной частью выходного сигнала.

Всё об обратной связи

Отрицательная обратная связь — это процесс передачи выходного сигнала обратно на вход, при котором погашается часть входного сигнала. Может показаться, что это глупая затея, которая приведет лишь к уменьшению коэффициента усиления. Именно такой отзыв получил Гарольд С. Блэк, который в 1928 г. попытался запатентовать отрицательную обратную связь. «К нашему изопрелению отнеслись так же, как к вечному двигателю» (журнал IEEE Spectrum за декабрь 1977 г.). Действительно, отрицательная обратная связь уменьшает коэффициент усиления, но при этом она улучшает другие параметры схемы, например устраняет искажения и нелинейность, сглаживает частотную характеристику (приводит ее в соответствие с нужной характеристикой), делает поведение схемы предсказуемым. Чем глубже отрицательная обратная связь, тем меньше внешние характеристики усилителя зависят от характеристик усилителя с разомкнутой обратной связью (без ОС), и в конечном счете оказывается, что они зависят только от свойств самой схемы ОС. Операционные усилители обычно используют в режиме глубокой обратной связи, а коэффициент усиления по напряжению в разомкнутой петле ОС (без ОС) достигает в этих схемах миллиона.

Цепь ОС может быть частотно-зависимой, тогда коэффициент усиления будет определенным образом зависеть от частоты (примером может служить предусилитель звуковых частот в проигрывателе со стандартом RIAA); если же цепь ОС является амплитудно-зависимой, то усилитель обладает нелинейной характеристикой (распространенным примером такой схемы служит логарифмический усилитель, в котором в цепи ОС используется логарифмическая зависимость напряжения UБЭ от тока IК в диоде или транзисторе). Обратную связь можно использовать для формирования источника тока (выходной импеданс близок к бесконечности) или источника напряжения (выходной импеданс близок к нулю), с ее помощью можно получить очень большое или очень малое входное сопротивление. Вообще говоря, тот параметр, по которому вводится обратная связь, с ее помощью улучшается. Например, если для обратной связи использовать сигнал, пропорциональный выходному току, то получим хороший источник тока.

Обратная связь может быть и положительной; ее используют, например в генераторах. Как ни странно, она не столь полезна, как отрицательная ОС. Скорее она связана с неприятностями, так как в схеме с отрицательной ОС на высокой частоте могут возникать достаточно большие сдвиги по фазе, приводящие к возникновению положительной ОС и нежелательным автоколебаниям. Для того чтобы эти явления возникли, не нужно прикладывать большие усилия, а вот для предотвращения нежелательных автоколебаний прибегают к методам коррекции.

Операционные усилители

В большинстве случаев, рассматривая схемы с обратной связью, мы будем иметь дело с операционными усилителями. Операционный усилитель (ОУ) — это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным входом. Прообразом ОУ может служить классический дифференциальный усилитель с двумя входами и несимметричным выходом; правда, следует отметить, что реальные операционные усилители обладают значительно более высокими коэффициентами усиления (обычно порядка 105 — 106) и меньшими выходными импедансами, а также допускают изменение выходного сигнала почти в полном диапазоне питающего напряжения (обычно используют расщепленные источники питания ±15 В).

Символы «+» и «-» не означают, что на одном входе потенциал всегда должен быть более положительным, чем на другом; эти символы просто указывают относительную фазу выходного сигнала (это важно, если в схеме используется отрицательная ОС). Во избежание путаницы лучше называть входы «инвертирующий» и «неинвертирующий», а не вход «плюс» и вход «минус». На схемах часто не показывают подключение источников питания к ОУ и вывод, предназначенный для заземления. Операционные усилители обладают колоссальным коэффициентом усиления по напряжению и никогда (за редким исключением) не используются без обратной связи. Можно сказать, что операционные усилители созданы для работы с обратной связью. Коэффициент усиления схемы без обратной связи так велик, что при наличии замкнутой петли ОС характеристики усилителя зависят только от схемы обратной связи. Конечно, при более подробном изучении должно оказаться, что такое обобщенное заключение справедливо не всегда. Начнем мы с того, что просто рассмотрим, как работает операционный усилитель, а затем по мере необходимости будем изучать его более тщательно.

Промышленность выпускает буквально сотни типов операционных усилителей, которые обладают различными преимуществами друг перед другом. Повсеместное распространение получила очень хорошая схема типа LF411 (или просто «411»), представленная на рынок фирмой National Semiconductor. Как и все операционные усилители, она представляет собой крошечный элемент, размещенный в миниатюрном корпусе с двухрядным расположением выводов мини-DIP. Эта схема недорога и удобна в обращении; промышленность выпускает улучшенный вариант этой схемы (LF411A), а также элемент, размещенный в миниатюрном корпусе и содержащий два независимых операционных усилителя (схема типа LF412, которую называют также «сдвоенный» операционный усилитель). Рекомендуем вам схему LF411 в качестве хорошей начальной ступени в разработке электронных схем.

Схема типа 411 — это кристалл кремния, содержащий 24 транзистора (21 биполярный транзистор, 3 полевых транзистора, 11 резисторов и 1 конденсатор). На рис. 2 показано соединение с выводами корпуса.

Точка на крышке корпуса и выемка на его торце служат для обозначения точки отсчета при нумерации выводов. В большинстве корпусов электронных схем нумерация выводов осуществляется в направлении против часовой стрелки со стороны крышки корпуса. Выводы «установка нуля» (или «баланс», «регулировка») служат для устранения небольшой асимметрии, возможной в операционном усилителе.

Важные правила

Сейчас мы познакомимся с важнейшими правилами, которые определяют поведение операционного усилителя, охваченного петлей обратной связи. Они справедливы почти для всех случаев жизни.

Во-первых, операционный усилитель обладает таким большим коэффициентом усиления по напряжению, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона, поэтому не будем рассматривать это небольшое напряжение, а сформулируем правило I:

I. Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю.

Во-вторых, операционный усилитель потребляет очень небольшой входной ток (ОУ типа LF411 потребляет 0,2 нА; ОУ со входами на полевых транзисторах — порядка пикоампер); не вдаваясь в более глубокие подробности, сформулируем правило II:

II. Входы операционного усилителя ток не потребляют.

Здесь необходимо дать пояснение: правило I не означает, что операционный усилитель действительно изменяет напряжение на своих входах. Это невозможно. (Это было бы не совместимо с правилом II.) Операционный усилитель «оценивает» состояние входов и с помощью внешней схемы ОС передает напряжение с выхода на вход, так что в результате разность напряжений между входами становится равной нулю (если это возможно).

Эти правила создают достаточную основу для рассмотрения схем на операционных усилителях.

Неинвертирующий усилитель является базовой схемой с ОУ. Выглядит он до боли просто:

В этой схеме сигнал подается на НЕинвертирующий вход ОУ.

Итак, для того, чтобы понять принцип работы этой схемы, запомните самое важное правило, которое используется для анализа схем с ОУ: выходное напряжение ОУ стремится к тому, чтобы разность напряжения между его входами была равна нулю .

Принцип работы

Итак, давайте инвертирующий вход обозначим, буквой A:


Следуя главному правилу ОУ, получаем, что напряжение на инвертирующем входе равняется входному напряжению: U A =U вх. U A снимается с , который образован резисторами R1 и R2. Следовательно:

U A = U вых R1/(R1+R2)

Так как U A =U вх , получаем что U вх = U вых R1/(R1+R2) .

Коэффициент усиления по напряжению высчитывается как K U = U вых /U вх .

Подставляем сюда ранее полученные значения и получаем, что K U = 1+R2/R1 .

Проверка работы в Proteus

Это также можно легко проверить с помощью программы Proteus. Схема будет выглядеть вот так:


Давайте рассчитаем коэффициент усиления K U. K U = 1+R2/R1=1+90к/10к=10. Значит, наш усилитель должен ровно в 10 раз увеличивать входной сигнал. Давайте проверим, так ли это. Подаем на неинвертирующий вход синусоиду с частотой в 1кГц и смотрим, что имеем на выходе. Для этого нам потребуется виртуальный осциллограф:


Входной сигнал — это желтая осциллограмма, а выходной сигнал — это розовая осциллограмма:


Как вы видите, входной сигнал усилился ровно в 10 раз. Фаза выходного сигнала осталась такой же. Поэтому такой усилитель называют НЕинвертирующим .

Но, как говорится, есть одно «НО». На самом же деле в реальном ОУ имеются конструктивные недостатки. Так как Proteus старается эмулировать компоненты, приближенные к реальным, давайте рассмотрим амплитудно-частотную характеристику (АЧХ), а также фазо-частотную характеристику (ФЧХ) нашего операционника LM358.

АЧХ и ФЧХ неинвертирующего усилителя на LM358

На практике, для того, чтобы снять АЧХ, нам надо на вход нашего усилителя подать частоту от 0 Герц и до какого-то конечного значения, а на выходе в это время следить за изменением амплитуды сигнала. В Proteus все это делается с помощью функции Frequency Responce:


По оси Y у нас коэффициент усиления, а по оси Х — частота. Как вы могли заметить, коэффициент усиления почти не изменялся до частоты 10 кГц, потом стал стремительно падать с ростом частоты. На частоте в 1МегаГерц коэффициент усиления был равен единице. Этот параметр в ОУ называется частотой единичного усиления и обозначается как f 1 . То есть по сути на этой частоте усилитель не усиливает сигнал. Что подали на вход, то и вышло на выходе.

В проектировании усилителей важен такой параметр, как граничная частота среза f гр . Для того, чтобы ее вычислить, нам надо знать коэффициент усиления на частоте K гр:

K гр = K Uo / √2 либо = K Uo х 0,707 , где K Uo — это коэффициент усиления на частоте в 0 Герц (постоянный ток).

Если смотреть на АЧХ, мы увидим, что на нулевой частоте (на постоянном токе) у нас коэффициент усиления равен 10. Вычисляем K гр .

K гр = 10 х 0,707 = 7,07

Теперь проводим горизонтальную линию на уровне 7,07 и смотрим пересечение с графиком. У меня получилось около 104 кГц. Строить усилитель с частотой среза, более, чем f гр не имеет смысла, так как в этом случае выходной сигнал усилителя будет сильно затухать.


Также очень просто определить граничную частоту, если построить график в . Граничная частота будет находиться на уровне K Uo -3dB . То есть в нашем случае на уровне в 17dB. Как вы видите, в этом случае мы также получили частоту среза в 104 кГц.


Ну ладно, с частотой среза вроде бы разобрались. Теперь нам важен такой параметр, как ФЧХ. В нашем случае мы вроде бы как получили НЕинвертирующий усилитель. То есть сдвиг фаз между входным и выходным сигналом должен быть равен нулю. Но как поведет себя усилитель на высоких частотах (ВЧ)?

Берем такой же диапазон частот от 0 и до 100 МГц и смотрим на ФЧХ:


Как вы видите, до частоты в 1 кГц неинвертирующий усилитель действительно работает как надо. То есть входной и выходной сигнал двигаются синфазно. Но после частоты в 1 кГц, мы видим, что фаза выходного сигнала начинает отставать. На частоте в 100 кГц она уже отстает примерно на 40 градусов.

Для наглядности АЧХ и ФЧХ можно разместить на одном графике:


Также в схемах с неинвертирующим усилителем часто вводят компенсирующий резистор R K .


Он определяется по формуле:

и служит для того, чтобы обеспечить равенство сопротивлений между каждым из входов и землей. Более подробно мы это разберем в следующей статье.

При участии Jeer

Усилители мощности. Линейные схемы на ОУ.

ОУ широко применяется в аналоговых устройствах электроники. Функции, реализуемые ОУ с ООС, удобно рассматривать, если представить ОУ в виде идеальной модели, у которой:

  1. Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (Rвх > ∞, i+ = i- = 0).
  2. Выходное сопротивление операционного усилителя равно нулю, т.е. операционный усилитель со стороны входа является идеальным источником напряжения (Rвых = 0).
  3. Коэффициент усиления по напряжению (коэффициент напряжения дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).
  4. В режиме насыщения напряжение на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.
  5. Синфазный сигнал не действует на операционный усилитель.
  6. Напряжение смещения нуля равно нулю.

Инвертирующий усилитель на ОУ

Схема инвертирующего усилителя, охваченного параллельной ООС по напряжению показана на рисунках:

ООС реализуется за счет соединения выхода усилителя со входом резистором R2.

На инвертирующем входе ОУ происходит суммирование токов. Поскольку входной ток ОУ i- = 0, то i1 = i2 . Так как i1 = Uвх /R1, а i2 = -Uвых /R2, то . Ku = = -R2/R1. Знак "-" говорит о том, что происходит инверсия знака входного напряжения.

На рисунке (б) в цепь неинвертирующего входа включен резистор R3 для уменьшения влияния входных токов ОУ, сопротивление которого определяется из выражения:

Входное сопротивление усилителя на низких частотах приблизительно равно Rвх.ос = ≈ R1

Выходное сопротивление Rвых.ос = существенно меньше Rвых собственно ОУ.

Неинвертирующий усилитель на ОУ

Схема неинвертирующего усилителя, охваченного последовательной ООС по напряжению, показана на рисунке:

ООС реализуется при помощи резисторов R1, R2.

Используя принятые ранее допущения для идеальной модели получим

Входное сопротивление: Rвх.ос → ∞

Выходное сопротивление: Rвых.ос = → 0

Недостатком усиления является наличие на входах синфазного сигнала, равного Uвх .

Повторитель напряжения на ОУ

Схема повторителя, полученная из схемы неивертирующего усилителя, при R1 → ∞, R2 → 0, показана на рисунке:

Коэффициент β = 1, Ku.ос = K/1+K ≈ 1, т.е. напряжение на входе и выходе ОУ равны: Uвх = Uвых .

Сумматор напряжений на ОУ (инвертирующий сумматор)

Схема инвертирующего усилителя с дополнительными входными цепями показана на рисунке:

Учитывая, что i+ = i- = 0, ioc = - Uвых /Rос = Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn, получим: Uвых = -Rос (Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn)

Если Rос = R1 = R2 = ... = Rn, то Uвых = - (Uвх1 + Uвх2 + ... + Uвхn ).

ОУ работает в линейном режиме.

Для уменьшения влияния входных токов ОУ в цепь неинвертирующего входа включают резистор Rэ (на рисунке показан пунктиром) с сопротивлением: Rэ = R1//R2//…//Rn//Roc .

Вычитающий усилитель на ОУ

Схема усилителя с дифференциальным входом показана на рисунке:

Усилитель является сочетанием инвертирующего и неинвертирующего усилителей. В рассматриваемом случае напряжение на выходе определяется из выражения:

Uвых = Uвх2 · R3/(R3+R4) · (1+R2/R1) - Uвх1 · R2/R1

При R1 = R2 = R3 = R4: Uвых = Uвх2 - Uвх1 – т.е. зависит от разности входных сигналов.

Интегрирующий усилитель на ОУ

Схема интегратора, в которой в цепи ООС установлен конденсатор, показана на рисунке:

Пусть на вход подается прямоугольный импульс Uвх . На интервале t1...t2 амплитуда Uвх равна U. Так как входной ток ОУ равен нулю, то |iвх | = |-ic |, iвх = Uвх /R1, ic = C · dUвых /dt.

Uвх /R1 = C · dUвых /dt или

где Uвых (0) – напряжение на выходе (конденсаторе С) к моменту начала интегрирования (к моменту t1).

τ = R1 · C – постоянная времени интегрирования, т.е. время, в течение которого Uвых изменится на величину ΔUвых = U.

Таким образом выходное напряжение на интервале t1...t2 изменяется по линейному закону и представляет интеграл от входного напряжения. Постоянная времени должна быть такой, чтобы до конца интегрирования Uвых < Eпит .

Дифференцирующий усилитель

Поменяв местами R1 и C1 в интеграле, получим схему дифференцирующего усилителя:

По аналогии с интегрирующим усилителем запишем:

Ic = C·dUвх /dt, IR2 = -Uвых /R

Т.к. |Ic | = |-IR2 |, то Uвых = - CR · dUвх /dt

τ = CR – постоянная дифференцирования.

Применение ОУ далеко не исчерпывается приведенными выше схемами.

Активные фильтры

В электронике широко применяются устройство для выделения полезного сигнала из ряда входных сигналов с одного одновремённым ослаблением мешающих сигналов за счёт использования фильтров.

Фильтры подразделяются не пассивные, выполненные на основе конденсаторов, индуктивностей и резисторов, и активные на базе транзисторов и операционных усилителей.

В информационной электронике обычно используются активные фильтры. Термин "активный" объясняется включением в схему RLC - фильтра активного элемента (с транзистора или ОУ) для компенсации потерь на пассивных элементах.

Фильтром называют устройство, которое пропускает сигналы в полосе пропускания и задерживает их в остальном диапазоне частот.

По виду АЧХ фильтры подразделяются на фильтры нижних частот (ФНЧ), и на фильтры верхних частот (ФВЧ), полосовые фильтры и режекторные фильтры.

Схема простейшего ФНЧ и его АЧХ приведены на рисунке:

В полосе пропускания 0 - fc полезный сигнал проходит через ФНЧ без искажений.

Fс – fз – переходная полоса,
fз - ∞ – полоса задерживания,
fс – частота среза,
fз – частота задерживания.

ФВЧ пропускает сигналы верхних частот и задерживает сигналы нижних частот.

Полосовой фильтр пропускает сигналы одной полосы частот, расположенной в некоторой внутренней части оси частот.

Схема фильтра получила название моста Вина. На частоте f0 =

Мост Вина имеет коэффициент передачи β = 1/3. При R1 = R2 = R и C1 = C2 = C

Режекторный фильтр не пропускает сигналы, лежащие в некоторой полосе частот, и пропускает сигналы с другими частотами.

Схема фильтра называется несимметричным двойным Т-образным мостом.

Где R1 = R2 = R3 = R, C1 = C2 = C3 = C.

В качестве примера рассмотрим двухполюсный (по числу конденсаторов) активный ФНЧ.

ОУ работает в линейном режиме. При расчёте задаются fс . Коэффициент усиления в полосе пропускания должен удовлетворять условию: К0 ≤ 3.

Если принять С1 = С2 = С, R1 = R2 = R, то C = 10/fc , где fс – в Гц, С – в мкФ,

Для получения более быстрого изменения коэффициента усиления на удаление от полосы пропускания последовательно включают подобные схемы.

Поменяв местами резисторы R1, R2 и конденсаторы С1, С2, получим ФВЧ.

Избирательные усилители

Избирательные усилители позволяют усиливать сигналы в ограниченном диапазоне частот, выделяя полезные сигналы и ослабляя все остальные. Это достигается применением специальных фильтров в цепи обратной связи усилителя. Схема избирательного усилителя с двойным Т-образным мостом в цепи отрицательной обратной связи показана на рисунке:

Коэффициент передачи фильтра (кривая 3) уменьшается от 0 до 1. АЧХ усилителя иллюстрируется кривой 1. На квазирезонансной частоте коэффициент передачи фильтра в цепи отрицательной обратной связи равен нулю, Uвых максимально. При частотах слева и справа от f0 коэффициент передачи фильтра стремится единице и Uвых = Uвх . Таким образом фильтр выделяет полосу пропускания Δf, а усилитель осуществляет операцию аналогового усиления.

Генераторы гармонических колебаний

В системах управления используются генераторы сигналов различного вида. Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение.

Структурная схема такого генератора показана на рисунке:

Входной сигнал отсутствует. Uвых = К · Uос .

Для возникновения синусоидальных колебаний должно выполняться условие самовозбуждения только для одной частоты:
К · γ = 1 – баланс амплитуд,
φ + ψ = 2πn – баланс фаз,
где К – коэффициент усиления усилителя,
γ – коэффициент передачи звена положительной обратной связи,
φ – сдвиг по фазе для усилителя,
ψ – сдвиг по фазе для цепи обратной связи,
n = 0, 1, ...

Основной генераторов синусоидальных сигналов являются фильтры, например мост Вина. Генератор на основе ОУ, содержащий мост Вина, представлен на рисунке:

Генератор вырабатывает синусоидальный сигнал частотой .

На частоте f0 коэффициент передачи фильтра β = 1/3. Усилитель должен иметь коэффициент усиления К ≥ 3, который задаётся резисторами R1 и R2. Важной проблемой является стабилизация амплитуды Uвых , которая обеспечивается в ведением резистора R3 и стабилитронов VD1 и VD2. При малых Uвых напряжение на VD1 и VD2 меньше напряжения стабилизации и R3 не зашунтировано стабилитронами. При этом К > 3 и Uвых возрастает. При достижении напряжения на стабилитронах, равного напряжения стабилизации, тот или иной стабилитрон открывается и пара стабилитронов шунтирует сопротивление R3. Коэффициент усиления становится равным и напряжение Uвых начинает уменьшатся, коэффициент усиления снова становится больше 3 и Uвых снова будет уменьшатся, но уже и в противоположном направлении. Таким образом стабилитроны предотвращают насыщение.

При использовании данного генератора нагрузку желательно подключать через буферный каскад.

Материал для подготовеки к аттестации

Рекомендуем почитать

Наверх