Методы тестирования программного обеспечения ис. Тестирование удобства использования

Электроника 22.06.2019
Электроника

Тестирование программного обеспечения - это оценка разрабатываемого программного обеспечения/продукта, чтобы проверить его возможности, способности и соответствие ожидаемым результатам. Существуют различные типы методов, используемые в области тестирования и обеспечения качества о них и пойдет речь в данной статье.

Тестирование программного обеспечения является неотъемлемой частью цикла разработки программного обеспечения.

Что такое тестирование программного обеспечения?

Тестирование программного обеспечения - это не что иное, как испытание куска кода к контролируемым и неконтролируемым условиям эксплуатации, наблюдение за выходом, а затем изучение, соответствует ли он предварительно определенным условиям.

Различные наборы тест-кейсов и стратегий тестирования направлены на достижение одной общей цели - устранение багов и ошибок в коде, и обеспечения точной и оптимальной производительности программного обеспечения.

Методика тестирования

Широко используемыми методами тестирования являются модульное тестирование, интеграционное тестирование, приемочное тестирование, и тестирование системы. Программное обеспечение подвергается этим испытаниям в определенном порядке.

3) Системное тестирование

4) Приемочные испытания

В первую очередь проводится модульный тест. Как подсказывает название, это метод испытания на объектном уровне. Отдельные программные компоненты тестируются на наличие ошибок. Для этого теста требуется точное знание программы и каждого установленного модуля. Таким образом, эта проверка осуществляется программистами, а не тестерами. Для этого создаются тест-коды, которые проверяют, ведет ли программное обеспечение себя так, как задумывалось.


Отдельные модули, которые уже были подвергнуты модульному тестированию, интегрируются друг с другом, и проверяются на наличие неисправностей. Такой тип тестирования в первую очередь выявляет ошибки интерфейса. Интеграционное тестирование можно осуществлять с помощью подхода "сверху вниз", следуя архитектурному сооружению системы. Другим подходом является подход «снизу вверх», который осуществляется из нижней части потока управления.

Системное тестирование

В этом тестировании, вся система проверяется на наличие ошибок и багов. Этот тест осуществляется путем сопряжения аппаратных и программных компонентов всей системы, и затем выполняется ее проверка. Это тестирование числится под методом тестирования "черного ящика", где проверяются ожидаемые для пользователя условия работы программного обеспечения.

Приемочные испытания

Это последний тест, который проводится перед передачей программного обеспечения клиенту. Он проводится, чтобы гарантировать, что программное обеспечение, которое было разработано отвечает всем требованиям заказчика. Существует два типа приемо-сдаточных испытаний - то, которое осуществляется членами команды разработчиков, известно, как внутреннее приемочное тестирования (Альфа-тестирование), а другое, которое проводится заказчиком, известно, как внешнее приемочное тестирования.

Если тестирование проводится с помощью предполагаемых клиентов, оно называется приемочными испытаниями клиента. В случае если тестирование проводится конечным пользователем программного обеспечения, оно известно, как приемочное тестирование (бета-тестирование).

Есть несколько основных методов тестирования, которые формируют часть режима тестирования программного обеспечения. Эти тесты обычно считаются самодостаточными в поиске ошибок и багов во всей системе.

Тестирование методом черного ящика

Тестирование методом черного ящика осуществляется без каких-либо знаний внутренней работы системы. Тестер будет стимулировать программное обеспечение для пользовательской среды, предоставляя различные входы и тестируя сгенерированные выходы. Этот тест также известен как Black-box, closed-box тестирование или функциональное тестирование.

Тестирование методом белого ящика

Тестирование методом "Белого ящика", в отличие от "черного ящика", учитывает внутреннее функционирование и логику работы кода. Для выполнения этого теста, тестер должен иметь знания кода, чтобы узнать точную часть кода, имеющую ошибки. Этот тест также известен как White-box, Open-Box или Glass box тестирование.

Тестирование методом серого ящика

Тестирование методом серого ящика или Gray box тестирование, это что-то среднее между White Box и Black Box тестированием, где тестер обладает лишь общими знаниями данного продукта, необходимыми для выполнения теста. Эта проверка осуществляется посредством документации и схемы информационных потоков. Тестирование проводится конечным пользователем, или пользователям, которые представляются как конечные.

Нефункциональные тесты

Безопасность приложения является одной из главных задач разработчика. Тестирование безопасности проверяет программное обеспечение на обеспечение конфиденциальности, целостности, аутентификации, доступности и безотказности. Индивидуальные испытания проводятся в целях предотвращения несанкционированного доступа в программный код.

Стресс-тестирование является методом, при котором программное обеспечение подвергается воздействию условий, которые выходят за рамки нормальных условий работы программного обеспечения. После достижения критической точки, полученные результаты записываются. Этот тест определяет устойчивость всей системы.


Программное обеспечение проверяется на совместимость с внешними интерфейсами, такими как операционные системы, аппаратные платформы, веб-браузеры и т.д. Тест на совместимость проверяет, совместим ли продукт с любой программной платформой.


Как подсказывает название, эта методика тестирования проверяет объем кода или ресурсов, которые используются программой при выполнении одной операции.

Это тестирование проверяет аспект удобства и практичности программного обеспечения для пользователей. Легкость, с которой пользователь может получить доступ к устройству формирует основную точку тестирования. Юзабилити-тестирование охватывает пять аспектов тестирования, - обучаемость, эффективность, удовлетворенность, запоминаемость, и ошибки.

Тесты в процессе разработки программного обеспечения

Каскадная модель использует подход "сверху-вниз", независимо от того, используется ли она для разработки программного обеспечения или для тестирования.

Основными шагами, участвующими в данной методике тестирования программного обеспечения, являются:

  • Анализ потребностей
  • Тест дизайна
  • Тест реализации
  • Тестирование, отладка и проверка кода или продукта
  • Внедрение и обслуживание

В этой методике, вы переходите к следующему шагу только после того, как вы завершили предыдущий. В модели используется не-итерационный подход. Основным преимуществом данной методики является ее упрощенный, систематический и ортодоксальный подход. Тем не менее, она имеет много недостатков, так как баги и ошибки в коде не будут обнаружены до этапа тестирования. Зачастую это может привести к потере времени, денег, и других ценных ресурсов.

Agile Model

Эта методика основана на избирательном сочетании последовательного и итеративного подхода, в дополнение к довольно большому разнообразию новых методов развития. Быстрое и поступательное развитие является одним из ключевых принципов этой методологии. Акцент делается на получение быстрых, практичных, и видимых выходов. Непрерывное взаимодействие с клиентами и участие является неотъемлемой частью всего процесса разработки.

Rapid Application Development (RAD). Методология быстрой разработки приложений

Название говорит само за себя. В этом случае методология принимает стремительный эволюционный подход, используя принцип компонентной конструкции. После понимания различных требований данного проекта, готовится быстрый прототип, а затем сравнивается с ожидаемым набором выходных условий и стандартов. Необходимые изменения и модификации вносятся после совместного обсуждения с заказчиком или группой разработчиков (в контексте тестирования программного обеспечения).

Хотя этот подход имеет свою долю преимуществ, он может быть неподходящим, если проект большой, сложный, или имеет чрезвычайно динамический характер, в котором требования постоянно меняются.

Спиральная модель

Как видно из названия, спиральная модель основана на подходе, в котором есть целый ряд циклов (или спиралей) из всех последовательных шагов в каскадной модели. После того, как начальный цикл будет завершена, выполняется тщательный анализ и обзор достигнутого продукта или выхода. Если выход не соответствует указанным требованиям или ожидаемым стандартам, производится второй цикл, и так далее.

Rational Unified Process (RUP). Рациональный унифицированный процесс

Методика RUP также похожа на спиральную модель, в том смысле, что вся процедура тестирования разбивается на несколько циклов. Каждый цикл состоит из четырех этапов - создание, разработка, строительство, и переход. В конце каждого цикла продукт/выход пересматривается, и далее цикл (состоящий из тех же четырех фаз) следует при необходимости.

Применение информационных технологий растет с каждым днем, также и важность правильного тестирования программного обеспечения выросло в разы. Многие фирмы содержат для этого штат специальных команд, возможности которых находятся на уровне разработчиков.

Андрей Колесов

Вряд ли имеет смысл говорить о важности тестирования в общем процессе разработки ПО, ведь давно известно, что реализация каждого этапа жизненного цикла приложений является необходимым условием для появления качественного программного продукта. Но, сказав слова о равенстве всех видов работ, нужно признать: в течение всей истории разработки ПО - а она насчитывает более 50 лет - тестирование выступало в роли падчерицы, которой достается самая трудоемкая, рутинная и непрестижная работа * . Далеко за примерами ходить не нужно: авторские права разработчиков закреплены законодательством, их имена можно при желании легко узнать. А что нам известно о тех, кто тестирует приложения, и это при том, что именно на их долю приходится в среднем около трети затрат по созданию ПО?

Впрочем, в последнее время ситуация заметно меняется, и здесь можно выделить две основные тенденции. Первая - растет понимание необходимости промышленных методов тестирования, в частности с применением специальных средств автоматизации. Вторая - идет поиск возможностей для оптимизации затрат на выполнение данных работ с точки зрения общей организации бизнеса, в том числе с использованием модели аутсорсинга.

Нужно отметить парадоксальную ситуацию: при обилии методической литературы и курсов по проектированию и кодированию ПО наблюдается практически полное отсутствие материалов по тестированию и отладке! Как сказал известный американский автор книг по разработке ПО Джон Роббинс: "Даже если у вас есть специальное образование, бьюсь об заклад, что вы никогда не сталкивались со специальным курсом, посвященным отладке" (см. PC Week/RE, № 9/2004, с. 61).

Однако ситуация несколько меняется, одним из свидетельств чего являются проведенные в конце февраля в Москве компанией "Аплана" при поддержке московского представительства IBM практические семинары "Эффективная организация процессов тестирования в ходе разработки и сопровождения корпоративных систем". Тема оказалась настолько актуальной, что Центр технологий IBM не смог вместить всех желающих в один день, поэтому семинар пришлось проводить дважды. Изначально мероприятие было ориентировано на ИТ-подразделения корпораций, ведущие собственные внутрифирменные разработки, однако большой интерес к нему проявили и специализированные фирмы - создатели заказного и тиражируемого ПО. В общей сложности в семинарах приняли участие более 80 руководителей и специалистов корпоративных и ведомственных центров разработки и внедрения, а также ИТ-компаний.

Следует подчеркнуть, что, хотя в качестве инструментальной базы использовались продукты IBM Rational, основной акцент семинара был сделан на организационные и методические вопросы тестирования в контексте общего процесса разработки ПО и бизнес-функционирования предприятий в целом. Во многом именно такой подход предопределил активное участие специалистов в данном мероприятии.

Особенности организации тестирования

В первую очередь нужно отметить, что вопросы тестирования следует рассматривать в контексте всего жизненного цикла ПО, начиная от разработки ТЗ и заканчивая сопровождением приложений. Как известно, тестирование - это процедура обнаружения дефектов (ошибок) ПО до его промышленного использования. Очевидно, что трудоемкость такой работы связана с количеством самих ошибок, в связи с чем надо четко выделить основные причины их появления:

  • неудовлетворительное организационное, методическое и техническое обеспечение всего процесса разработки;
  • сжатые сроки исполнения проекта;
  • сложность проекта, большое число требований и их изменений по ходу работы;
  • недостаточная квалификация разработчиков.

Есть еще один важный момент. Тестирование, в свою очередь, является лишь составляющей частью отладки - процесса доводки ПО после его написания до эксплуатационного состояния. Процесс этот включает две основные процедуры: обнаружение ошибок (тестирование) и поиск и устранение их причин. Однако, даже учитывая все возможные взаимосвязи этих работ (например, поиск причин ошибок требует проведения специального дополнительного тестирования), нужно подчеркнуть, что тестирование является достаточно автономным, независимым этапом жизненного цикла ПО. При этом подчеркнем, что повышение качества разработки (которое обратно пропорционально количеству ошибок в приложении) напрямую снижает затраты на устранение ошибок, но на объем тестирования влияет совсем не так сильно: его нужно проводить в любом случае и желательно "по полной программе".

Понятно также, что организация и методика тестирования в значительной степени зависят от целевого назначения разработки: коробочный продукт, заказной проект или внутрифирменный. И тут стоит еще раз обратить внимание на то, что прошедшие семинары были адресованы в первую очередь разработчикам ИТ-подразделений заказчиков. Объяснение этому простое: во-первых, объем разработок, выполняемых в таких компаниях и в специализированных ИТ-фирмах, по крайней мере соизмерим; во-вторых, в силу ряда причин задачи тестирования при выполнении внутрифирменных проектов достаточно специфичны и очень актуальны.

Говоря об особенностях процедур тестирования в ИТ-подразделениях, наверное, надо выделить три основных, весьма противоречивых аспекта.

  1. Объем тестирования очень велик. Дело в том, что именно в случае внутрифирменных разработок очень часто вносятся изменения (многие слушатели семинара говорили о непрерывном потоке корректировок по запросам подразделений-заказчиков). А ведь, как известно, классическое правило разработки ПО гласит: изменение одной строки кода требует повторного проведения полного цикла тестирования.
  2. Как это ни цинично звучит, но разработчики очень часто не заинтересованы в снижении количества ошибок в ПО, передаваемом в эксплуатацию. Руководство компаний оценивает работу ИТ-отдела в первую очередь по его умению уложиться в бюджет (время и деньги), а проблемы эксплуатации программ его волнуют значительно меньше. Поэтому получается, что увеличение объемов тестирования повышает издержки ИТ-подразделения без выделения соответствующих ресурсов со стороны начальства ** .
  3. Проведение качественного тестирования требует наличия специалистов и инструментов соответствующего профиля. А из п. 2 следует, что ИТ-подразделениям держать собственные группы тестировщиков просто невыгодно.

Общие вопросы тестирования

Программа мероприятия включала как методические аспекты организации процессов тестирования, так и практические рекомендации по их применению. Ключевая идея в целом выглядит достаточно очевидной: повышение качества тестирования ПО при сохранении разумного уровня затрат на его проведение должно обеспечиваться за счет современных промышленных методов (организационных и технических) выполнения этих работ.

В ряде докладов специалистов компании "Аплана" речь, в частности, шла о типовых ситуациях, подкрепленных реальными примерами того, как можно уменьшить затраты на реализацию программных проектов (в том числе за счет выбора оптимальной конфигурации оборудования) и снизить бизнес-риски, правильно организовав процессы тестирования и использования соответствующих автоматизированных средств.

Рамки статьи не позволяют изложить вопросы применения конкретных инструментов детально. Более полезным сейчас представляется рассмотреть некоторые общие вопросы классификации задач тестирования. Они обсуждались в одном из докладов, но, как мне показалось, некоторые важные моменты в нем не были затронуты. Поэтому далее я приведу свои соображения, опираясь на мнение выступивших на семинаре экспертов.

Тестирование пронизывает весь жизненный цикл ПО, начиная от проектирования и заканчивая неопределенно долгим этапом эксплуатации. Эти работы напрямую связаны с задачами управления требованиями и изменениями, ведь целью тестирования является как раз возможность убедиться в соответствии программ заявленным требованиям.

Тестирование - процесс пошаговый. Наверное, имеет смысл разделить проверку работоспособности программ в ходе непосредственного написания кода (самим программистом) и после завершения основного этапа кодирования (скорее всего, специальными тестировщиками). Тут можно вспомнить о золотом правиле программирования: написание каждых 20-30 строк кода (тем более законченных процедур, функций) должно сопровождаться проверкой их работоспособности, хотя бы в каком-то основном режиме. В то же время нужно подчеркнуть и важное различие в проведении тестирования в ходе кодирования и по его завершении: в первом случае продолжать написание программы (а также запуск других тестовых примеров) желательно только после устранения ошибки, во втором осуществляется пакетное выполнение серии текстов с простой фиксацией их результатов.

Тестирование - процесс также итерационный. После обнаружения и исправления каждой ошибки обязательно следует повторение тестов, чтобы убедиться в работоспособности программы. Более того, для идентификации причины обнаруженной проблемы может потребоваться проведение специального дополнительного тестирования. При этом нужно всегда помнить о фундаментальном выводе, сделанном профессором Эдсжером Дейкстрой в 1972 г: "Тестирование программ может служить доказательством наличия ошибок, но никогда не докажет их отсутствие!".

Различные виды тестирования можно классифицировать и по следующим основным характеристикам (хотя любая категоризация является достаточно условной).

Функциональное и нагрузочное тестирование. Работы первого вида можно отнести к традиционным - проверка ПО на соответствие требованиям по функционалу *** . В последние годы заметно возросла актуальность относительно новых задач, таких, например, как анализ совместимости разрабатываемого продукта с различными программными и аппаратными платформами, приложениями и пр. Второй тип обычно связывают с задачами оценки производительности и масштабирования, но на самом деле он затрагивает гораздо более широкий круг проблем; выявление узких мест в коде программы, обнаружение "утечек" ресурсов и т. д.

Компонентное и интеграционное тестирование. Очевидно, что первый вид тестирования выполняется на более ранних этапах разработки (по мере создания законченных модулей), второй - на завершающем этапе. Принципиальное их различие заключается в том, что компонентное в основном базируется на методах "белого ящика" (учета внутренней логики и структуры программы), а интеграционное - на методах "черного ящика" (знание только внешних спецификаций). Соответственно существенная часть работы по проведению тестирования в первом случае ложится на проектировщиков и разработчиков ПО, во втором - на независимых тестеров.

Ручное и автоматизированное тестирование. По мере повышения сложности проекта доля задач, решаемых с помощью автоматизированных методов (использование скриптов, программ-имитаторов и пр.), неуклонно растет. Подавляющее число задач нагрузочного тестирования может решаться исключительно с их помощью.

Наверное, имеет смысл выделить тестирование текущей конфигурации системы и тестирование с учетом ее возможного развития. Анализ возможных проблем в будущем чаще всего связывается сегодня с задачами масштабирования, например повышения нагрузки на систему в результате увеличения числа пользователей. Хотя конечно же тут нужно иметь в виду более широкий круг вопросов, в частности перспективы смены платформы. Хотелось бы при этом подчеркнуть, что оценка масштабирования может (и должна!) производиться не только с помощью тестирования реального приложения, но и методами системного моделирования на уровне общей структуры ПО (о таком подходе в последние годы что-то стали забывать!).

Решение проблемы - центры тестирования

Как уже было сказано, ведущую роль в вопросах тестирования играют методология и организационная составляющая. Что же касается инструментария, то его роль в этом процессе вторична и выбор того или иного продукта для автоматизации задач тестирования определяется уже в зависимости от целей и специфики проекта, существующих предпочтений заказчика, бюджета. На рынке сейчас представлен целый спектр средств автоматизированного тестирования, в котором лидируют IBM Rational, Mercury, Segue, Compuware.

В рамках семинара специалистами компании "Аплана" рассматривались возможности автоматизированного тестирования на примере средств тестирования IBM Rational, которые в настоящее время получили значительное распространение среди российских разработчиков (см. врезку "Методология и инструментарий IBM Rational"). Обсуждались также различные сценарии их применения при создании ПО корпоративного уровня. Среди конкретных программных продуктов особое внимание было уделено наиболее популярной сегодня системе IBM Rational Robot.

Однако, несмотря на важность применения правильных методов и инструментов, возможно, более актуальным является изменение общего позиционирования работ по тестированию в общей структуре процесса разработки. В частности, это подразумевает необходимость выделения тестирования в отдельную услугу, реализуемую на внутрифирменном уровне или в режиме аутсорсинга.

"Аплана", специализируясь на разработке заказного ПО, осознала необходимость такого подхода на собственном опыте. В компании в соответствии с общепринятыми стандартами управления качеством была изначально сформирована собственная служба, которую год назад преобразовали в Центр тестирования, не только обеспечивающий решение внутренних задач своей фирмы, но и предоставляющий услуги внешним организациям.

Моделям взаимодействия клиентов с Центром тестирования и рассмотрению конкретных проектов было посвящено отдельное выступление на семинаре и, судя по реакции слушателей, такие предложения заинтересовали многих. И это не случайно, поскольку аутсорсинг услуг по тестированию является пока достаточно новым. Перечислим основные возможные модели взаимодействия:

  • выполнение полного комплекса работ по тестированию ПО или отдельных его этапов на стенде Центра или на площадке заказчика;
  • консалтинг и обучение заказчиков по вопросам организации процессов тестирования внутри организации;
  • аудит тестирования, проводимого сторонними компаниями;
  • аутсорсинг технических и программных ресурсов для проведения тестирования.

В заключение стоит отметить еще один любопытный момент: проведя семинары, компания "Аплана" одной из первых в нашей стране фактически объявила о продвижении нового вида услуг в области разработки ПО. Первопроходцы же довольно часто попадают в двойственное положение. Так и на этом семинаре: бесплатный курс консалтинга и обучения пришлось дать не только потенциальным заказчикам, но и конкурентам...

* Не забывая о значимости вопросов тестирования, нужно помнить о том, что один из классиков современных методов разработки ПО, голландский профессор Эдсжер Дейкстра еще в конце 60-х годов прошлого столетия обосновал необходимость применения методов структурного программирования, исходя именно из задачи снижения трудозатрат на тестирование.

** Специфика тестирования заключается еще и в том, что в отличие от других этапов разработки ПО, имеющих достаточно формальные критерии их окончания, данный процесс, в общем случае, бесконечен. Ведь, как известно, "каждая последняя найденная ошибка является на самом деле предпоследней". Правильно определить реально необходимый объем тестирования - это отдельная непростая задача.

*** Говоря о тестировании, надо также обязательно упомянуть о важности верификации ПО (систематической процедуры проверки правильности). Тонкое различие между этими понятиями заключается в том, что тестирование базируется на возможности сравнения полученных результатов с эталонными. Однако есть достаточно большой класс задач, когда эталонных данных попросту нет. Классический пример такого варианта - построение сложных математических моделей с решением десятков тысяч дифференциальных уравнений, хотя аналогичные ситуации возникают и тогда, когда имеешь дело с бизнес-приложениями. В этом случае требуется включение в ПО дополнительных функций и проведение специальных исследований, чтобы у пользователя появилась уверенность (пусть даже не 100-%), что программа действительно работает правильно.

Методология и инструментарий IBM Rational
Общая методология разработки ПО Rational Unified Process выделяет довольно большой набор видов тестирования (см. рисунок). Их можно с известной долей условности разделить следующим образом:
Функциональное тестирование (Function testing)
  • тестирование целостности данных (Data integrity testing);
  • тестирование на разных платформах (Configuration testing);
  • тестирование отказоустойчивости (Failover & recovery testing);
  • тестирование доступа (Security testing);
  • инсталляционное тестирование (Installation testing);
  • тестирование пользовательского интерфейса (User interface testing)
Нагрузочное тестирование (Load testing)
  • профилирование производительности (Performance profiling);
  • тестирование цикла работы (Business cycle testing);
  • тестирование при большой пользовательской нагрузке (Stress testing);
  • тестирование на больших объемах данных (Volume testing).
Для решения этих задач предлагаются следующие основные инструменты:
  • IBM Rational TestManager - управление тестированием;
  • IBM Rational PurifyPlus (Purify, PureCoverage, Quantify) - анализ работы системы в режиме RunTime;
  • IBM Rational Robot - функциональное и нагрузочное тестирование;
  • IBM Rational TestFactory - автоматизация создания тестов;
  • IBM Rational XDE Tester - функциональное тестирование Java и web-приложений.
Из сопоставления двух этих списков видно, что каждый продукт покрывает несколько типов тестирования. Вот краткая характеристика этих инструментов.
IBM Rational TestManager необходим на всех этапах тестирования, предоставляет в распоряжение команды общие средства планирования, проектирования, исполнения и анализа тестов с использованием единой панели управления. Данный продукт имеет собственное хранилище данных, что обеспечивает более качественное управление версиями. Любой инструмент тестирования ПО, обладающий собственным API, не сложно интегрировать в единую систему, при этом может поддерживаться большинство исполняющих платформ тестирования.
IBM Rational PurifyPlus включает три инструмента, предназначенных для анализа в режиме реального времени приложений и компонентов, разработанных с помощью Visual C/C++, C#, VB, VB .NET, Java, Java .NET. Purify обеспечивает автоматическое выявление ошибок, связанных с памятью, при этом выделяются источник и расположение ошибки. Если доступен исходный код, то его можно исправить непосредственно из Purify. Запатентованная технология Object Code Insertion позволяет выявлять ошибки доступа к памяти не только в исходном коде, но и в двоичных программных компонентах (DLL, объекты COM/DCOM, ODBC). PureCoverage - средство автоматического определения непротестированного кода. Quantify выполняет оценку производительности, определяя узкие места приложений и компонентов, как с исходным кодом, так и без него. Встроенные средства анализа данных помогают проводить сравнение результатов тестовых прогонов для различных вариантов кода.
IBM Rational Robot - средство создания, изменения и выполнения автоматизированных тестов Интернет-приложений, ERP-систем и клиент-серверных решений. С его помощью обеспечивается объектно-уровневая поддержка при создании приложений на различных средствах разработки. Сценарии функциональных тестов генерируются в среде SQABasic, синтаксически совместимой с VB; встроенный редактор позволяет расширить сценарии тестов необходимыми процедурами и логическими условиями. Предусмотрена возможность создания специализированных тестов для различных типов программных объектов. Для формирования скриптов используется собственный Си-подобный язык.
IBM Rational TestFactory - инструмент автоматической генерации скриптов тестирования посредством всестороннего анализа запущенного приложения для выявления дефектов надежности. Поскольку в программах имеется огромное число путей выполнения, проблема заключается в том, чтобы создать тесты, которые проверяют полный функционал приложения за минимальное число шагов.
IBM Rational XDE Tester - специализированный инструмент для тестирования Java-приложений (J2EE, J2SE, SWT, AWT/JFC) и Web-приложений (HTML, DHTML, XML, JavaScript, апплеты Java). Текстовые сценарии пишутся на Java, технология ScriptAssure обеспечивает проверку достоверности динамических данных. Среда тестирования реализована в оболочке Eclipse, при этом имеется возможность встраивания инструмента в WebSphere Studio и Rational XDE Developer.

Тестирование дефектов
Целью тестирования дефектов является выявление в программной системе скрытых дефектов до того, как она будет сдана заказчику. Тестирование дефектов противоположно аттестации, в ходе которой проверяется соответствие системы своей спецификации.

Во время аттестации система должна корректно работать со всеми заданными тестовыми данными. При тестировании дефектов запускается такой тест, который вызывает некорректную работу программы и, следовательно, выявляет дефект. Обратите внимание на эту важную особенность: тестирование дефектов демонстрирует наличие, а не отсутствие дефектов в программе .

Общая модель процесса тестирования дефектов показана на рисунке 1. Тестовые сценарии - это спецификации входных тестовых данных и ожидаемых выходных данных плюс описание процедуры тестирования. Тестовые данные иногда генерируются автоматически. Автоматическая генерация тестовых сценариев невозможна, поскольку результаты проведения теста не всегда можно предсказать заранее.

Рисунок 1. Процесс тестирования дефектов

Полное тестирование, когда проверяются все возможные последовательности выполнения программы, нереально. Поэтому тестирование должно базироваться на некотором подмножестве всевозможных тестовых сценариев. Существуют различные методики выбора этого подмножества. Например, тестовые сценарии могут предусмотреть выполнение всех операторов в программе, по меньшей мере, один раз. Альтернативная методика отбора тестовых сценариев базируется на опыте использования подобных систем, в этом случае тестированию подвергаются только определенные средства и функции работающей системы.

Из опыта тестирования (и эксплуатации) больших программных продуктов, таких как текстовые процессоры или электронные таблицы, вытекает, что необычные комбинации функций иногда могут вызывать ошибки, но наиболее часто используемые функции всегда работают правильно .

Тестирование методом черного ящика
Тестирование методом черного ящика базируется на том, что все тесты основываются на спецификации системы или ее компонентов. Система представляется как «черный ящик», поведение которого можно определить только посредством изучения ее входных и соответствующих выходных данных. Другое название этого метода - функциональное тестирование, связано с тем, что испытатель проверяет не реализацию ПО медиаобразовательного портала, а только его выполняемые функции .

На рисунке 2 показана модель системы, тестируемая методом черного ящика. Этот метод также применим к системам, организованным в виде набора функций или объектов. Испытатель подставляет в компонент или систему входные данные и исследует соответствующие выходные данные. Если выходные данные не совпадают с предсказанными, значит, во время тестирования ПО успешно обнаружена ошибка (дефект).

Основная задача испытателя - подобрать такие входные данные, чтобы среди них с высокой вероятностью присутствовали элементы множества 1е. Во многих случаях выбор тестовых данных основывается на предварительном опыте испытателя. Однако дополнительно к этим эвристическим знаниям можно также использовать систематический метод выбора входных данных, обсуждаемый в следующем разделе .

Рисунок 2. Тестирование методом черного ящика

Структурное тестирование
Метод структурного тестирования (рисунок 3) предполагает создание тестов на основе структуры системы и ее реализации. Такой подход иногда называют тестированием методом «белого ящика», «стеклянного ящика» или «прозрачного ящика», чтобы отличать его от тестирования методом «черного ящика» .

Рисунок 3. Структурное тестирование

Как правило, структурное тестирование применяется к относительно небольшим программным элементам, например, к подпрограммам или методам, ассоциированным с объектами. При таком подходе испытатель анализирует программный код и для получения тестовых данных использует знания о структуре компонента. Например, из анализа кода можно определить, сколько контрольных тестов нужно выполнить для того, чтобы в процессе тестирования все операторы выполнились, по крайней мере, один раз .

Тестирование ветвей
Метод структурного тестирования, при котором проверяются все независимо выполняемые ветви компонента или программы. Если выполняются все независимые ветви, то и все операторы должны выполняться, по крайней мере, один раз. Более того, все условные операторы тестируются как с истинными, так и с ложными значениями условий. В объектно-ориентированных системах тестирование ветвей используется для тестирования методов, ассоциированных с объектами.

Количество ветвей в программе обычно пропорционально ее размеру. После интеграции программных модулей в систему методы структурного тестирования оказываются невыполнимыми. Поэтому методы тестирования ветвей, как правило, используются при тестировании отдельных программных элементов и модулей .

При тестировании ветвей не проверяются все возможные комбинации ветвей программы. Не считая самых тривиальных программных компонентов без циклов, подобная полная проверка компонента оказывается нереальной, так как в программах с циклами существует бесконечное число возможных комбинаций ветвей. В программе могут быть дефекты, которые проявляются только при определенных комбинациях ветвей, даже если все операторы программы протестированы (т.е. выполнились) хотя бы один раз.

Метод тестирования ветвей основывается на графе потоков управления программы. Этот граф представляет собой скелетную модель всех ветвей программы. Граф потоков управления состоит из узлов, соответствующих ветвлениям решений, и дуг, показывающих поток управления. Если в программе нет операторов безусловного перехода, то создание графа - достаточно простой процесс. При построении графа потоков все последовательные операторы (операторы присвоения, вызова процедур и ввода-вывода) можно проигнорировать. Каждое ветвление операторов условного перехода (if-then-else или case) представлено отдельной ветвью, а циклы обозначаются стрелками, концы которых замкнуты на узле с условием цикла. На рисунке 4 показаны циклы и ветвления в графе потоков управления программы бинарного поиска .

Рисунок 4. Граф потоков управления бинарного поиска

Цель структурного тестирования - удостовериться, что каждая независимая ветвь программы выполняется хотя бы один раз. Независимая ветвь программы - это ветвь, которая проходит, по крайней мере, по одной новой дуге графа потоков. В терминах программы это означает ее выполнение при новых условиях. С помощью трассировки в графе потоков управления программы бинарного поиска можно выделить следующие независимые ветви :
1, 2, 3, 8, 9
1, 2, 3, 4, 6, 7, 2
1, 2, 3, 4, 5, 7, 2
1, 2, 3, 4, 6, 7, 2, 8, 9

Если все эти ветви выполняются, можно быть уверенным в том, что, во-первых, каждый оператор выполняется, по крайней мере, один раз и, во-вторых, каждая ветвь выполняется при условиях, принимающих как истинные, так и ложные значения.

Количество независимых ветвей в программе можно определить, вычислив цикломатическое число графа потоков управления программы . Дипломатическое число С любого связанного графа G вычисляется по формуле:

С (G) = количество дуг – количество узлов + 2

Для программ, не содержащих операторов безусловного перехода, значение цикломатического числа всегда больше количества проверяемых условий. В составных условиях, содержащих более одного логического оператора, следует учитывать каждый логический оператор. Например, если в программе шесть операторов if и один цикл while, то цикломатическое число равно 8. Если одно условное выражение является составным выражением с двумя логическими операторами (объединенными операторами and или or), то цикломатическое число будет равно 10. Цикломатическое число программы бинарного поиска равно 4.

После определения количества независимых ветвей в программе путем вычисления цикломатического числа разрабатываются контрольные тесты для проверки каждой ветви. Минимальное количество тестов, требующееся для проверки всех ветвей программы, равно цикломатическому числу .

Проектирование контрольных тестов для программы бинарного поиска не вызывает затруднений. Однако, если программы имеют сложную структуру ветвлений, трудно предсказать, как будет выполняться какой-либо отдельный контрольный тест. В таких случаях используется динамический анализатор программ для составления рабочего профиля программы.

Динамические анализаторы программ - это инструментальные средства, которые работают совместно с компиляторами. Во время компилирования в сгенерированный код добавляются дополнительные инструкции, подсчитывающие, сколько раз выполняется каждый оператор программы. Чтобы при выполнении отдельных контрольных тестов увидеть, какие ветви в программе выполнялись, а какие нет, распечатывается рабочий профиль программы, где видны непроверенные участки .

Тестирование сборки
После того как протестированы все отдельные программные компоненты, выполняется сборка системы, в результате чего создается частичная или полная система. Процесс интеграции системы включает сборку и тестирование полученной системы, в ходе которого выявляются проблемы, возникающие при взаимодействии компонентов. Тесты, проверяющие сборку системы, должны разрабатываться на основе системной спецификации, причем тестирование сборки следует начинать сразу после создания работоспособных версий компонентов системы.

Во время тестирования сборки возникает проблема локализации выявленных ошибок. Между компонентами системы существуют сложные взаимоотношения, и при обнаружении аномальных выходных данных бывает трудно установить источник ошибки. Чтобы облегчить локализацию ошибок, следует использовать пошаговый метод сборки и тестирования системы. Сначала следует создать минимальную конфигурацию системы и ее протестировать. Затем в минимальную конфигурацию нужно добавить новые компоненты и снова протестировать, и так далее до полной сборки системы .

В примере на рисунке 5 последовательность тестов T1, Т2 и ТЗ сначала выполняется в системе, состоящей из модулей А и В (минимальная конфигурация системы). Если во время тестирования обнаружены дефекты, они исправляются. Затем в систему добавляется модуль С. Тесты T1, T2 и ТЗ повторяются, чтобы убедиться, что в новой системе нет никаких неожиданных взаимодействий между модулями А и В. Если в ходе тестирования появились какие-то проблемы, то, вероятно, они возникли во взаимодействиях с новым модулем С. Источник проблемы локализован, таким образом упрощается определение дефекта и его исправление. Затем система запускается с тестами Т4. На последнем шаге добавляется модуль D и система тестируется еще раз выполняемыми ранее тестами, а затем новыми тестами Т5 .

Рисунок 5. Тестирование сборки

Конечно, на практике редко встречаются такие простые модели. Функции системы могут быть реализованы в нескольких компонентах. Тестирование новой функции, таким образом, требует интеграции сразу нескольких компонентов. В этом случае тестирование может выявить ошибки во взаимодействиях между этими компонентами и другими частями системы. Исправление ошибок может оказаться сложным, так как в данном случае ошибки влияют на целую группу компонентов, реализующих конкретную функцию. Более того, при интеграции нового компонента может измениться структура взаимосвязей между уже протестированными компонентами. Вследствие этого могут выявиться ошибки, которые не были выявлены при тестировании более простой конфигурации .

Инструментальные средства тестирования
Тестирование - дорогой и трудоемкий этап разработки программных систем. Поэтому создан широкий спектр инструментальных средств для поддержки процесса тестирования, которые значительно сокращают расходы на него.

На рисунке 6 показаны возможные инструментальные средства тестирования и отношения между ними.

1. Организатор тестов. Управляет выполнением тестов. Он отслеживает тестовые данные, ожидаемые результаты и тестируемые функции программы.
2. Генератор тестовых данных. Генерирует тестовые данные для тестируемой программы. Он может выбирать тестовые данные из базы данных или использовать специальные шаблоны для генерации случайных данных необходимого вида.
3. Оракул. Генерирует ожидаемые результаты тестов. В качестве оракулов могут выступать предыдущие версии программы или исследуемого объекта. При тестировании параллельно запускаются оракул и тестируемая программа и сравниваются результаты их выполнения.
4. Компаратор файлов. Сравнивает результаты тестирования с результатами предыдущего тестирования и составляет отчет об обнаруженных различиях. Компараторы особенно важны при сравнении различных версий программы. Различия в результатах указывают на возможные проблемы, существующие в новой версии системы.
5. Генератор отчетов. Формирует отчеты по результатам проведения тестов.
6. Динамический анализатор. Добавляет в программу код, который подсчитывает, сколько раз выполняется каждый оператор. После запуска теста создает исполняемый профиль, в котором показано, сколько раз в программе выполняется каждый оператор.
7. Имитатор. Существует несколько типов имитаторов. Целевые имитаторы моделируют машину, на которой будет выполняться программа. Имитатор пользовательского интерфейса - это программа, управляемая сценариями, которая моделирует взаимодействия с интерфейсом пользователя. Имитатор ввода/вывода генерирует последовательности повторяющихся транзакций .

Рисунок 6. Инструментальные средства тестирования

Требования, предъявляемые к процессу тестирования больших систем, зависят от типа разрабатываемого приложения. Поэтому инструментальные средства тестирования неизменно приходится адаптировать к процессу тестирования конкретной системы.

Для создания полного комплекса инструментального средства тестирования, как правило, требуется много сил и времени. Весь набор инструментальных средств, показанных на рис. 6, используется только при тестировании больших систем. Для таких систем полная стоимость тестирования может достигать 50% от всей стоимости разработки системы. Вот почему выгодно инвестировать разработку высококачественных и производительных CASE-средств тестирования .

В этом разделе мы опишем различные виды тестирования программного обеспечения. Различные виды тестирования ПО проводятся для достижения разных целей при тестировании программного приложения. Вы также можете прочитать о различных методах тестирования программного обеспечения, которые могут быть связаны с различными видами тестирования ПО. Наши помогут Вам стать специалистом в данной области.

Ad-hoc тестирование

Этот вид тестирования ПО является неформальным и неструктурированным и может выполняться любым заинтересованным лицом, без ссылок на какие-либо тестовые сценарии или тестовые документы.

Лицо, проводящее Ad-hoc-тестирование, хорошо понимает рабочие процессы приложения, при этом пытается найти дефекты и взломать ПО . Специальные проверки предназначены для обнаружения дефектов, которые не были обнаружены в существующих тестовых случаях.

Приемочное тестирование

Приемочное тестирование — это формальный вид тестирования программного обеспечения, который выполняется конечным потребителем, когда разработчики предоставили запрашиваемые услуги. Целью этого тестирования является проверка соответствия ПО бизнес-требованиям потребителей и требованиям, представленным ранее. Приемочные тестирования обычно документируются в начале работы (в agile) и помогают тестировщикам и разработчикам улучшить свои знания и умения в данной области.

Что такое приемочное тестирование в Agile?

Тестирование доступности

При тестировании доступности цель тестирования заключается в определении, можно ли легко получить доступ к содержимому веб-сайта людям с ограниченными возможностями. Включает в себя различные проверки, такие как проверка цвета и контраста (для людей с дальтонизмом), размер шрифта для слабовидящих, четкий и лаконичный текст, который легко читать и понимать.

Agile тестирование

Agile Testing — это вид тестирования программного обеспечения, который учитывает гибкий подход и методы разработки программного обеспечения. В среде разработки Agile тестирование является неотъемлемой частью разработки ПО и выполняется параллельно с написанием кода. Agile тестирование позволяет проводить постепенное написание кода и его тестирование.

Тестирование API

Тестирование API — это вид тестирования, который похож на модульное тестирование. Каждый из программных интерфейсов API тестируется в соответствии со спецификацией API. Тестирование API в основном выполняется командой тестировщиков. Требует понимания как функциональности API, так и наличия хороших навыков в программировании.

Автоматизированное тестирование

Это подход к тестированию, который использует инструменты тестирования и / или программирование для запуска тестовых примеров с использованием программного обеспечения или специально разработанных тестовых утилит. Большинство автоматизированных средств представляют собой средства записи и воспроизведения, однако есть инструменты, которые требуют написания обширных сценариев или программирования для автоматизации тестовых сценариев.

Парное тестирование

Другими словами, «парное тестирование» — это тестирование методом «черного ящика» и метод тестирования, при котором для каждого входа тестируется пара входных данных, что помогает тестировать работу ПО, как и ожидалось, со всеми возможными комбинациями ввода.

Бета-тестирование

Это формальный вид тестирования программного обеспечения, который выполняется конечными потребителями перед выпуском или передачей программного обеспечения пользователям. Успешное завершение бета-тестирования означает согласие пользователя с программным обеспечением.

Тестирование Черного Ящика

Тестирование черного ящика — это вид тестирования программного обеспечения, когда от тестировщиков не требуется знать кодировку или внутреннюю структуру программного обеспечения. Метод тестирования «черного ящика» основан на тестировании ПО с различными входами и сравнении результатов с ожидаемыми.

Тестирование обратной совместимости

Вид тестирования программного обеспечения, который проводится для проверки того, что более новая версия программного обеспечения может успешно работать поверх предыдущей версии ПО и что новая версия программного обеспечения прекрасно работает со структурой таблиц, структурами данных и файлами, созданными предыдущей версии ПО.

Тестирование граничных значений

Тестирование граничных значений — это вид тестирования, основанный на концепции «агрегации ошибок на границах». Тестирование проводится методом тщательного тестирования дефектов в граничных значениях. Если в поле принимается значение от 1 до 100, то тестирование выполняется для значений 0, 1, 2, 99, 100 и 101.

Метод тестирования «большой взрыв»

Это один из подходов интеграционного тестирования. Метод тестирования «большой взрыв» основывается на том, что все или большинство модулей разрабатываются и затем соединяются вместе.

Интеграционное тестирование Снизу вверх (восходящее тестирование)

Интеграционное тестирование Снизу вверх — это метод интеграционного тестирования, в котором тестирование начинается с меньших частей или подсистем системы, и заканчивается полным охватом всей программной системы. Интеграционное тестирование Снизу вверх начинается с небольших частей программного обеспечения и в конечном итоге масштабируется с точки зрения размера, сложности и полноты.

Тестирование ветвей

Является методом тестирования белого ящика для разработки тестовых сценариев для тестирования кода для каждого условия ветвления. Применяется во время модульного тестирования.

Тестирование совместимости браузера

Это один из подвидов тестирования совместимости, выполняемый командой тестирования. Тестирование совместимости браузера выполняется для веб-приложений в комбинациях с различными браузерами и операционными системами.

Тестирование совместимости

Тестирование на совместимость является одним из видов тестов, выполняемых группой тестировщиков. Тестирование совместимости проверяет, можно ли запускать программное обеспечение на другом оборудовании, операционной системе, базах данных, веб-серверах, серверах приложений, аппаратных периферийных устройствах, эмуляторах, различной конфигурации, процессоре, различных браузерах и различных версиях браузеров и т.д.

Тестирование компонентов

Этот тип тестирования программного обеспечения выполняется разработчиками. Тестирование компонентов выполняется после завершения модульного тестирования. Компонентное тестирование включает в себя тестирование группы единиц как кода вместе в целом, а не тестирование отдельных функций и методов.

Тестирование покрытия условий

Тестирование покрытия условий — это методика тестирования, используемая во время модульного тестирования, где разработчик тестирует все условия, такие как if, if-else, case и т. д. в тестируемом модуле кода.

Динамическое тестирование

Тестирование может быть выполнено методом статического тестирования и динамического тестирования. Динамическое тестирование — это подход к тестированию, когда тестирование может быть выполнено только при извлечении кода.

Тестирование покрытия решения

Это методика тестирования, которая используется в модульном тестировании. Цель тестирования покрытия решения состоит в том, чтобы осуществить и проверить каждый блок принятия решения в коде, например. If, if-else, case.

Сквозное тестирование

Сквозное тестирование выполняется командой тестировщиков, и основное внимание уделяется тестированию сквозных потоков. Прямо от создания заказа до составления отчетов или создания заказа до возврата товара и т. д. и проверки. Сквозное тестирование обычно направлено на то, чтобы имитировать реальные сценарии жизни и их воплощение. Сквозное тестирование включает в себя тестирование потока информации между приложениями.

Исследовательское тестирование

Исследовательское тестирование — это неофициальный вид тестирования, проводимый для изучения ПО, в то же время ищущего ошибки или поведение приложения, которое кажется неочевидным. Тестирование обычно проводится тестировщиками, но может быть сделано другими заинтересованными лицами, а также бизнес-аналитиками, разработчиками, конечными пользователями и т. д., которые заинтересованы в изучении функций программного обеспечения и в то же время ищут ошибки или поведение, которое кажется неочевидным.

Эквивалентное разбиение

Эквивалентное разбиение также называется разделением эквивалентности. Разделение на классы — это методика тестирования программного обеспечения, а не вид тестирования сам по себе. Тестирование методом эквивалентного разбиения используется в тестах черного ящика и серого ящика. Эквивалентное разбиение классифицирует тестовые данные в классы эквивалентности как положительные классы эквивалентности и отрицательные классы эквивалентности, — такая классификация гарантирует тестирование как положительных, так и отрицательных условий.

Функциональное тестирование

Функциональное тестирование — формальный тип тестирования, выполняемый тестировщиками. Функциональное тестирование сосредоточено на тестировании программного обеспечения на основе документа о состоянии, случаев и требований. Функциональное тестирование является типом тестирования «черного ящика» и не требует знаний внутренней работы программного обеспечения, в отличие от тестирования «белого ящика».

Fuzz тестирование

Fuzz testing или fuzzing — это методика тестирования программного обеспечения, которая включает тестирование с непредвиденными или случайными исходными данными. Программное обеспечение тестируется на предмет ошибок или сообщений об ошибках, которые появляются из-за ошибок при вводе данных.

Тестирование графического интерфейса пользователя

Этот вид тестирования ПО направлен на тестирование графический интерфейса пользователя ПО, который должен соответствовать требованиям, указанным в макетах GUI и детально разработанных документах. Например, проверка длины и емкости полей ввода, указанных в форме, типе предоставленного поля ввода. Некоторые поля формы могут отображаться как раскрывающийся список или набор переключателей. Таким образом, GUI-тестирование обеспечивает элементы графического интерфейса программного обеспечения в соответствии с утвержденными макетами GUI, подробными проектно-техническими документами и функциональными требованиями. Большинство инструментов автоматизации функциональных тестов работают с возможностями записи и воспроизведения графического интерфейса. Это ускоряет запись сценариев и увеличивает затраты на обслуживание скриптов.

Тестирование методом «стеклянного ящика»

Тестирование стеклянного ящика — еще одно название для тестирования белого ящика. Тестирование стеклянных ящиков — это метод тестирования, который включает в себя тестирование отдельных утверждений, функций и т. д. Модульное тестирование является одним из методов тестирования стеклянного ящика.

Gorilla тестирование (хаотическое тестирование)

Этот вид тестирования программного обеспечения выполняется группой тестировщиков ПО. Цель Gorilla тестирования состоит в том, чтобы использовать одну или несколько функциональных возможностей полностью или исчерпывающе, если несколько человек испытывают одни и те же функции.

Тестирование благоприятного пути

Также известный как тестирование Золотого пути, этот вид тестирования фокусируется на успешном прохождении тестов, которые не приведут к ошибкам.

Интеграционное тестирование

Интеграционное тестирование является одним из наиболее распространенных и важных видов тестирования программного обеспечения. После того, как отдельные подразделения или компоненты будут проверены разработчиками как работающие, группа тестировщиков проведет тесты, которые проведут тестирование связи между этими единицами / компонентами или несколькими устройствами / компонентами. Существуют различные подходы к интеграционному тестированию, а именно: интеграционное тестирование сверху вниз, интеграционное тестирование снизу вверх и комбинация этих двух тестов Sand witch.

Тестирование интерфейса

Тестирование интерфейса необходимо, когда программное обеспечение обеспечивает поддержку одного или нескольких интерфейсов, таких как «Графический интерфейс пользователя», «Интерфейс командной строки» или «Интерфейс прикладного программирования», чтобы взаимодействовать со своими пользователями или другим программным обеспечением. Интерфейсы служат средой для ПО, чтобы принимать входные данные от пользователя и предоставлять выходные данные пользователю. Подход к тестированию интерфейса зависит от типа тестируемого интерфейса, такого как GUI или API или CLI.

Тестирование интернационализации

Тестирование интернационализации — это вид тестирования, который выполняется группой тестировщиков ПО, чтобы проверить, насколько программное обеспечение может поддерживать интернационализацию, т.е. использование разных языков, разных наборов символов, двухбайтовых символов и т. д. Например: Gmail — это веб-приложение, который используется людьми для работы с разными языками, одиночными или многобайтными наборами символов.

Тестирование на основе ключевых слов

Тестирование на основе ключевого слова — это скорее автоматизированный подход к тестированию программного обеспечения, чем сам вид тестирования. Тестирование на основе ключевых слов известно как тестирование на основе действий или тестирование на основе таблиц.

Нагрузочное тестирование

Нагрузочное тестирование — это вид нефункционального тестирования. Нагрузочное тестирование проводится для проверки поведения ПО в условиях нормальной и сверхпиковой нагрузки. Нагрузочное тестирование обычно выполняется с использованием автоматизированных средств тестирования. Нагрузочное тестирование предназначено для поиска уязвимых мест или проблем, которые мешают ПО выполнять свои задачи в соответствии с его максимальными рабочими нагрузками.

Тестирование локализации

Тестирование локализации — вид тестирования программного обеспечения, выполняемого тестировщиками ПО, при этом виде тестирования программное обеспечение, как ожидается, адаптируется к определенному языку, оно должно поддерживать конкретный язык, принимать ввод в этой конкретной локали, отображать шрифт, время, дату, валюту и т. д., относящиеся к определенному языку. Например, многие веб-приложения позволяют выбирать язык, например, английский, французский, немецкий или японский. Поэтому, если локаль определена или настроена в конфигурации программного обеспечения, ожидается, что программное обеспечение будет работать, как и ожидалось, с заданным языком / локалью.

Отрицательное тестирование

Этот вид подхода к тестированию ПО, который показывает поведение ПО при взломе. Другими словами, это функциональный и нефункциональный тест, который предназначен для взлома ПО, введя неправильные данные, такие как некорректная дата, время или строку, или загрузив бинарный файл, когда предполагается загрузка текстового файла или ввести огромную текстовую строку для полей ввода и т. д. Это также положительный тест на наличие ошибки.

Нефункциональное тестирование

Большинство программных продуктов созданы для удовлетворения функциональных и нефункциональных требований. Нефункциональные требования: производительность, удобство использования, локализация и т. д. Существует множество видов тестирования, таких как тестирование на совместимость, локализацию, удобство, которые выполняются для проверки нефункциональных требований.

Парное тестирование

— это методика тестирования ПО, которую могут выполнять тестировщики ПО, разработчики или бизнес-аналитики. Как следует из названия, два человека работают вместе, один занимается тестированием и другой контролирует и записывает результаты тестирования. Парное тестирование может также выполняться в комбинации тестировщика-разработчика, тестировщика-бизнес-аналитика или комбинации аналитик-бизнес-разработчик. Объединение тестировщиков и разработчиков в парном тестировании помогает быстрее обнаруживать дефекты, определять основную причину, исправлять и тестировать исправление.

Тестирование производительности

Является одним из видов тестирования ПО и частью инженерной деятельности, которая выполняется для проверки некоторых атрибутов качества ПО, таких как стабильность, надежность, доступность. Тестирование производительности выполняется командой разработчиков. В отличие от функционального тестирования, тестирование производительности выполняется для проверки нефункциональных требований. Тестирование производительности проверяет, насколько хорошо ПО работает в ожидаемых и максимальных рабочих нагрузках. Существуют различные варианты или подтипы производительности, такие как нагрузочное тестирование, стресс-тестирование, объемное тестирование, тестирование на выдержку и тестирование конфигурации.

Тестирование безопасности

Является одним из видов тестирования безопасности. Тестирование проникновения проводится для проверки того, как защищенное программное обеспечение и его среда (оборудование, операционная система и сеть) подвергаются атакам со стороны внешнего или внутреннего злоумышленника. Нарушитель может быть человеком / хакером или вредоносными программами. Pentest использует методы насильственного вторжения (путем грубой силы атаки) или использования уязвимости для получения доступа к ПО или данным, или оборудованию с целью разоблачения способов кражи, манипулирования или повреждения данных, файлов ПО или конфигурации. Тестирование безопасности — это способ этичного взлома: опытный тестировщик безопасности будет использовать те же методы и инструменты, что и хакер, но намерение тестировщика — идентифицировать уязвимость и исправить ее до того, как настоящий хакер или вредоносная программа использует уязвимость в своих целях.

Регрессионное тестирование

— это вид тестирования ПО, который выполняется тестировщиками ПО в качестве функциональных регрессионных тестов, а разработчики — в виде единичных регрессионных тестов. Целью регрессионных тестов является выявление дефектов, которые были введены для исправления дефектов или внедрения новых функций. Регрессионные тесты являются идеальными вариантами для автоматизации тестирования.

Повторное тестирование

Это тип повторного тестирования, который выполняется тестировщиками ПО как часть проверки исправления дефекта. Например, тестировщик проверяет исправление дефекта. Как только тестировщик проверит исправление дефекта как успешное, тестировщик затем повторно протестирует или проверит ту же функцию, выполнив тестовые примеры, которые были неудачны ранее.

Тестирование на основе рисков

Является одним из видов тестирования ПО и другого подхода к тестированию программного обеспечения. При тестировании на основе рисков требования и функциональность тестируемого ПО имеют приоритет как критический, высокий, средний и низкий. В этом подходе тестируются все критические и высокоприоритетные случаи, за ними следует средние. Функциональность с низким приоритетом или с низким уровнем риска тестируется в конце или может вообще не тестироваться, в зависимости от временных рамок.

Smoke тестирование (тестирование «на дым»)

Это вид тестирования, который выполняется тестировщиками ПО для проверки, является ли новая сборка, предоставленная командой разработчиков, достаточно стабильной, т. е. работают так ли основные функции, как ожидается, для проведения дальнейшего или подробного тестирования. Smoke тестирование предназначено для обнаружения дефектов «show stopper», которые могут препятствовать тестированию приложения в деталях. Smoke тестирование также известно как тестирование проверки сборки.

Тестирование защищенности

Является одним из видов тестирования ПО, выполняемого специализированной группой тестировщиков ПО. Цель тестирования защищенности — обеспечить защиту программного обеспечения от внешних или внутренних угроз со стороны людей и вредоносных программ. Тестирование защищенности в основном проверяет, насколько хорош механизм авторизации программного обеспечения, насколько сильна аутентификация, как программное обеспечение поддерживает конфиденциальность данных, как программное обеспечение поддерживает целостность данных, какова доступность программного обеспечения в случае атаки на программное обеспечение хакеров и вредоносных программ. Для тестирования безопасности необходимо наличие хороших знаний приложений, технологий, сетей, инструментов тестирования безопасности. С увеличением числа веб-приложений тестирование защищенности стало более важным, чем когда-либо.

Тестирование работоспособности

Это вид тестирования, который выполняется в основном тестировщиками, а также в некоторых проектах разработчиками. Тестирование работоспособности — это быстрая оценка ПО, среды, сети, внешних систем, и проверка программной среды на стабильность, достаточную для начала всестороннего тестирования. Тесты на работоспособность являются узкими, и в большинстве случаев не документируются.

Тестирование масштабируемости

Представляет собой нефункциональный тест, предназначенный для тестирования одного из атрибутов качества ПО, то есть «Масштабируемость». Тест масштабируемости не ориентирован только на одну или несколько функций ПО, а не на производительность ПО в целом. Тестирование масштабируемости обычно выполняется командой разработчиков. Цель тестирования масштабируемости — проверить способность ПО увеличиваться с увеличением пользователей, увеличивать транзакции, увеличивать размер базы данных и т. д. Не обязательно, чтобы производительность ПО возрастала с увеличением конфигурации оборудования. Тесты масштабируемости помогают выяснить, как гораздо большую рабочую нагрузку ПО может поддерживать с расширением базы пользователей, транзакций, хранения данных и т.д.,

Тестирование стабильности

Является нефункциональным тестом, предназначенным для тестирования одного из атрибутов качества ПО, то есть «Стабильности». Тестирование стабильности фокусируется на тестировании стабильного ПО, когда оно подвергается нагрузкам на приемлемых уровнях, пиковым нагрузкам, нагрузкам, генерируемым в пиках с большим количеством обрабатываемых данных. Тестирование масштабируемости будет включать в себя выполнение различных видов тестов производительности, таких как нагрузочное тестирование, стресс-тестирование, тестирование спайков, тестирование выдержки.

Статическое тестирование

— это форма тестирования, в подходах которой, используются пошаговые руководства для оценки правильности результатов. В статическом тестировании программный код не выполняется, а пересматривается для синтаксиса, комментирования, соглашения об именах, размера функций / методов и т. д. Статическое тестирование обычно имеет контрольные списки, по которым оцениваются результаты. Статическое тестирование может применяться для тестирования требований, дизайнов, а также для тестовых примеров с использованием таких подходов, как обзоры или пошаговые руководства.

Стресс-тестирование

Является одним из видов тестирования производительности, при котором ПО подвергается пиковым нагрузкам, чтобы наблюдать за тем, как программное обеспечение будет вести себя при пиковой нагрузке. Стресс-тестирование также проверяет поведение ПО при недостатке ресурсов, таких как процессор, память, пропускная способность сети, дисковое пространство и т. д. Стресс-тестирование позволяет проверить такой атрибут качества, как надежность.

Тестирование системы

Включает в себя несколько видов тестирования ПО, которые позволят проверить программное обеспечение в целом (программное обеспечение, аппаратное обеспечение и сеть) в соответствии с требованиями, для которых он был создан. Для завершения тестирования системы выполняются различные виды тестов (GUI-тестирование, функциональное тестирование, регрессионное тестирование, тестирование дыма, нагрузочное тестирование, стресс-тестирование, тестирование безопасности, стресс-тестирование, ad-hoc тестирование и т. д.).

Нагрузочное тестирование

Является одним из видов тестирования производительности, когда ПО подвергается нагрузке в течение значительного периода времени, тестирование на выдержку может продолжаться в течение нескольких дней или даже нескольких недель. Тестирование на выдержку — это тип тестирования, который проводится для выявления ошибок, приводящих к дегенерации производительности ПО при продолжении использования. Испытания на выдержку широко применяются для электронных устройств, которые, как ожидается, будут работать непрерывно в течение нескольких дней или месяцев или лет без перезагрузки. С растущим количеством веб-приложений тестирование на выдержку приобрело большое значение, поскольку доступность веб-приложений крайне важна для поддержки и успеха бизнеса.

Тестирование интеграции системы

Известный как SIT (вкратце), является видом тестирования, проводимого командой тестировщиков ПО. Как следует из названия, в фокус тестирования системной интеграции попадают проверка ошибок, связанных с интеграцией между различными приложениями, службами, приложениями сторонних поставщиков и т. д. В рамках SIT проверяются сквозные сценарии, для которых требуется ПО для взаимодействия (Отправлять или получать данные) с другими приложениями вверх, вниз, со сторонними приложениями.

Модульное тестирование

Это вид тестирования, который выполняется разработчиками ПО. Модульное тестирование следует методу тестирования белых полей, где разработчик будет тестировать модули исходного кода, такие как операторы, ветви, функции, методы, интерфейс в ООП (объектно-ориентированное программирование). Модульное тестирование обычно включает в себя разработку драйверов. Модульные тесты — идеальные варианты для автоматизации. Автоматизированные тесты могут выполняться как единичные регрессионные тесты для новых версий или новых версий ПО. Существует множество полезных фреймов, таких как Junit, Nunit и т. д., которые могут сделать модульное тестирование более эффективным.

Тестирование удобства использования

Является типом тестирования ПО, которое выполняется, чтобы понять, насколько ПО удобно для пользователя. Цель тестирования удобства использования заключается в том, чтобы позволить конечным пользователям использовать ПО, наблюдать за их поведением, эмоциональным откликом (понравилось ли пользователям использование программного обеспечения или они подчеркнули его использование и т. Д.) и собрать их отзывы о том, как ПО может быть более удобным для пользователя.

Приемочное тестирование пользователя

Приемочное тестирование пользователя является обязательным для любого проекта. Оно выполняется клиентами / конечными пользователями ПО. Приемочное тестирование позволяет специалистам от клиента тестировать ПО в соответствии с реальными бизнес-сценариями или реальными сценариями и проверять соответствие ПО их бизнес-требованиям.

Тестирование объема

Является нефункциональным видом тестирования, выполняемым группой инженеров по производительности. Тестирование объема — один из видов тестирования производительности. Тестирование объема выполняется для того, чтобы проверить ПО на надежность при работе с различными размерами данных, которые принимаются и обрабатываются программным обеспечением. Например, если вы собираетесь тестировать слово Microsoft, то проверка объема будет заключаться в том, чтобы увидеть, может ли MS Word открыть, сохранить и работать с файлами разных размеров (от 10 до 100 МБ).

Тестирование уязвимости

Включает выявление ПО, оборудования или сети, уязвимости, которые могут быть использованы хакерами и другими вредоносными программами, похожими на вирусы или черви. Тестирование на уязвимость является ключом к обеспечению безопасности и доступности по. С ростом числа хакеров и вредоносных программ, тестирование уязвимостей имеет решающее значение для успеха бизнеса.

Тестирование методом «белого ящика»

Тестирование методом белого ящика также известно как тестирование прозрачного или стеклянного ящика. Тестирование белого ящика — это метод тестирования ПО, который предназначен для тестирования ПО со знанием внутренней работы ПО. Этот метод используется в модульном тестировании, которое обычно выполняется разработчиками ПО. Тестирование «белого ящика» предназначено для тестирования кода, тестов, ветвей, пути, решений и потока данных в тестируемой программе. Тестирование белого ящика и тестирование «черного ящика» дополняют друг друга, поскольку каждый из подходов к тестированию может выявить определенную категорию ошибок.

Хочу отметить, что помогут познакомиться с данными методами тестирования наши .

Запишитесь прямо сейчас или закажите звонок с бесплатной консультацией!

Тестирование программного обеспечения (ПО) выявляет недоработки, изъяны и ошибки в коде, которые необходимо устранить. Его также можно определить как процесс оценки функциональных возможностей и корректности ПО с помощью анализа. Основные методы интеграции и тестирования программных продуктов обеспечивают качество приложений и заключаются в проверке спецификации, дизайна и кода, оценке надежности, валидации и верификации.

Методы

Главная цель тестирования ПО - подтверждение качества программного комплекса путем систематической отладки приложений в тщательно контролируемых условиях, определение их полноты и корректности, а также обнаружение скрытых ошибок.

Методы можно разделить на статические и динамические.

К первым относятся неформальное, контрольное и техническое рецензирование, инспекция, пошаговый разбор, аудит, а также статический анализ потока данных и управления.

Динамические техники следующие:

  1. Тестирование методом белого ящика. Это подробное исследование внутренней логики и структуры программы. При этом необходимо знание исходного кода.
  2. Тестирование методом черного ящика. Данная техника не требует каких-либо знаний о внутренней работе приложения. Рассматриваются только основные аспекты системы, не связанные или мало связанные с ее внутренней логической структурой.
  3. Метод серого ящика. Сочетает в себе предыдущие два подхода. Отладка с ограниченным знанием о внутреннем функционировании приложения сочетается со знанием основных аспектов системы.

Прозрачное тестирование

В методе белого ящика используются тестовые сценарии контрольной структуры процедурного проекта. Данная техника позволяет выявить ошибки реализации, такие как плохое управление системой кодов, путем анализа внутренней работы части программного обеспечения. Данные методы тестирования применимы на интеграционном, модульном и системном уровнях. Тестировщик должен иметь доступ к исходному коду и, используя его, выяснить, какой блок ведет себя несоответствующим образом.

Тестирование программ методом белого ящика обладает следующими преимуществами:

  • позволяет выявить ошибку в скрытом коде при удалении лишних строк;
  • возможность использования побочных эффектов;
  • максимальный охват достигается путем написания тестового сценария.

Недостатки:

  • высокозатратный процесс, требующий квалифицированного отладчика;
  • много путей останутся неисследованными, поскольку тщательная проверка всех возможных скрытых ошибок очень сложна;
  • некоторая часть пропущенного кода останется незамеченной.

Тестирование методом белого ящика иногда еще называют тестированием методом прозрачного или открытого ящика, структурным, логическим тестированием, тестированием на основе исходных текстов, архитектуры и логики.

Основные разновидности:

1) тестирование управления потоком - структурная стратегия, использующая поток управления программой в качестве модели и отдающая предпочтение большему количеству простых путей перед меньшим числом более сложных;

2) отладка ветвления имеет целью исследование каждой опции (истинной или ложной) каждого оператора управления, который также включает в себя объединенное решение;

3) тестирование основного пути, которое позволяет тестировщику установить меру логической сложности процедурного проекта для выделения базового набора путей выполнения;

4) проверка потока данных - стратегия исследования потока управления путем аннотации графа информацией об объявлении и использовании переменных программы;

5) тестирование циклов - полностью сосредоточено на правильном выполнении циклических процедур.

Поведенческая отладка

Тестирование методом черного ящика рассматривает ПО как «черный ящик» - сведения о внутренней работе программы не учитываются, а проверяются только основные аспекты системы. При этом тестировщику необходимо знать системную архитектуру без доступа к исходному коду.

Преимущества такого подхода:

  • эффективность для большого сегмента кода;
  • простота восприятия тестировщиком;
  • перспектива пользователя четко отделена от перспективы разработчика (программист и тестировщик независимы друг от друга);
  • более быстрое создание теста.

Тестирование программ методами черного ящика имеет следующие недостатки:

  • в действительности выполняется избранное число тестовых сценариев, результатом чего является ограниченный охват;
  • отсутствие четкой спецификации затрудняет разработку тестовых сценариев;
  • низкая эффективность.

Другие названия данной техники - поведенческое, непрозрачное, функциональное тестирование и отладка методом закрытого ящика.

1) эквивалентное разбиение, которое может уменьшить набор тестовых данных, так как входные данные программного модуля разбиваются на отдельные части;

2) краевой анализ фокусируется на проверке границ или экстремальных граничных значений - минимумах, максимумах, ошибочных и типичных значениях;

3) фаззинг - используется для поиска погрешностей реализации с помощью ввода искаженных или полуискаженных данных в автоматическом или полуавтоматическом режиме;

4) графы причинно-следственных связей - методика, основанная на создании графов и установлении связи между действием и его причинами: тождественность, отрицание, логическое ИЛИ и логическое И - четыре основных символа, выражающие взаимозависимость между причиной и следствием;

5) проверка ортогональных массивов, применяемая к проблемам с относительно небольшой областью ввода, превышающей возможности исчерпывающего исследования;

6) тестирование всех пар - техника, набор тестовых значений которой включает все возможные дискретные комбинации каждой пары входных параметров;

Тестирование методом черного ящика: примеры

Техника основана на спецификациях, документации, а также описаниях интерфейса программного обеспечения или системы. Кроме того, возможно использование моделей (формальных или неформальных), представляющих ожидаемое поведение ПО.

Обычно данный метод отладки применяется для пользовательских интерфейсов и требует взаимодействия с приложением путем введения данных и сбора результатов - с экрана, из отчетов или распечаток.

Тестировщик, таким образом, взаимодействует с ПО путем ввода, воздействуя на переключатели, кнопки или другие интерфейсы. Выбор входных данных, порядок их введения или очередность действий могут привести к гигантскому суммарному числу комбинаций, как это видно на следующем примере.

Какое количество тестов необходимо произвести, чтобы проверить все возможные значения для 4 окон флажка и одного двухпозиционного поля, задающего время в секундах? На первый взгляд расчет прост: 4 поля с двумя возможными состояниями - 24 = 16, которые необходимо умножить на число возможных позиций от 00 до 99, то есть 1600 возможных тестов.

Тем не менее этот расчет ошибочен: мы можем определить, что двухпозиционное поле может также содержать пробел, т. е. оно состоит из двух буквенно-цифровых позиций и может включать символы алфавита, специальные символы, пробелы и т. д. Таким образом, если система представляет собой 16-битный компьютер, то получится 216 = 65 536 вариантов для каждой позиции, результирующих в 4 294 967 296 тестовых случаев, которые необходимо умножить на 16 комбинаций для флажков, что в общей сложности дает 68 719 476 736. Если их выполнить со скоростью 1 тест в секунду, то общая продолжительность тестирования составит 2 177,5 лет. Для 32 или 64-битных систем, длительность еще больше.

Поэтому возникает необходимость уменьшить этот срок до приемлемого значения. Таким образом, должны применяться приемы для сокращения количества тестовых случаев без уменьшения охвата тестирования.

Эквивалентное разбиение

Эквивалентное разбиение представляет собой простой метод, применимый для любых переменных, присутствующих в программном обеспечении, будь то входные или выходные значения, символьные, числовые и др. Он основан на том принципе, что все данные из одного эквивалентного разбиения будут обрабатываться тем же образом и теми же инструкциями.

Во время тестирования выбирается по одному представителю от каждого определенного эквивалентного разбиения. Это позволяет систематически сокращать число возможных тестовых случаев без потери охвата команд и функций.

Другим следствием такого разбиения является сокращение комбинаторного взрыва между различными переменными и связанное с ними сокращение тестовых случаев.

Например, в (1/x) 1/2 используется три последовательности данных, три эквивалентных разбиения:

1. Все положительные числа будут обрабатываться таким же образом и должны давать правильные результаты.

2. Все отрицательные числа будут обрабатываться так же, с таким же результатом. Это неверно, так как корень из отрицательного числа является мнимым.

3. Ноль будет обрабатываться отдельно и даст ошибку «деление на ноль». Это раздел с одним значением.

Таким образом, мы видим три различных раздела, один из которых сводится к единственному значению. Есть один «правильный» раздел, дающий достоверные результаты, и два «неправильных», с некорректными результатами.

Краевой анализ

Обработка данных на границах эквивалентного разбиения может выполняться иначе, чем ожидается. Исследование граничных значений - хорошо известный способ анализа поведения ПО в таких областях. Эта техника позволяет выявить такие ошибки:

  • неправильное использование операторов отношения (<,>, =, ≠, ≥, ≤);
  • единичные ошибки;
  • проблемы в циклах и итерациях,
  • неправильные типы или размер переменных, используемых для хранения информации;
  • искусственные ограничения, связанные с данными и типами переменных.

Полупрозрачное тестирование

Метод серого ящика увеличивает охват проверки, позволяя сосредоточиться на всех уровнях сложной системы путем сочетания методов белого и черного.

При использовании этой техники тестировщик для разработки тестовых значений должен обладать знаниями о внутренних структурах данных и алгоритмах. Примерами методики тестирования серого ящика являются:

  • архитектурная модель;
  • унифицированный язык моделирования (UML);
  • модель состояний (конечный автомат).

В методе серого ящика для разработки тестовых случаев изучаются коды модулей по технике белого, а фактическое испытание выполняется на интерфейсах программы по технологии черного.

Такие методы тестирования обладают следующими преимуществами:

  • сочетание преимуществ техник белого и черного ящиков;
  • тестировщик опирается на интерфейс и функциональную спецификацию, а не на исходный код;
  • отладчик может создавать отличные тестовые сценарии;
  • проверка производится с точки зрения пользователя, а не дизайнера программы;
  • создание настраиваемых тестовых разработок;
  • объективность.

Недостатки:

  • тестовое покрытие ограничено, так как отсутствует доступ к исходному коду;
  • сложность обнаружения дефектов в распределенных приложениях;
  • многие пути остаются неисследованными;
  • если разработчик программного обеспечения уже запускал проверку, то дальнейшее исследование может быть избыточным.

Другое название техники серого ящика - полупрозрачная отладка.

1) ортогональный массив - использование подмножества всех возможных комбинаций;

2) матричная отладка с использованием данных о состоянии программы;

3) проводимая при внесении новых изменений в ПО;

4) шаблонный тест, который анализирует дизайн и архитектуру добротного приложения.

тестирования ПО

Использование всех динамических методов приводит к комбинаторному взрыву количества тестов, которые должны быть разработаны, воплощены и проведены. Каждую технику следует использовать прагматично, принимая во внимание ее ограничения.

Единственно верного метода не существует, есть только те, которые лучше подходят для конкретного контекста. Структурные техники позволяют найти бесполезный или вредоносный код, но они сложны и неприменимы к крупным программам. Методы на основе спецификации - единственные, которые способны выявить недостающий код, но они не могут идентифицировать посторонний. Одни техники больше подходят для конкретного уровня тестирования, типа ошибок или контекста, чем другие.

Ниже приведены основные отличия трех динамических техник тестирования - дана таблица сравнения между тремя формами отладки ПО.

Аспект

Метод черного ящика

Метод серого ящика

Метод белого ящика

Наличие сведений о составе программы

Анализируются только базовые аспекты

Частичное знание о внутреннем устройстве программы

Полный доступ к исходному коду

Степень дробления программы

Кто производит отладку?

Конечные пользователи, тестировщики и разработчики

Конечные пользователи, отладчики и девелоперы

Разработчики и тестировщики

Тестирование базируется на внешних внештатных ситуациях.

Диаграммы БД, диаграммы потока данных, внутренние состояния, знание алгоритма и архитектуры

Внутреннее устройство полностью известно

Степень охвата

Наименее исчерпывающая и требует минимума времени

Потенциально наиболее исчерпывающая. Требует много времени

Данные и внутренние границы

Отладка исключительно методом проб и ошибок

Могут проверяться домены данных и внутренние границы, если они известны

Лучшее тестирование доменов данных и внутренних границ

Пригодность для тестирования алгоритма

Автоматизация

Автоматические методы тестирования программных продуктов намного упрощают процесс проверки независимо от технической среды или контекста ПО. Их используют в двух случаях:

1) для автоматизации выполнение утомительных, повторяющихся или скрупулезных задач, таких как сравнение файлов в нескольких тысяч строк с целью высвобождения времени тестировщика для концентрации на более важных моментах;

2) для выполнения или отслеживания задач, которые не могут быть легко осуществимы людьми, таких как проверка производительности или анализ времени отклика, которые могут измеряться в сотых долях секунды.

Тестовые инструменты могут быть классифицированы по-разному. Следующее деление основано на поддерживаемых ими задачах:

  • управление тестированием, которое включает поддержку управления проектом, версиями, конфигурациями, риск-анализ, отслеживание тестов, ошибок, дефектов и инструменты создания отчетов;
  • управление требованиями, которое включает хранение требований и спецификаций, их проверку на полноту и многозначность, их приоритет и отслеживаемость каждого теста;
  • критический просмотр и статический анализ, включая мониторинг потока и задач, запись и хранение комментариев, обнаружение дефектов и плановых коррекций, управление ссылками на проверочные списки и правила, отслеживание связи исходных документов и кода, статический анализ с обнаружением дефектов, обеспечением соответствия стандартам написания кода, разбором структур и их зависимостей, вычислением метрических параметров кода и архитектуры. Кроме того, используются компиляторы, анализаторы связей и генераторы кросс-ссылок;
  • моделирование, которое включает инструменты моделирования бизнес-поведения и проверки созданных моделей;
  • разработка тестов обеспечивает генерацию ожидаемых данных исходя из условий и интерфейса пользователя, моделей и кода, управление ими для создания или изменения файлов и БД, сообщений, проверки данных исходя из правил управления, анализа статистики условий и рисков;
  • критический просмотр путем ввода данных через графический интерфейс пользователя, API, командные строки с использованием компараторов, помогающих определить успешные и неудавшиеся тесты;
  • поддержка сред отладки, которая позволяет заменить отсутствующее оборудование или ПО, в т. ч. симуляторы оборудования на основе подмножества детерминированного выхода, эмуляторы терминалов, мобильных телефонов или сетевого оборудования, среды для проверки языков, ОС и аппаратного обеспечения путем замены недостающих компонентов драйверами, фиктивными модулями и др., а также инструменты для перехвата и модификации запросов ОС, симуляции ограничений ЦПУ, ОЗУ, ПЗУ или сети;
  • сравнение данных файлов, БД, проверка ожидаемых результатов во время и по окончании тестирования, в т. ч. динамическое и пакетное сравнение, автоматические «оракулы»;
  • измерение покрытия для локализации утечек памяти и некорректного управления ею, оценки поведения системы в условиях симулированной нагрузки, генерации нагрузки приложений, БД, сети или серверов по реалистичным сценариям ее роста, для измерения, анализа, проверки и отчета о системных ресурсах;
  • обеспечение безопасности;
  • тестирование производительности, нагрузки и динамический анализ;
  • другие инструменты, в т. ч. для проверки правописания и синтаксиса, сетевой безопасности, наличия всех страниц веб-сайта и др.

Перспектива

С изменением тенденций в индустрии ПО процесс его отладки также подвержен изменениям. Существующие новые методы тестирования программных продуктов, такие как сервис-ориентированнае архитектура (SOA), беспроводные технологии, мобильные услуги и т. д., открыли новые способы проверки ПО. Некоторые из изменений, которые ожидаются в этой отрасли в течение следующих нескольких лет, перечислены ниже:

  • тестировщики будут предоставлять легковесные модели, с помощью которых разработчики смогут проверять свой код;
  • разработка методов тестирования, включающих просмотр и моделирование программ на раннем этапе, позволит устранить многие противоречия;
  • наличие множества тестовых перехватов сократит время обнаружения ошибок;
  • статический анализатор и средства обнаружения будут применяться более широко;
  • применение полезных матриц, таких как охват спецификации, охват модели и покрытие кода, будет определять разработку проектов;
  • комбинаторные инструменты позволят тестировщикам определять приоритетные направления отладки;
  • тестировщики будут предоставлять более наглядные и ценные услуги на протяжении всего процесса разработки ПО;
  • отладчики смогут создавать средства и методы тестирования программного обеспечения, написанные на и взаимодействующие с различными языками программирования;
  • специалисты по отладке станут более профессионально подготовленными.

На смену придут новые бизнес-ориентированные методы тестирования программ, изменятся способы взаимодействия с системами и предоставляемой ими информацией с одновременным снижением рисков и ростом преимуществ от бизнес-изменений.



Рекомендуем почитать

Наверх