Моделирование как метод познания. Понятие модели, ее функции

Электроника 07.05.2019
Электроника

Проблема классификации моделей, как и любых достаточно сложных явлений, процессов, систем, сложна, многогранна и трудноразрешима. Объективная причина состоит в том, что исследователя интересует лишь какое-то одно свойство системы (объекта, процесса, явления), для отображения которого и создана модель. Поэтому в основу классификации можно положить множество различных признаков: способ описания, функциональное назначение, степень детализации, структурные свойства, область применения и т.д.

Рассмотрим некоторые классы моделей.

1. По назначению моделей различают:

Исследовательские (познавательные, когнитивные), предназначенные для генерации знаний путем изучения свойств объекта;

Учебные, предназначенные для передачи знаний об изучаемом объекте;

Рабочие (прагматические), предназначенные для генерации правильных действий в процессе достижения цели.

К исследовательским моделям относятся полунатурные стенды, физические модели, математические модели. Отметим, что исследовательские модели могут выступать в качестве учебных, если они предназначены для передачи знаний о свойствах объекта. Примерами рабочих моделей могут служить: робот; автопилот; математическая модель объекта, встроенная в систему управления или контроля; искусственное сердце и т.д. При этом исследовательские и учебные модели должны приближаться к реальности, а рабочие модели должны отражать эту реальность. Четкой границы между этими моделями не существует. Так, например, исследовательская модель, адекватно отражающая свойства объекта, может быть использована в качестве рабочей. Исследовательские модели являются носителями новых знаний, учебные модели соединяют старые знания с новыми. Рабочие модели идеализируют накопленные знания в форме идеальных действий по выполнению тех или иных функций, которые желательно было бы осуществить.

2. По отражению режимов работы системы различают:

Статические модели, которые отражают установившиеся (равновесные) режимы работы системы;

Динамические, которые отражают неустановившиеся (неравновесные, переходные) режимы работы системы.

Статические режимы работы элементов, объектов, систем отражены в их статических характеристиках (линейных, нелинейных) и описываются соответствующими алгебраическими функциональными зависимостями.

3. По способу создания (построения) моделей различают:

Абстрактные (дедуктивные, умозрительные, идеальные) модели, построенные средствами мышления на базе нашего сознания;

Материальные (физические, реальные) модели, построенные средствами материального мира для отражения его объектов, процессов и т.д.

Абстрактные модели - это идеальные конструкции в нашем сознании в виде образов или представлений о тех или иных физических явлениях, процессах, ситуациях, объектах, системах. Примерами абстрактных моделей могут служить какая-либо гипотеза о свойствах материи, предположения о поведении сложной системы в условиях неопределенности или новая теория о строении сложных систем. На абстрактных моделях и на умозрительной аналогии (сходстве) между моделью М и оригиналом S строится идеальное (дедуктивное) моделирование. Различают два вида идеального моделирования: формализованное и неформализованное (интуитивное). К формализуемым абстрактным моделям относятся знаковые модели, в том числе математические и языковые конструкции (языки программирования, естественные языки) вместе с правилами их преобразования и интерпретации. Примером знаковых моделей могут служить чертежи, схемы, графики, формулы и т.д. Математическое моделирование - частный случай знакового моделирования. Здесь преобразование формул осуществляется на основе правил логики и математики.

Математическая модель - это объект, который имеет с прототипом следующее однозначное соответствие: 1) структуры, т.е. состава элементов и связей между ними; 2) уравнений, описывающих свойства этих элементов и их связей. При этом математическую модель сложной системы можно трактовать как множество математических моделей элементов, взаимосвязанных и взаимодействующих друг с другом и адекватно отражающих синергетические свойства системы.

При образном моделировании модели строятся из каких-либо наглядных элементов (упругие шары, потоки жидкости, траектории движения тел и т.д.). Анализ образных моделей осуществляется мысленно и может быть отнесен к формализованному моделированию в том случае, когда правила взаимодействия образов четко формализованы. Этот вид моделирования используется при мысленном эксперименте.

Данный дипломный проект представляет собой попытку познакомить социологов с математическим аппаратом и с современными методами решения социологических задач. Вот неполный перечень таких задач:

Обработка и анализ данных опросов и других социологических исследований

Построение математических моделей социальных процессов и явлений

Объяснение и предсказание социальных явлений

Математическое моделирование состоит в замене реального объекта его математической моделью с последующим изучением последней. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.

Многомерное шкалирование – математический инструментарий, предназначенный для обработки данных о отношениях между исследуемыми объектами с целью представления этих объектов в виде точек некоторого пространства восприятия. Этот метод позволяет выявить и интерпретировать латентные (т.е. скрытые и непосредственно не наблюдаемые) признаки, объясняющие связей между исследуемыми объектами. В пособии в качестве метода многомерного шкалирования рассмотрен метрический метод Торгерсона.

Другая задача обработки данных состоит в уменьшении размерность данных, потеряв наименьшее количество информации. Это позволяет, во-первых избавиться от “шума”, т.е. части данных, которая содержит не полезную информацию, а погрешности и ошибки. Во-вторых, чем меньше размерность данных, тем легче их дальнейшее изучение и интерпретация. В качестве аппарата уменьшения размерности данных в пособии рассмотрен метод главных компонент.

Все процессы, развивающиеся во времени и имеющую в причинно-следственную связь моделируются с помощью дифференциальных уравнений (в случае, когда система описывается одной характеристикой) и систем дифференциальных уравнений (когда таких характеристик несколько). В качестве примера моделирования таких процессов в пособии рассмотрены несколько примеров роста численности популяции некоторой замкнутой экосистемы.

Классификация моделей

Единая классификация видов моделей затруднительна в силу многозначности понятия "модель" в науке и технике. Её можно проводить по различным основаниям: по характеру моделей (т. е. по средствам моделирования); по характеру моделируемых объектов; по сферам приложения моделей (моделирование в технике, в физических науках, в химии, моделирование процессов живого, моделирование психики и т. п.) и его уровням ("глубине"), начиная, например, с выделения в физике моделей на микроуровне (моделирование на уровнях исследования, касающихся элементарных частиц, атомов, молекул). В связи с этим любая классификация методов моделирования обречена на неполноту, тем более, что терминология в этой области опирается не столько на "строгие" правила, сколько на языковые, научные и практические традиции, а ещё чаще определяется в рамках конкретного контекста и вне его никакого стандартного значения не имеет. Я постаралась представить наиболее полную классификацию моделей по их признакам с моей точки зрения.

Признаки классификаций моделей:

1. По области использования;

2. По фактору времени;

3. По отрасли знаний;

4. По форме представления.

Классификация моделей по области использования:

1) Учебные модели - используются при обучении. Это могут быть наглядные пособия, различные тренажеры, обучающие программы.

2) Опытные модели - это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик. Например, модель корабля исследуется в бассейне для изучения устойчивости судна при качке, модель автомобиля «продувается» в аэродинамической трубе с целью исследования обтекаемости кузова, модель сооружения используется для привязки здания к конкретной местности и т.д.

3) Научно - технические модели - создаются для исследования процессов и явлений. К таким моделям можно отнести, например, прибор для получения грозового электрического разряда или стенд для проверки телевизоров.

4) Игровые модели - это военные, экономические, спортивные, деловые игры. Эти модели как бы репетируют поведение объекта в различных ситуациях, проигрывая их с учетом возможной реакции со стороны конкурента, союзника или противника. С помощью игровых моделей можно оказывать психологическую помощь больным, разрешать конфликтные ситуации.

5) Имитационные модели - не только отражают реальность с той или иной степенью точности, а имитируют ее. Эксперименты с моделями проводят при разных исходных данных. По результатам исследования делаются выводы. Такой метод подбора правильного решения получил название метод проб и ошибок. Например, для выявления побочных действий лекарственных препаратов их испытывают в серии опытов над животными.

Классификация моделей по фактору времени:

1) Статические - модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Например, обследование учащихся в стоматологической поликлинике дает состояние их зубов в данный момент времени: соотношение молочных и постоянных, наличие пломб, дефектов и т.п.

2) Динамические - модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

При строительстве дома рассчитывают прочность его фундамента, стен, балок и устойчивость их к постоянной нагрузке. Это статическая модель здания. Но надо так же обеспечить противодействие ветрам, движению грунтовых вод, сейсмическим колебаниям и другим изменяющимся во времени факторам. Эти вопросы можно решить с помощью динамических моделей. Таким образом, один и тот же объект можно охарактеризовать и статической и динамической моделью.

Классификация моделей по отрасли знаний:

Это классификация по отрасли деятельности человека:

1) Математические;

2) Биологические;

3) Химические;

4) Социальные;

5) Экономические;

6) Исторические и т.д.

Классификация моделей по форме представления:

1) Материальные - это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты.

2) Абстрактные (нематериальные) - не имеют реального воплощения. Их основу составляет информация. Это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные, вербальные и информационные.

ь Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель способствует сознательной деятельности человека. Примером мысленной модели является модель поведения при переходе через дорогу. Человек анализирует ситуацию на дороге (какой сигнал подает светофор, как далеко находятся машины, с какой скоростью они движутся и т.п.) и вырабатывается модель поведения. Если ситуация смоделирована правильно, то переход будет безопасным, если нет, то может произойти дорожно-транспортное происшествие.

ь Вербальные (от лат. Verbalis - устный) - мысленные модели, выраженные в разговорной форме. Используется для передачи мыслей.

Чтобы информацию можно было использовать для обработки на компьютере, необходимо выразить ее при помощи системы знаков, т.е. формализовать. Правила формализации должны быть известны и понятны тому, кто будет создавать и использовать модель. Для этого используют более строгие модели - информационные.

ь Информационные модели - целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойства этого объекта.

Типы информационных моделей:

· Табличные - объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках)

· Иерархические - объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня

· Сетевые - применяют для отражения систем, в которых связи между элементами имеют сложную структуру

По степени формализации информационные модели бывают образно-знаковые и знаковые. Ярким примером образно-знаковой модели является географическая карта. Цвет и форма материков, океанов, гор, изображенных на карте, сразу подключает образное мышление. По цвету на карте сразу можно оценить рельеф. Например, с голубым цветом у человека ассоциируется вода, с зеленым цветущий луг, равнина. Карта изобилует условными обозначениями. Зная этот язык, человек может получить достоверную информацию об интересующем его объекте. Информационная модель в этом случае будет результатом осмысления сведений, полученных при помощи органов чувств и информации, закодированной в виде условных изображений.

То же можно сказать о живописи. Неискушенный зритель воспримет картину душой в виде образной модели. Но существуют художественные языки, соответствующие различным живописным жанрам и школам: сочетание цветов, характер мазка, способы передачи воздуха, объема и т. д. Человеку, знающему эти условности, легче разобраться в том, что имел в виду художник, особенно если произведение не относится к реализму. При этом общее восприятие картины (информационная модель) станет результатом осмысления информации как в образной, так и в знаковой формах.

Еще один пример такой модели -- фотография. Фотоаппарат позволяет получить изображение оригинала. Обычно фотография дает нам довольно точное представление о внешнем облике человека. Существуют некоторые признаки (высота лба, посадка глаз, форма подбородка), по которым специалисты могут определить характер человека, его склонность к тем или иным поступкам. Этот специальный язык формируется из сведений, накопленных в области физиогномики и собственного опыта. Знающие врачи, взглянув на фото незнакомого человека, увидят признаки некоторых заболеваний. Задавшись разными целями, по одной и той же фотографии можно получить различные информационные модели. Они будут результатом обработки образной информации, полученной при разглядывании фотографии, и информации, сложившейся на основе знания специального профессионального языка.

По форме представления образно-знаковых моделей среди них можно выделить следующие группы:

Геометрические модели, отображающие внешний вид оригинала (рисунок, пиктограмма, чертеж, план, карта, объемное изображение);

Структурные модели, отражающие строение объектов и связи их параметров (таблица, граф, схема, диаграмма);

Словесные модели, зафиксированные (описанные) средствами естественного языка;

Знаковые модели можно разделить на следующие группы:

· Математические модели, представленные математическими формулами, отображающими связь различных параметров объекта, системы или процесса;

· Специальные модели, представленные на специальных языках (ноты, химические формулы и т. п.);

· Алгоритмические модели, представляющие процесс в виде программы, записанной на специальном языке.


Изучив эту тему, вы узнаете:

Что может служить основанием для классификации моделей;
- как классифицируются модели по области использования;
- как классифицируются модели по способу представления;
- каковы формы представления информационных моделей;
- что такое компьютерная модель.

Виды классификации моделей

В теме "Основы классификации (объектов)" вы познакомились с основными принципами классификации. Для моделей можно составить различные виды классификаций в зависимости от выбранного основания. Таким основанием служат один или несколько признаков, общих для некоторых групп моделей. Рассмотрим несколько наиболее распространенных видов классификации, определяемых следующими признаками:
♦ областью использования;
♦ учетом в модели временного фактора (динамики);
♦ отраслью знаний;
♦ способом представления моделей.

Если рассматривать модели с позиции «для чего», «с какой целью» они используются, то можно применить классификацию, изображенную на рисунке 10.1.

Учебные модели используются при обучении . Это могут быть наглядные пособия, различные тренажеры, обучающие программы.

Опытные модели - это уменьшенные или увеличенные копии проектируемого объекта . Они используются для исследования объекта и прогнозирования его будущих характеристик. 

Например, модель корабля исследуется в бассейне для изучения устойчивости судна при качке, модель автомобиля «продувается» в аэродинамической трубе с целью исследования обтекаемости кузова, модель сооружения используется для привязки здания к конкретной местности, модель гидросооружений (водохранилищ, гидростанций) помогает на стадии их разработки решить разнообразные технические, экологические и другие проблемы.

Рис. 10.1. Классификация моделей по области использования

Научно-технические модели создаются для исследования процессов и явлений . К таким моделям можно отнести, например, прибор для получения грозового электрического разряда или стенд для проверки телевизоров.

Игровые модели - это военные, экономические, спортивные, деловые игры . Эти модели как бы репетируют поведение объекта в различных ситуациях, проигрывая их с учетом возможной реакции со стороны конкурента, союзника или противника. С помощью игровых моделей можно оказывать психологическую помощь больным, разрешать конфликтные ситуации.

Имитационные модели не просто отражают реальность с той или иной степенью точности, а имитируют ее . Эксперименты с моделью проводятся при разных исходных данных. По результатам исследования делаются выводы. Такой метод подбора правильного решения получил название метода проб и ошибок. Например, для выявления побочных действий лекарственных препаратов их испытывают в серии опытов на животных.

Другим примером имитационного моделирования может служить экспериментальная деятельность в школах. Предположим, в обучение хотят ввести новый предмет «Основы вождения». Для эксперимента отбирается ряд школ. Где-то учат водить школьный грузовик, где-то - собранный учащимися легковой автомобиль, а в некоторых школах все сводится к изучению правил дорожного движения (моделирование с различными входными данными). Последующая проверка и анализ результатов по внедрению нового предмета в множестве школ помогают сделать вывод о целесообразности обучения этой дисциплине во всех школах страны.

Как уже упоминалось, одна из классификаций связана с фактором времени. Модели можно разделить на статические и динамические по тому, как отражается в них динамика происходящих процессов (рисунок 10.2).

Рис. 10.2. Классификация моделей по фактору времени

Статическая модель - это единовременный срез информации по данному объекту . Например, обследование учащихся в стоматологической поликлинике дает состояние их зубов на данный момент времени: соотношение молочных и постоянных, наличие пломб, дефектов и т. п.

Динамическая модель представляет картину изменения объекта во времени . В примере с поликлиникой медицинскую карту ученика, отражающую изменение состояния его зубов в течение многих лет, можно считать динамической моделью.

При строительстве дома рассчитывают прочность его фундамента, стен, балок и устойчивость их к постоянной нагрузке. Это статическая модель здания. Но надо также обеспечить противодействие ветрам, движению грунтовых вод, сейсмическим колебаниям и другим изменяющимся во времени факторам. Эти вопросы можно решить с помощью динамических моделей.

Как видно из примеров, один и тот же объект можно охарактеризовать и статической, и динамической моделью.

Можно классифицировать модели и по тому, «к какой отрасли» знаний или деятельности человека они относятся (биологические, социологические, экономические, исторические и т. п.), и по множеству других факторов. 

Классификация моделей по способу представления

Подробнее рассмотрим классификацию всего многообразия моделей по способу представления. Схема такой классификации изображена на рисунке 10.3.

Рис. 10.3. Классификация моделей по способу представления

В соответствии с ней модели делятся на две большие группы: материальные и абстрактные (нематериальные) . Эти две группы как бы характеризуют то, "из чего сделаны модели". И материальная, и абстрактная модели содержат информацию об исходном объекте. Только в случае материальной модели эта информация имеет реальное воплощение - цвет, форму, пропорции и т. п. Ее можно получить с помощью органов чувств: зрения, осязания, обоняния, а также воспользовавшись измерительными приборами и инструментами. В нематериальной модели та же информация представляется в абстрактной форме (мысль, формула, чертеж, схема).

Материальная и абстрактная модели могут отражать один и тот же прототип и взаимно дополнять друг друга. Некоторые из вас видели в цирке эффектный номер с мотоциклистом, движущимся с большой скоростью по отвесной стене. В аттракционе «Сюрприз» в парке культуры и отдыха кабинки с людьми вращаются на большой скорости в вертикальной плоскости. Причина, почему удерживается мотоциклист и не выпадают из кабинок люди, объясняется центробежными силами, действующими на каждый объект при вращении. Их можно изобразить на чертеже и описать формулами. Это различные абстрактные формы представления информации. Не каждому они понятны. Однако этот процесс можно продемонстрировать и на примере простейшего опыта. Возьмите ведро с водой и раскрутите его. Вода не выливается благодаря действию тех же сил. Этот опыт наглядно убеждает, что, действительно, возникают какие-то силы при вращении. На аттракционе вы имеете возможность почувствовать их на себе. Так материальная модель помогает понять суть сложного физического процесса.

Приведем еще один пример. Модель маятника в виде камушка, подвешенного на нити, наглядно показывает, что при колебаниях плоскость движения остается неизменной. Это - материальная модель. С другой стороны, неизменность плоскости можно доказать на основании 2-го закона Ньютона, рассматривая силы, действующие на маятник. Это абстрактная модель. И в том и в другом варианте объектом изучения является маятник. В первом случае моделируется и сам объект «маятник», и его действие - колебание, а во втором - абстрактная модель описывает только действия.

Кстати, с помощью той же материальной модели можно продемонстрировать еще один процесс - вращение Земли. В недавнем прошлом в Исаакиевском соборе Ленинграда висел маятник Фуко, на полу был нанесен своеобразный циферблат. Плоскость движения маятника не менялась, а циферблат вращался вместе с Землей. Через некоторое время можно было заметить смещение делений циферблата по отношению к маятнику.

Материальные модели

Материальные модели иначе можно назвать предметными, физическими. Они всегда имеют реальное воплощение. Такие модели могут отражать:

Внешние свойства исходных объектов;
- внутреннее устройство исходных объектов;
- суть процессов и явлений, происходящих с объектами-оригиналами.

Самыми простыми примерами материальных моделей являются детские игрушки. По ним ребенок узнает внешние свойства окружающих объектов. Разбирая некоторые игрушки в процессе игры (например, машинку), он получает первое представление об устройстве исходного объекта и даже о принципах его работы.

Процессы, в которых участвует реальный объект, в материальной модели могут быть заменены процессами другой физической природы. Например, в той же детской машинке процесс движения обеспечивается не работой двигателя внутреннего сгорания, а закрученной пружиной или инерционным механизмом. Но при этом принцип преобразования вращательного движения колес в поступательное движение автомобиля соблюдается.

Материальные модели могут не походить на свои прототипы. Например, робот, заменяющий людей на тяжелом и вредном производстве, совершенно не похож на человека. Это механическое устройство, манипулятор. Только в детских книжках и мультфильмах робота представляют как механического человека.

Так как материальные модели помогают узнать свойства реальных объектов и понять «механизм» сложных явлений, они часто используются в процессе обучения. Материальными моделями являются скелет человека и чучело птицы в кабинете биологии, объемная модель Солнечной системы и макет многоступенчатой ракеты в кабинете астрономии, наклонная плоскость с шарами в кабинете физики и т. д.

К материальным моделям относятся не только школьные пособия, но и различные физические и химические опыты. В опытах моделируются действия над объектами, например реакция (действие) между водородом и кислородом (веществами, объектами исследования). Эта реакция даже при малых количествах исходных веществ происходит с оглушительным хлопком. Модель является предупреждением о последствиях возникновения «гремучей смеси» из безобидных и широко распространенных в природе веществ.

Создание и использование материальных моделей относится к экспериментальному методу познания окружающего мира.

Абстрактные (нематериальные) модели

Абстрактные модели нельзя потрогать, они не имеют вещественного воплощения. Основу таких моделей составляет информация, а такой тип моделирования реализует теоретический метод познания окружающей действительности.

Основанием для дальнейшей классификации абстрактных моделей выберем возможность их реализации и исследования при помощи компьютера. По этому признаку выделяются следующие подклассы:

Мысленные и вербальные;
- информационные.

Мысленные и вербальные модели

Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Примером мысленной модели является модель поведения при переходе через дорогу. Человек анализирует ситуацию на дороге (какой сигнал подает светофор, как далеко находятся машины, с какой скоростью они движутся и т. п.) и вырабатывает модель поведения. Если ситуация смоделирована правильно, то переход будет безопасным, если нет, то может произойти дорожно-транспортное происшествие.

Такие модели сопутствуют любой сознательной деятельности человека. Собираясь делать покупки, человек мысленно представляет, что и сколько можно купить на имеющуюся у него сумму. Строя планы на отпуск, он мысленно проигрывает различные варианты отдыха и возможные затраты. Ожидая транспорт на остановке, прикидывает, как быстрее добраться до нужного места.

К моделям такого типа можно отнести и идею, возникшую у изобретателя, и музыкальную тему, промелькнувшую в мыслях у композитора, и рифму, родившуюся в голове поэта. Во всех приведенных примерах модели предшествовали созданию объекта (нового устройства, музыкального произведения, стихотворения), являлись одним из этапов творческого процесса. Подобные модели могут возникнуть у зрителя, слушателя, читателя как реакция на уже существующие объекты (музыку, картину, поэму).

Мысленная модель может быть выражена в разговорной форме. В этом случае она часто называется вербальной (от лат. ver- balis - устный). Вербальную модель человек использует для передачи своих мыслей другим.

Информационные модели

Образы, возникающие у разных людей как реакция на одни и те же объекты и явления, могут сильно различаться. Поэтому образная модель очень индивидуальна и не отображает прототип с достаточной степенью достоверности. Невозможно получить впечатление от музыкального произведения, услышав не музыку, а рассказ о ней.

Чтобы информацию можно было использовать для обработки на компьютере, необходимо выразить ее при помощи системы знаков, то есть формализовать. Правила формализации должны быть известны и понятны тому, кто будет создавать и использовать модель.

Поэтому наряду с вербальными и мысленными моделями используются более строгие - информационные модели.

Существуют разнообразные системы условных обозначений, символов, соглашений, относящихся к разным областям деятельности и пригодных для описания моделей. Подобную систему и правила использования ее элементов называют языком. Язык может быть разговорным, алгоритмическим, математическим, языком кодирования и пр.

Информация, характеризующая объект или процесс, может иметь разную форму представления, выражаться различными средствами. По степени формализации, строгости описания это многообразие можно условно разделить на образно-знако- вые и знаковые модели.

Ярким примером образно-зна- ковой модели является географическая карта. Цвет и форма материков, океанов, гор, изображенных на карте, сразу подключает образное мышление. По цвету на карте можно сразу оценить рельеф. Например, с голубым цветом у человека ассоциируется вода, с зеленым - цветущий луг, равнина. Карта изобилует условными обозначениями. Зная этот язык, человек может получить достоверную информацию об интересующем его объекте. Информационная модель в этом случае будет результатом осмысления сведений, полученных при помощи органов чувств и информации, закодированной в виде условных изображений.

То же можно сказать о живописи. Неискушенный зритель воспримет картину душой, в виде образной модели. Но существуют некоторые художественные языки, соответствующие различным живописным жанрам и-школам: сочетание цветов, характер мазка, способы передачи воздуха, объема и т. д. Человеку, знающему эти условности, легче разобраться в том, что имел в виду художник, особенно если произведение не относится к peaлизму. При этом общее восприятие картины (информационная модель) станет результатом осмысления информации как в образной, так и в знаковой формах.

Еще один пример такой модели - фотография. Фотоаппарат позволяет получить изображение оригинала. Обычно фотография дает нам довольно точное представление о внешнем облике человека. Существуют некоторые признаки (высота лба, посадка глаз, форма подбородка), по которым специалисты могут определить характер человека, его склонность к тем или иным поступкам. Этот специальный язык формируется из сведений, накопленных в области физиогномики и собственного опыта. Знающие врачи, взглянув на фото незнакомого человека, увидят признаки некоторых заболеваний. Задавшись разными целями, по одной и той же фотографии можно получить различные информационные модели. Они будут результатом обработки образной информации, полученной при разглядывании фотографии, и информации, сложившейся на основе знания специального профессионального языка.

На рисунке 10.4 представлена образно-знаковая модель расходов города в виде круговой диаграммы.

Рис. 10.4. Образно-знаковая модель расходов города

По форме представления образно-знаковых моделей среди них можно выделить следующие группы:

Геометрические модели, отображающие внешний вид оригинала (рисунок, пиктограмма, чертеж, план, карта, объемное изображение); 
- структурные модели, отображающие строение объектов и связи их параметров (таблица, граф, схема, диаграмма);
- словесные модели, зафиксированные (описанные) средствами естественного языка;
- алгоритмические модели, описывающие последовательность действий.

Знаковые модели можно разделить на следующие группы:

Математические модели, представленные математическими формулами, отображающими связь различных параметров объекта, системы или процесса;
- специальные модели, представленные на специальных языках (ноты, химические формулы и т. п.);
- алгоритмические модели, представляющие процесс в виде программы, записанной на специальном языке.

Инструменты моделирования

Многообразие моделей предполагает использование огромного спектра инструментов для реализации и описания этих моделей.

Если модель имеет материальную природу, то есть представлена в вещественном воплощении, то для ее создания годятся традиционные инструменты: резец скульптора, токарный или фрезерный станок, пресс, пила и топор, наконец.

Если модель имеет абстрактную форму, то речь идет о некоторых знаковых системах, позволяющих описать данный тип модели. Это специальные языки, чертежи, схемы, графики, таблицы, алгоритмы, математические выражения и т. п. Здесь может быть использовано два варианта инструментария: либо традиционный набор инженера или конструктора (карандаш, линейка, ручка), либо самый совершенный на данный момент инструмент - компьютер. Таким образом, мы подошли еще к одной возможности классификации информационных моделей: по способу реализации они подразделяются на компьютерные и некомпьютерные модели.

Когда речь идет об инструменте-компьютере, то следует понимать, что он работает с информацией. Поэтому нужно исходить из того, какую информацию и в каком виде может воспринимать и обрабатывать компьютер. Современный компьютер способен работать с текстом, графикой, схемами, таблицами, звуком, видеоизображением и т. д. Но для работы со всем этим многообразием информации нужна как техническая (аппаратная), так и программная поддержка. Эти две составляющие и являются инструментами компьютерного моделирования.

Прикладные программные среды используются человеком как эффективное вспомогательное средство для реализации собственных замыслов. Иначе говоря, человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды. Текстовые процессоры обладают широкими возможностями оформления знаковых моделей. Это и встроенная деловая графика, и наборы автофигур, и программные приложения, позволяющие включать в описание формулы, таблицы, электронные схемы, диаграммы и т. п.

Другие программные среды человек использует как средство обработки исходной информации и анализа результатов. Здесь компьютер выступает как интеллектуальный помощник.

В качестве примера такой компьютерной обработки информации можно привести обработку звука. Для этого используется специализированное программное обеспечение, в частности - музыкальный редактор. Он позволяет не только набирать нотный текст и распечатывать его, но и выполнять аранжировку и прослушивать произведение. Другие программы позволяют соединять цифровую запись голоса певца со звуковой моделью мелодии, а также синтезировать (моделировать) человеческий голос разной высоты и тембра (тенор, драматический бас и т. п.). Существуют программы, с помощью которых компьютер может создавать композиции самостоятельно в соответствии с введенными соглашениями: ритмом, темпом, музыкальным стилем и т. п. 

Обработку больших объемов информации можно осуществлять в среде баз данных. Если же вы собираетесь исследовать математическую модель, то вам не подойдут среды ни графического или музыкального редакторов, ни базы данных, ни текстового процессора. Мощным инструментом исследования таких моделей является среда табличного процессора. В этой среде исходная информационная знаковая модель будет представлена в табличной форме, связывающей элементарные объекты по правилам построения связей в этой среде.

Другим эффективным средством исследования математических моделей, а также построения геометрических моделей является среда программирования. Компьютерная модель будет представлена в ней в форме программы.

Контрольные вопросы и задания

1. По каким признакам можно классифицировать модели?

2. Приведите примеры применяемых в вашей школе учебных моделей.

3. Можно ли стратегическую компьютерную игру назвать игровой моделью? Чему учат такие игры?

4. По какому признаку модели делятся на статические и динамические?

5. Что такое материальные модели? Приведите примеры.

6. К какому типу моделей вы бы отнесли былины? Что они моделируют?

7. Какие образные модели возникают у вас, когда, входя в дом, вы чувствуете какой-либо запах?

8. Что такое информационные модели? Из чего они «сделаны»?

9. Школьные учебники истории содержат схемы военных сражений. Можно ли их назвать моделями? К какому типу моделей их можно отнести?

10. Что такое математическая модель? Приведите примеры.

11. Можно ли назвать поясняющий чертеж к задаче моделью? Поясните ответ.

12. Что вы понимаете под компьютерной моделью?

При использовании метода моделирования свойства и поведение объекта изучают путем применения вспомогательной системы – модели, находящейся в определенном объективном соответствии с исследуемым объектом.

Под объектом исследования понимается либо некоторая система, элементы которой в процессе достижения конечной цели реализуют один или несколько процессов, либо некоторый процесс, реализуемый элементами одной или нескольких систем. В связи с этим в дельнейшем тексте термины «модель объекта», «модель системы», «модель процесса» следует воспринимать как эквивалентные.

Представления о тех или иных свойствах объектов, их взаимосвязях формируются исследователем в виде описания этих объектов на обычном языке, в виде рисунков, графиков, формул или реализуются в виде макетов и других устройств. Подобные способы описания обобщаются в едином понятии – модель , а построение и изучение моделей называется моделированием .

Заслуживает предпочтения следующее определение: модель – объект любой природы, который создается исследователем с целью получения новых знаний об объекте-оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Модель считается адекватной объекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Модели позволяют вынести упрощенное представление о системе и получить некоторые результаты намного проще, чем при изучении реального объекта. Более того, гипотетически модели объекта могут быть исследованы и изучены перед тем, как объект будет создан.

В практике исследования производственно-экономических объектов модели могут применяться для самых разных целей, что вызывает использование моделей различных классов. Построение одной-единственной математической модели для сложной производственной системы практически не представляется возможным без разработки вспомогательных моделей. Поэтому, как правило, при создании конечной математической модели исследуемого объекта строят частные вспомогательные модели, отражающие ту или иную информацию об объекте, имеющуюся у разработчика на данном этапе построения модели.

В основе моделирования лежит теория подобия , которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. Классификация видов моделирования систем S приведена на рис.1.1.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций. Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для тех случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S ) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Рис. 1.1. Классификация видов моделирования систем

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование .Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образует из наборов входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S . Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапах ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S, Являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом, методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, а методом статистических испытаний (Монте-Карло) – численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S , включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска варианта системы. Бале в методологии машинного моделирования будем различать два основных раздела: статику и динамику, – основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Другие виды моделирования . При реальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.п.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т.е. предприятием, что в большинстве случаев невозможно.

К основным разновидностям реального моделирования относятся:

Натурное моделирование , под которым понимают проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Необходимо отметить, что такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности.

Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Под цифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование , в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Целевое назначение модели. По целевому назначению модели подразделяются на модели структуры, функционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

v каноническую модель , характеризующую взаимодействие объекта с окружением через входы и выходы;

v модель внутренней структуры , характеризующую состав компонентов объекта и связи между ними;

v модель иерархической структуры (дерево системы), в которой объект (целое) расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.

Модель структуры обычно представляется в виде блок-схемы, реже графов и матриц связей.

Модели функционирования включают широкий спектр символических моделей, например:

модель жизненного цикла системы, описывающая процессы существования системы от зарождения замысла ее создания до прекращения функционирования;

модели операций, выполняемых объектом и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объекта. Так, в состав моделей операций могут входить модели надежности, характеризующие выход элементов системы из строя под влиянием эксплуатационных факторов, и модели живучести факторов, характеризующие выход элементов системы из строя под влиянием целенаправленного воздействия внешней среды;

информационные модели, отображающие во взаимосвязи источники и потребители информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, например обработки материалов, деятельности персонала, использования информации, в том числе и реализации процедур принятия управленческих решений;

временные модели, описывающие процедуру функционирования объекта во времени и распределение ресурса «время» по отдельным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны, «питаются» от них информацией и совместно с ними позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

При анализе и оптимизации производственно-экономических объектов проводится объединение построенных математических функциональных моделей с математическими стоимостными моделями в единую экономико-математическую модель.

Насколько можно судить по литературным источникам общепринятой классификации моделей экономических систем пока не существует. Однако представляется достаточно полезной классификация математических моделей экономических систем, приведенная в книге Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» (1971 г.) (рис. 1.2).

Рис.1.2. Классификация экономических моделей

Экономико-математической моделью (ЭММ) называется выражение, состоящее из совокупности связанных между собой математическими зависимостями (формулами, уравнениями, неравенствами, логическими условиями величин – факторов, все или часть которых имеют экономический смысл. По своей роли в ЭММ эти факторы целесообразно подразделить на параметры и характеристики (рис. 1.3).

Рис. 1.3. Классификация факторов по их роли в ЭВМ

При этом параметрами объекта называются факторы, характеризующие свойства объекта или составляющих его элементов. В процессе исследования объекта ряд параметров может изменяться, поэтому они называются переменными, которые в свою очередь подразделяются на переменные состояния и переменные управления. Как правило, переменные состояния объекта являются функцией переменных управления и воздействий внешней среды. Характеристиками (выходными характеристиками) называются интересующие исследователя непосредст-венные конечные результаты функционирования объекта (естественно, что выходные характеристики являются переменными состояния). Соответственно характеристики внешней среды описывают свойства внешней среды, которые сказываются на процессе и результате функционирования объекта. Значения ряда факторов, определяющие начальное состояние объекта или внешней среды, называются начальными условиями.

При рассмотрении ЭММ оперируют следующими понятиями: критерий оптимальности, целевая функция, система ограничений, уравнения связи, решение модели.

Критерием оптимальности называется некоторый показатель, имеющий экономическое содержание, служащий формализацией конкретной цели управления и выражаемый при помощи целевой функции через факторы модели. Критерий оптимальности определяет смысловое содержание целевой функции. В ряде случаев в качестве критерия оптимальности может выступать одна из выходных характеристик объекта.

Целевая функция математически связывает между собой факторы модели, ее значение определяется значениями этих величин. Содержательный смысл целевой функции придает только критерий оптимальности.

Не следует смешивать критерий оптимальности и целевую функцию. Так, например, критерий прибыли и стоимости произведенной продукции могут описываться одной и той же целевой функцией:

, (1.1)

где – номенклатура производимой продукции; – объем выпуска i -ой номенклатуры; – прибыль от выпуска единицы i -ой номенклатуры или стоимость единицы i -ой номенклатуры в зависимости от смысла критерия оптимальности.

Критерий прибыли может рассчитываться и по нелинейной целевой функции:

, (1.2)

Если прибыль от выпуска единицы i -ой номенклатуры является функцией от объема выпуска .

При наличии нескольких критериев оптимальности каждый из них будет формализован своей частной целевой функцией , где – число критериев оптимальности. Для однозначного выбора оптимального решения исследователь может сформулировать новую целевую функцию

Однако целевая функция может уже не нести экономического смысла, в этом случае критерий оптимальности для нее отсутствует.

Система ограничений определяет пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта.

Уравнения связи являются математической формализацией системы ограничений. Между понятиями «система ограничений» и «Уравнения связи» существует точно такая же аналогия, как между понятиями «критерий оптимальности» и «целевая функция»: различные по смыслу ограничения могут описываться одинаковыми уравнениями связи, а одно и то же ограничение в разных моделях записываться различными уравнениями связи.

Таким образом, именно критерий оптимальности и система ограничений в первую очередь определяют концепцию построения будущей математической модели, т.е. концептуальную модель, а их формализация, т.е. целевая функция и уравнения связи, представляют собой математическую модель.

Решением математической модели называется такой набор (совокупность) значений переменных, который удовлетворяет ее уравнениям связи. Решения, имеющие экономический смысл, называют структурно допустимыми. Модели, имеющие много решений, называются вариантными в отличие от безвариантных, имеющих одно решение. Среди структурно допустимых решений вариантной модели, как правило, находится одно решение, при котором целевая функция в зависимости от смысла модели имеет наибольшее или наименьшее значение. Такое решение, как и соответствующее значение целевой функции, называется оптимальным (в частности, наименьшим или наибольшим).

Использование ЭММ, особенно оптимальных, предполагает не только построение модели, соответствующей поставленной задаче, но и ее решение при помощи подходящего метода. В связи с этим иногда под моделированием (в узком смысле) понимается этап нахождения решения модели, т.е. вычисления значений исследуемых характеристик и определение оптимальности различных вариантов изучаемого объекта с целью выбора наилучшего варианта его построения и функционирования. Данный этап представляет собой реализацию и исследование ЭММ на определенном наборе вычислительных средств. Выбор метода решения оптимизационных ЭММ зависит от математической формы, связывающей факторы модели, наличия тех или иных признаков (учет динамики, учет стохастичности и т.д.). С точки зрения корректного выбора метода решения модели наиболее существенными признаками являются характер цели исследования, формализованность связей между параметрами и характеристиками, учет вероятностной природы объекта, а также фактора времени.

По характеру цели исследования ЭММ делятся на оптимизационные (нормативные) и описательные (дескриптивные или ЭММ прямого счета).

Характерной чертой оптимизационных моделей является наличие одной или нескольких целевых функций. При этом в первом случае оптимизационные ЭММ называются монокритериальными , а во втором – многокритериальными . В общем виде монокритериальная ЭММ может быть представлена следующей системой отношений:

,

Обращающий в max (или min ) целевую функцию Е при заданных уравнениях связи .

Специфика конкретных задач управления производством определила разнообразие типов оптимизационных ЭММ. Это вызвало для ряда наиболее часто повторяющихся типов ситуаций разработку «стандартных» экономико-математических методов их описания, например, распределительные задачи различных классов, задачи управления запасами, ремонта и замены оборудования, проектирования сетей и выбора маршрутов и т.д.

Существенным признаком описательных моделей является отсутствие в них критерия оптимальности. Решение, даваемое ЭММ прямого счета, обеспечивает либо вычисление набора выходных характеристик объекта для одного или нескольких вариантов начальных условий и входных характеристик объекта, либо нахождение какой-либо совокупности значений в структурно допустимой области решений. Примеры типовых задач управления машиностроительным производством, решаемых с помощью описательных моделей, приведены в табл. 1.1.

Таблица 1.1. Примеры описательных моделей

Тип задачи Вид модели Математический метод решения
Задачи планирования без оптимизации (расчет объемов производства по видам продукции, увязка планов производства с ресурсами и т.п.) Балансовые модели Аппарат линейной алгебры, матричное исчисление
Задачи сетевого планирования и управление (СПУ) без оптимизации Расчет по формулам модели СПУ Аппарат теории графов
Задача учета и статистики (оперативный учет, получение различных форм отчетности и т.п.) Расчет по формулам
Задачи контроля и анализа (анализ влияния и факторов, выявление тенденций, отслеживание отклонений и установление их причин) Факторный анализ, дисперсионный анализ, регрессионный анализ
Задача создания нормативной базы Статистические модели обработки реализаций случайных величин
Расчет параметров функционирования сложных систем с неформализованными связями. Расчет по формулам имитационных моделей
Задачи прогнозирования Модели регрессионного анализа, оценка параметров и проверка статистических гипотез Факторный анализ, дисперсионный анализ, регрессионный анализ, аппарат математической статистики

В зависимости от степени формализованности связей f и g i между факторами моделей в выражениях (1.4) и (1.5) различают аналитические и алгоритмические модели.

Аналитической формой записи называется запись математической модели в виде алгебраических уравнений или неравенств, не имеющих разветвлений вычислительного процесса при определении значений любых переменных состояния модели, целевой функции и уравнений связи. Если в математических моделях единственная целевая функция f и ограничения g j заданы аналитически, то подобные модели относятся к классу моделей математического программирования. Характер функциональных зависимостей, выраженных в функциях f и g j , может быть линейным и нелинейным. Соответственно этому ЭММ делятся на линейные и нелинейные , а среди последних в специальные классы выделяются дробно -линейные , кусочно-линейные , квадратичные и выпуклые модели.

Если мы имеем дело со сложной системой, то зачастую гораздо легче построить ее модель в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий – разветвлений хода течения процесса. Математическое описание для элементов может быть очень простым, однако взаимодействие большого количества простых по математическому описанию элементов и делает эту систему сложной. Алгоритмически же можно описывать даже такие объекты, которые в силу их сложности или громоздкости в принципе не допускают аналитического описания. В связи с этим к алгоритмическим моделям относятся такие, в которых критерии и (или) ограничения описываются математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. К алгоритмическим моделям относятся и так называемые имитационные модели – моделирующие алгоритмы, имитирующие поведение элементов изучаемого объекта и взаимодействие между ними в процессе функционирования.

В зависимости от того, содержит ли ЭММ случайные факторы, она может быть отнесена к классу стохастических или детерминированных .

В детерминированных моделях ни целевая функция f , ни уравнения связи g j не содержат случайных факторов. Следовательно, для данного множества входных значений модели на выходе может быть получен только один-единственный результат. Для стохастических ЭММ характерно наличие среди факторов модели, описываемой соотношениями (1.4) и (1.5), таких, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, причем среди функций f и g j могут быть и случайные функции. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация стохастических ЭММ в большинстве случаев осуществляется на ЭВМ методами имитационного статистического моделирования.

Следующим признаком, по которому можно различать ЭММ, является связь с фактором времени. Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими , а модели, в которых зависимость от времени t либо отсутствует совсем, либо проявляется слабо или неявно, называют статическими . Интересны в этом отношении имитационные модели: по механизму функционирования они являются динамическими (в модели идет имитация работы объекта в течении некоторого периода времени), а по результатам моделирования – статическими (например, ищется средняя производительность объекта за моделируемый период времени).

Статические модели представляют собой известную степень приближения к реальным объектам и системам, функционирующим во времени. Во многих случаях степень такого приближения, проявляющаяся в допущениях о неизменности или различного рода усреднениях факторов во времени (косвенно или приблизительно учитывающих фактор времени в определенных границах его изменения), является достаточной для практического применения статических моделей.

Классификация моделей

Существует множество способов классифицировать модели. Большой выбор способов классификации обусловлен тем, что моделирование применяется прак­тически во всех областях деятельности человека. Под понятие моделирования попадает широкий диапазон человеческих действий и артефактов. Само челове­ческое мышление представляет собой непрерывное моделирование окружающего мира.

В этом разделе представлены разнообразные подходы к классификации моделей с разных точек зрения.

7.2.1. Классификация моделей по назначению

Классификацию моделей по назначению иллюстрирует рис. 7.2.


Познавательная модель является формой организации и представления знаний, средством объединения новых и старых знаний. Познавательная модель, как пра­вило, с максимально возможной точностью отображает реальность и изменяется в соответствии с изменением реальности. Является теоретической моделью.

Пример. Математическое моделирование мирового океана с целью изучения изменения течений и рельефа океанского дна. Разрабатывается теория, согласно этой теории строится модель. Если поведение модели плохо согласуется с про­цессами в реальном объекте, уточнению подлежат теория и построенная на ее основе модель.

Прагматическая модель является средством организации практических дей­ствий, рабочего представления целей системы для ее управления. Реальность под­страивается под некоторую прагматическую модель (как правило, прикладную).

Пример. Выбор модели финансового регулирования в стране. Если выбрана монетаристская модель, то все процессы финансово-валютного регулирования стараются согласовать с этой моделью. Если процессы, происходящие в финан­совой сфере страны, не отвечают параметрам модели, то производятся действия, изменяющие процессы таким образом, чтобы они соответствовали с выбранной модели.

Инструментальная модель является средством построения, исследования и (или) использования прагматических и (или) познавательных моделей.

Пример. После построения теоретической математической модели мирового океана она оформляется в виде компьютерной модели на языке программиро­вания. Таким образом, инструментальная модель оказывается моделью модели, средством инструментальной реализации познавательной или прагматической модели.

7.2.2. Классификация моделей по уровню моделирования

Классификацию моделей по уровню моделирования иллюстрирует рис. 7.3.


Эмпирическая модель построена на основе установленных опытным путем за­висимостей между входными и выходными параметрами модели. Эмпирические модели создаются в тех случаях, когда явление или процесс невозможно описать при помощи математических формул, поскольку о внутреннем устройстве объекта или механизме процесса ничего не известно либо внутренние зависимости явля­ются слишком сложными для построения математического описания.

Пример. Все модели процессов, происходящих в человеческом обществе - социальных, экономических, финансовых, политических, - строятся эмпири­чески.

Теоретическая модель построена на основе математически описанных зависимо­стей между входными и выходными параметрами модели. В этом случае все вну­тренние механизмы явления известны настолько, чтобы можно было с достаточной точностью описать их с помощью математического аппарата.

Пример. Компьютерная модель простого физического процесса: растягивания идеальной пружины под действием груза (идеальный маятник).

Полуэмпирическая модель построена на основе аппроксимаций эмпирических зависимостей при помощи математических функций с удовлетворяющей за­дачам моделирования точностью. В случае полуэмпирической модели объект моделирования (прототип) достаточно сложен, и внутренние механизмы его функционирования не могут быть в точности описаны при помощи математи­ческих функций. Однако опыт наблюдения за объектом позволяет установить закономерности между входными и выходными параметрами, которые можно с достаточной точностью описать (аппроксимировать) при помощи математиче­ских функций.

Пример. Компьютерная модель процесса обмена веществ в биологической клетке.

7.2.3. Классификация моделей по принадлежности к иерархическому уровню

Классификацию моделей по принадлежности к иерархическому уровню иллю­стрирует рис. 7.4.


Модель микроуровня отображает объекты или процессы самого нижнего, не­делимого на составные части уровня в иерархической структуре. Модели микро­уровня создаются как составные части модели макроуровня с целью более точного воспроизведения моделируемого прототипа.

Пример. Модель технологического процесса на предприятии.

Модель макроуровня отображает объекты или процессы среднего или высшего звена в иерархической структуре.

Пример. Модель работы сборочного цеха или предприятия.

Модель метауровня отображает процессы или объекты, взаимодействующие с прототипом модели макроуровня. Цель моделирования на метауровне - более точное воспроизведение среды (входных параметров) модели макроуровня.

Пример. Модель функционирования предприятия во взаимосвязи с государ­ственными органами, поставщиками, потребителями, общественностью и окру­жающей средой.

7.2.4. Классификация моделей по характеру взаимоотношений со средой

Классификацию моделей по характеру взаимоотношений со средой иллюстри­рует рис. 7.5.


Открытая модель осуществляет непрерывный энергоинформационный и ве­щественный обмен со средой.

Пример. Действующая модель водяной мельницы в уменьшенном масштабе.

Закрытая модель имеет слабую связь с внешней средой или вовсе ее не имеет.

Пример. Компьютерная модель движения колеса по наклонной поверхности в отсутствие силы трения.

7.2.5. Классификация моделей по способу представления свойств объекта

Классификацию моделей по способу представления свойств объекта иллюстри­рует рис. 7.6.

Алгоритмическая модель описывается алгоритмом или комплексом алгоритмов, определяющим ее функционирование и развитие.



Пример. Типичным случаем алгоритмического моделирования являются продук­ционные экспертные системы, моделирующие поведение эксперта при принятии решений в той или иной предметной области при помощи набора алгоритмов (правил).

Имитационная модель строится для испытания, изучения или воспроизведения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели. Название «имитационная» модель получила, посколь­ку позволяет имитировать поведение реальных сложных систем без детального описания внутреннего механизма этого поведения.

В случае математической имитационной модели сложная система представляется в виде совокупности элементов, часть из которых может быть описана аналитически (функциональными зависимостями), а часть представляет собой «черные ящики», функционирование которых аппроксимируется вероятностными зависимостями.

Имитационные модели могут быть не только математическими, они могут ре- ализовываться самыми разными способами, в том числе с помощью макетов или путем игрового моделирования.

Пример. Игровая реконструкция знаменитых военных сражений (например, Бородинской битвы) является очевидным примером имитационного моделиро­вания. По части известных фактов и описаний процессов в ходе имитации может быть реконструирована картина сражения, близкая к реальным историческим событиям.

7.2.6. Классификация моделей по причинной обусловленности

Классификацию моделей по причинной обусловленности иллюстрирует рис. 7.7.

Детерминированная модель позволяет однозначно определять набор выходных параметров для каждой допустимой совокупности входных параметров.


Недетерминированная, или стохастическая (вероятностная), модель предпо­лагает вероятностную природу входных параметров так же, как и вероятностную природу функций (или алгоритмов) их обработки. Таким образом набор выходных параметров в стохастической модели приобретает вероятностный характер.

Пример. Модель земной атмосферы, которая строится с целью формирования долгосрочного прогноза погоды и предупреждения стихийных бедствий, носит стохастический характер.

7.2.7. Классификация моделей по отношению ко времени

Классификацию моделей по отношению ко времени иллюстрирует рис. 7.8.


Динамическая модель в явной форме использует время в качестве одного из входных параметров. Обычно динамическая модель может быть «проиграна» во времени с некоторым масштабированием (замедлением или ускорением).

Пример. Модель развития колонии простейших микроорганизмов.

Статическая модель определяет модель, у которой параметр времени в явной форме среди входных параметров не присутствует. Статические модели обычно используют для отыскания граничных или оптимальных значений тех или иных параметров.

Пример. Модель воздушного судна для обдува в аэродинамической трубе.

7.2.8. Классификация моделей по сфере применения

Классификацию моделей по сфере применения иллюстрирует рис. 7.9.


Разделение моделей по сферам применения вызвано не столько особенностью самих моделей (принципы моделирования остаются одинаковыми независимо от области применения модели), сколько спецификой сбора и подготовки исходного материала для моделирования и специфическими особенностями описания пред­метной области.

7.2.9. Классификация моделей по методологии применения

Классификацию моделей по методологии применения иллюстрирует рис. 7.10.


Учебная модель создается для поддержки учебного процесса. Учебные модели обычно частично воспроизводят функциональность объекта или детали процесса, которые невозможно наблюдать и изучать при рабочем функционировании объ­екта моделирования.

Пример. Модель пищеварительного тракта человека, модель электрической системы автомобиля, модель клетки биологической ткани.

Игровая модель в игровой форме или ситуации воспроизводит процессы, про­исходящие в сложной системе. Игровые модели чаще всего разрабатываются для тренинга навыков и умений. Игровая модель может строиться спонтанно или организованно.

Пример. Детская игра, воспроизводящая в игровой форме семейные отношения, деловая игра, направленная на выявление конфликтных ситуаций на предпри­ятии и нахождение путей их разрешения.

Научно-исследовательская модель строится для изучения явлений, которые невозможно произвольно повторить в живой природе.

Пример. Компьютерная модель фрагмента земной коры, построенная для из­учения способов прогнозирования землетрясений.

Опытная модель строится с целью воспроизведения свойств искусственного объекта и изучения его поведения в различных условиях. Опытная модель в не­которых случаях может быть сложнее и дороже, чем объект моделирования.

Пример. Опытная модель микропроцессорного устройства, построенная путем компьютерного моделирования. Такая модель может в целом обойтись дороже и сложнее, чем создание одного кристалла микропроцессора, но оправдывает себя, поскольку позволяет предотвратить ошибки в устройстве, которое будет изготовлено в количестве несколько миллионов штук.

Имитационная модель служит для имитации поведения или процессов в слож­ных системах. Определение и пример имитационной модели уже были приведены ранее в этом разделе.

7.2.10. Классификация моделей по способу представления

Классификацию моделей по способу представления иллюстрирует рис. 7.11.

Материальная модель по своей физической структуре, форме, энергетическим характеристикам воспроизводит моделируемый объект. Для материальной модели характерно непосредственное, в материальной, а не информационной форме, вос­произведение тех или иных особенностей прототипа.


Информационная модель представляет собой модель, в которой в качестве механизма создания модели выступает информация. Информационные модели могут быть неформализованными (например, мысленная модель или абстрактная живопись) и формализованными (то есть воплощенными в форме символов, вы­сказываний, рисунков или чертежей, значение которых оговорено).

В свою очередь, формализованная модель может быть компьютерной и неком­пьютерной.

Пример. Мысленное представление модели электрической машины является неформализованной информационной моделью. Мысленные эксперименты с такими моделями - известный факт из биографии знаменитого физика и изо­бретателя Никола Тесла. Однако мысленное представление модели электрической машины не может быть использовано при ее серийном производстве, поэтому мысленная модель формализуется, переводится на язык понятных другим людям символов или рисунков (чертежей). Таким образом создается формализованная модель. Формализованная модель, созданная при помощи компьютера, является компьютерной. Формализованная модель, созданная без участия компьютерной техники, является некомпьютерной.



Рекомендуем почитать

Наверх