Оптическая плотность и разрешение изображения.

Бытовая техника 13.05.2019

Cтраница 1


Оптическое разрешение - определяется как количество светочувствительных элементов в сканирующей головке, поделенное на ширину рабочей области. Высокое разрешение необходимо, как правило, только для комфортного визуального восприятия.  

Оптическое разрешение [ optical resolution ] - параметр, определяющий максимальную разрешающую способность сканера без интерполяции. Разрешающую способность принято измерять количеством раздельно фиксируемых или наблюдаемых точек изображения объекта на единицу фиксированной длины или площади.  

Например, если оптическое разрешение сканера равно 800 dpi, то производители пишут в документации крупными буквами, что разрешение сканера составляет 1200 dpi или даже 1600 dpi, при этом маленькими буквами добавляя, что это программное разрешение.  

Ввиду предельно малой длины волны достигается оптическое разрешение гораздо большее, чем при использовании видимого света. Предел разрешения для электронного микроскопа составляет несколько десятых долей нанометра; в видимом свете можно различить лишь примерно в тысячу раз большие детали.  

Под этими условиями имеются в виду оптическое разрешение в электронно-микроскопическом изображении, достаточное для различения полигональных очертаний, например в частицах гидрозолей золота.  

При разработке этой камеры были вложены большие средства для достижения как максимально возможного оптического разрешения, так и предельно коротких экспозиций.  

Прекрасные рисунки Фила были доработаны Робином Раскинем и затем отпечатаны на лазерном принтере QMS Lasergrafix с оптическим разрешением, превосходящем первоначальное в четыре раза. Качество этих рисунков не было таким высоким, какого мог бы достичь профессиональный художник при помощи пера и чернил, но возможность дополнительного личного участия казалась мне важней.  

Следует различать понятия оптической разрешающей способности сканера и программной разрешающей способности. Оптическое разрешение показывает предельные возможности светочувствительного элемента сканера. Однако с помощью программных ухищрений, то есть используя специальные алгоритмы работы с изображениями, можно повысить разрешающую способность сканера обычно до следующего значения в приведенном выше ряду.  

Вообще говоря, в слабых концентрациях его можно сравнивать с цветом раствора бихромата, но это не является общим правилом. Задача оптического разрешения таких жидкостей может быть решена только спектроколориметром. В нефтяную практику такие приборы еще не вошли и до некоторой степени их заменяет тинтометр Ловибонда.  

Разрешающая способность определяется числом оптических элементов на единицу длины. Программная интерполяция оптического разрешения никакого реального повышения качества оцифровки не дает. Динамический диапазон устройств на ПЗС ниже, чем у ФЭУ, потому что кремниевые элементы имеют худшее соотношение сигнал / шум.  

Эти величины определяют теоретический предел оптического разрешения фотолитографии.  

В большинстве препаратов локальное пропускание изменяется от точки к точке по полю зрения микроскопа. Влияние этой неоднородности приводит к появлению специфической погрешности - погрешности усреднения. Эта погрешность имеет место всегда, когда исследуются области препарата с различным пропусканием, размер которых больше предела оптического разрешения.  

Тонкий диск германия, с одной стороны имеющий вогнутую поверхность, укрепляется с помощью проволочного контакта на этой поверхности. Другая сторона германиевого диска подвергается воздействию света, который может фокусироваться на ней с помощью линзы. При приложении поляризирующего напряжения соответствующей величины выходной ток фототранзистора зависит от освещенности. Поскольку активная поверхность фотоэлемента очень мала, получается хорошее оптическое разрешение. Спектральная характеристика охватывает одновременно диапазон видимого света и инфракрасного излучения до длин волн около 2 мк с максимумом около 1 5 мк. Фототранзистор обладает довольно ровной частотной характеристикой до 200 кгц. Возможно получить выходной ток 0 07 ма / млм даже при нагрузке 2 ком.  

Фотообъектив, помещенный между фотопластинкой и образцом, фокусирует изображение поверхности объекта на плоскость фотопластинки. Причем их плоскости должны оыть параллельны. Существенным преимуществом голограмм сфокусированных изображений является возможность получения увеличенного изображения объекта, а следовательно и большего оптического разрешения интерференционных полос.  

Некоторые виды цементита, например третичный цементит или цементит, распределенный в структуре сталей после закалки, выявляются этим травителем лучше, чем с помощью травителей, после обработки которыми карбид железа выглядит темным на фоне окружающей светлой матрицы. Клемм применял его для выявления цементита и - у-фазы в закаленных структурах. Для травления не требуется удалять деформированный слой феррит-ной матрицы. Изображение структуры получается более качественным, если сульфидный осадок на всей поверхности феррита одинаково ориентирован. Этот метод позволяет наблюдать за развитием коагуляции цементита, выделяющегося в процессе отпуска. Естественно, для изучения небольшого числа мельчайших частиц цементита важное значение имеет оптическое разрешение.  

Сканер - это устройство, которое анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием.

В 1857 году флорентийский аббат Джованни Казелли изобрёл прибор для передачи изображения на расстояние, названный впоследствии пантелеграф. Передаваемая картинка наносилась на барабан токопроводящими чернилами и считывалась с помощью иглы. В 1902 году, немецким физиком Артуром Корном была запатентована технология фотоэлектрического сканирования, получившая впоследствии название телефакс. Передаваемое изображение закреплялось на прозрачном вращающемся барабане, луч света от лампы, перемещающейся вдоль оси барабана, проходил сквозь оригинал и через расположенные на оси барабана призму и объектив попадал на селеновый фотоприёмник. Эта технология до сих пор применяется в барабанных сканерах. В дальнейшем, с развитием полупроводников, усовершенствовался фотоприёмник, был изобретён планшетный способ сканирования, но сам принцип оцифровки изображения остается почти неизменным.

Основные характеристики сканеров

Оптическое разрешение

Является основной характеристикой сканера. Сканер снимает изображение не целиком, а по строчкам. По вертикали планшетного сканера движется полоска светочувствительных элементов и снимает по точкам изображение строку за строкой. Чем больше светочувствительных элементов у сканера, тем больше точек он может снять с каждой горизонтальной полосы изображения. Это и называется оптическим разрешением. Оно определяется количеством светочувствительных элементов (фотодатчиков), приходящихся на дюйм горизонтали сканируемого изображения. Обычно его считают по количеству точек на дюйм - dpi (dots per inch). Нормальный уровень разрешение не менее 600 dpi, увеличивать его еще дальше - значит, применять дорогую оптику, дорогие светочувствительные элементы, и увеличивать время сканирования. Для обработки слайдов необходимо более высокое разрешение 1200 dpi.

Разрешение по X

Этот параметр показывает количество пикселей у фоточувствительной линейки, из которых формируется изображение. Разрешение является одной из основных характеристик сканера. Большинство моделей имеет оптическое разрешение сканера 600 или 1200 dpi (точек на дюйм). Его достаточно для получения качественной копии. Для профессиональной работы с изображением необходимо более высокое разрешение.

Разрешение по Y

Этот параметр определяется величиной хода шагового двигателя и точностью работы механики. Механическое разрешение сканера значительно выше оптического разрешения фотолинейки. Именно оптическое разрешение линейки фотоэлементов будет определять общее качество отсканированного изображения.

Скорость сканирования

Скорость сканирования зависит от разрешения при сканировании и от размера оригинала. Обычно производители указывают этот параметр для формата А4. Скорость сканирования может измеряться количеством страниц в минуту или временем, необходимым для сканирования одной страницы. Иногда измеряется в количестве сканируемых линий в секунду.

Глубина цвета

Как правило, производители указывают два значения для глубины цвета - внутреннюю глубину и внешнюю. Внутренняя глубина - это разрядность АЦП (аналого-цифрового преобразователя) сканера, она указывает на то, сколько цветов сканер способен различить в принципе. Внешняя глубина - это количество цветов, которое сканер может передать компьютеру. Большинство моделей используют для цветопередачи 24 бита (по 8 на каждый цвет). Для стандартных задач в офисе и дома этого вполне достаточно. Но если вы собираетесь использовать сканер, для серьезной работы с графикой, попробуйте найти модель с большим числом разрядов.

Максимальная оптическая плотность

Максимальная оптическая плотность у сканера - это оптическая плотность оригинала, которую сканер отличает от "полной темноты". Чем больше это значение, тем больше чувствительность сканера и тем выше качество сканирования темных изображений.

Тип источника света

Ксеноновые лампы отличаются малым временем прогрева, долгим сроком службы и небольшими размерами. Флуоресцентные лампы с холодным катодом дешевы в производстве и имеют долгий срок службы. Светодиоды (LED) обладают малыми размерами, низким энергопотреблением и не требуют времени для прогрева. Но по качеству цветопередачи LED-сканеры уступают сканерам с флуоресцентными и ксеноновыми лампами.

Тип датчика сканера

В сканерах и МФУ обычно используется один из двух типов датчиков, основанных на разных технологиях:

  • CIS - Contact Image Sensor / контактный датчик изображения;
  • CCD - Charge-Coupled Device / прибор с зарядовой связью (ПЗС).

CIS представляет собой линейку фотоэлементов, которая равна ширине сканируемой поверхности. Во время сканирования она перемещается под стеклом и строка за строкой передает информацию об изображении на оригинале в виде электрического сигнала. Для освещения обычно используются светодиоды, которые расположены в непосредственной близости от фотолинейки на той же подвижной платформе. Сканеры на базе CIS имеют простую конструкцию, тонкий корпус и небольшой вес, что позволяет сделать сканер более тонким и легким по сравнению со сканерами с CCD-датчиками. Сканеры CIS, как правило, дешевле сканеров на базе CCD. Основной недостаток CIS состоит в малой глубине резкости.

Фотосенсор на основе CCD - это специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью.

ПЗС-матрица состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов. До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние. Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции, тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя.
После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Виды сканеров

  • планшетные — наиболее распространённый вид сканеров, поскольку обеспечивает максимальное удобство для пользователя — высокое качество и приемлемую скорость сканирования. Представляет собой планшет, внутри которого под прозрачным стеклом расположен механизм сканирования.
  • ручные — в них отсутствует двигатель, следовательно, объект приходится сканировать пользователю вручную, единственным его плюсом является дешевизна и мобильность, при этом он имеет массу недостатков — низкое разрешение, малую скорость работы, узкая полоса сканирования, возможны перекосы изображения, поскольку пользователю будет трудно перемещать сканер с постоянной скоростью.
  • листопротяжные (протяжные) — лист бумаги вставляется в щель и протягивается по направляющим роликам внутри сканера мимо лампы. Имеет меньшие размеры, по сравнению с планшетным, однако может сканировать только отдельные листы, что ограничивает его применение в основном офисами компаний. Многие модели имеют устройство автоматической подачи, что позволяет быстро сканировать большое количество документов.
  • планетарные или книжные сканеры — применяются для сканирования книг или легко повреждающихся документов. При сканировании нет контакта со сканируемым объектом (как в планшетных сканерах). Книжные сканеры - предназначены для сканирования брошюрованных документов. Сканирование производится лицевой стороной вверх - таким образом, Ваши действия по сканированию неотличимы от перелистывания страниц при обычном чтении. Это предотвращает их повреждение и позволяет пользователю видеть документ в процессе сканирования.
  • слайд-сканеры — как ясно из названия, служат для сканирования плёночных слайдов, выпускаются как самостоятельные устройства, так и в виде дополнительных модулей к обычным сканерам.
  • сканеры штрих-кода — небольшие, компактные модели для сканирования штрих-кодов товара в магазинах.

Принцип действия

Сканируемый объект кладется на стекло планшета сканируемой поверхностью вниз. Под стеклом располагается подвижная лампа, движение которой регулируется шаговым двигателем. Свет, отраженный от объекта, через систему зеркал попадает на чувствительную матрицу, далее на АЦП и передается в компьютер. За каждый шаг двигателя сканируется полоска объекта, которые потом объединяются программным обеспечением в общее изображение.

Изображение всегда сканируется в формат RAW — а затем конвертируется в обычный графический формат с применением текущих настроек яркости, контрастности, и т. д. Эта конвертация осуществляется либо в самом сканере, либо в компьютере — в зависимости от модели конкретного сканера. На параметры и качество RAW-данных влияют такие аппаратные настройки сканера, как время экспозиции матрицы, уровни калибровки белого и чёрного, и т. п.

Угловое разрешение - минимальный угол между объектами, который может различить оптическая система .

Способность оптической системы различать точки изображаемой поверхности например:

Угловое разрешение: 1′ (одна угловая минута, около 0,02°) соответствует площадке размером 29 см, различимой с расстояния в 1 км или одной печатной точке текста на расстоянии 1 м.

Линейное разрешение

Общие сведения

Разрешение оптических приборов принципиально ограничено дифракцией на объективе : видимые точки являются ничем иным, как дифракционными пятнами. Две соседние точки разрешаются, если минимум интенсивности между ними достаточно мал, чтобы его разглядеть. Для снятия зависимости от субъективности восприятия был введен эмпирический критерий разрешения Рэлея , который определяет минимальное угловое расстояние между точками

sin ⁡ θ = 1.22 λ D {\displaystyle \sin \theta =1.22{\frac {\lambda }{D}}}

где θ - угловое разрешение (минимальное угловое расстояние), λ - длина волны, D - диаметр входного зрачка оптической системы (часто он совпадает с диаметром объектива). Учитывая чрезвычайную малость угла θ , в оптической литературе вместо синуса угла обычно пишут сам угол.

Коэффициент подобран так, чтобы интенсивность в минимуме между пятнами была равна примерно 0,75-0,8 от интенсивности в их максимумах - считается, что этого достаточно для различения невооруженным глазом.

Зависимость разрешения при фотографировании от свойств оптической системы

При фотографировании с целью получения отпечатка или изображения на мониторе , суммарная разрешающая способность определяется разрешением каждого этапа воспроизведения объекта.

Способы определения разрешающей способности в фотографии

Определение разрешающей способности производится путём фотографирования специального тестового объекта (миры). Для определения разрешающей способности каждого из элементов, принимающих участие в техническом процессе получения изображения, измерения проводят в условиях, когда погрешности от остальных этапов пренебрежимо малы.

Разрешающая сила объектива

Разрешающая способность первичного материального носителя

Фотографическая эмульсия

Важно, что современная иностранная трактовка линий миры считает пару черная и белая полоса - за 2 линии, - в отличие от отечественных теории и практики, где каждая линия всегда считается разделенной промежутками контрастного фона толщиной, равной толщине линии.

Некоторые фирмы - производители цифровых фотоаппаратов в рекламных целях пытаются повернуть матрицу под углом в 45°, достигая определённого формального повышения разрешения при фотографировании простейших горизонтально-вертикальных мир. Но если использовать профессиональную миру , или хотя бы повернуть простую миру под тем же углом, становится очевидным, что повышение разрешения - фиктивное.

Получение конечного изображения

Разрешающая способность современных принтеров измеряется в точках на миллиметр (dpmm) или на дюйм (dpi).

Струйные принтеры

Качество печати струйных принтеров характеризуется:

  • Разрешением принтера (единица измерения DPI)
  • Цветовым разрешением системы принтер-краска-цветовые профиля ICC (цветовые поля печати). Цветовые поля печати в большей степени ограничиваются свойствами используемой краски. В случае необходимости принтер можно перевести практически на любую краску, которая подходит к типу используемых в принтере печатных головок, при этом может понадобиться перенастройка цветовых профилей.
  • Разрешением отпечатанного изображения. Обычно очень сильно отличается от разрешения принтера, так как принтеры используют ограниченное количество красок, максимум 4…8 и для получения полутонов применяется мозаичное цветосмешение, то есть один элемент изображения (аналог пикселя) состоит из множества элементов печатаемых принтером (точки - капли чернил)
  • Качеством самого процесса печати (точность перемещения материала, точность позиционирования каретки и т. п.)

Для измерения разрешающей способности струйных принтеров, в быту, принята единственная единица измерения - DPI, соответствующая количеству точек-физических капель краски на дюйм отпечатанного изображения. В действительности реальное разрешение струйного принтера (видимое качество печати) зависит от гораздо большего числа факторов:

    • Управляющая программа принтера в большинстве случаев может работать в режимах, обеспечивающих очень медленное перемещение печатающей головки и как следствие, при фиксированной частоте спрыска краски дюзами печатающей головки, получается очень высокое «математическое» разрешение отпечатанного изображения (иногда до 1440 × 1440 DPI и выше). Однако следует помнить что реальное изображение состоит не из «математических» точек (бесконечно малого диаметра), а из реальных капель краски. При непомерно высоком разрешении, более 360…600 (приблизительно) количество краски, наносимой на материал, становится чрезмерным (даже если принтер оборудован головами, создающими очень мелкую каплю). В итоге, для получения изображения заданной цветности, заливку приходится ограничивать (то есть возвращать количество капель краски в разумные пределы). Для этого используются как заранее сделанные настройки, вшиваемые в цветовые профиля ICC, так и принудительное уменьшение процента заливки.
    • При печати реального изображения дюзы постепенно блокируются внутренними факторами (попадание пузырьков воздуха вместе с краской, поступающей в дюзы печатающей головки) и внешними факторами (прилипание пыли и скопление капель краски на поверхности печатающей головки). В результате постепенного блокирования дюз появляются не пропечатанные полосы на изображении, принтер начинает «полосить». Скорость блокирования дюз зависти от типа печатающей головки и конструкции каретки. Проблема забитых дюз решается прочисткой печатающей головки.
    • Дюзы спрыскивают краску не идеально вниз, а имеют небольшой угловой разброс, зависящий от типа печатающей головки. Смещение капель вследствие разброса можно компенсировать уменьшением расстояния между печатающей головкой и печатаемым материалом, но при этом следует помнить, что слишком сильно опущенная голова может цеплять материал. Иногда это приводит к браку, при особо жёстких зацепах печатающая головка может быть повреждена.
    • Дюзы в печатающей головке располагаются вертикальными рядами. Один ряд - один цвет. Каретка печатает как при движении слева направо, так и справа налево. При движении в одну сторону головка последним кладёт один цвет, а при движении в другую сторону, последним кладёт другой цвет. Краска разных слоёв, попадая на материал, лишь частично смешивается, возникает флуктуация цвета, которая на разных цветах выглядит по разному. Где-то она почти не видна, где-то она сильно бросается в глаза. На многих принтерах есть возможность печати только при движении головки в одну сторону (to Left или to Right), обратный ход - холостой (это полностью устраняет эффект «матраса», но сильно снижает скорость печати). На некоторых принтерах установлен двойной набор головок, при этом головки расположены зеркально(пример: Жёлтый-Розовый-Голубой-Чёрный-Чёрный-Голубой-Розовый-Жёлтый), такое расположение головок исключает рассматриваемый эффект, но требует более сложной настройки - сведение головок одного цвета между собой.

Лазерные и светодиодные принтеры

Мониторы

Измеряется в точках на единицу длины изображения на поверхности монитора (в dpmm или dpi).

Микроскопы

оптической среды, в которой находится линза. λ - длина волны света, освещающего объект или испускаемого им (для флюоресцентной микроскопии). Значение n sin α также именуется числовая апертура .

Из-за накладывающихся ограничений значений α , λ , и η , предел разрешающей способности светового микроскопа, при освещении белым светом, - приблизительно 200…300 нм. Поскольку: α лучшей линзы - приближенно 70° (sin α = 0.94 …0.95), учитывая также, что самая короткая длина волны видимого света является синей (λ = 450 nm; фиолетовой λ = 400…433), и типично высокие разрешения обеспечивают линзы масляно-иммерсионных объективов (η = 1.52 …1.56 ; по И. Ньютону 1,56 - показатель (индекс) преломления для фиолетового), имеем:

R = 0.61 × 450 nm 1.56 × 0.94 = 187 nm {\displaystyle R={\frac {0.61\times 450\,{\mbox{nm}}}{1.56\times 0.94}}=187\,{\mbox{nm}}}

Для других типов микроскопов разрешение определяется иными параметрами. Так, для растрового электронного микроскопа разрешение определяется диаметром пучка электронов и/или диаметром области взаимодействия электронов с веществом образца.

В традиционной фотографии разрешение определяется максимальным количеством раздельно передаваемых штрихов, приходящихся на 1 мм изображения. В цифровой фотографии разрешение определяется количеством точек в изображении. Чем выше разрешение, тем меньшие детали объекта способна передать фотокамера.На разрешающую способность цифрового изображения влияют характеристики оптики, свойства ЭОП, программные преобразования, производимые процессором ЦФК. Определяется стандартно - путем съемки тест-объектов, как предельная пространственная частота, воспроизводимая ЦФК.

Для матриц вводятся понятия «оптическое разрешение» и «интерполяционное разрешение».

Оптическое разрешение матрицы характеризует шаг дискретизации фиксируемого изображения. Оптическое разрешение выражается в пикселях на дюйм,ppi(pixelsperinch).

Оптическое разрешение фотоматрицы задают двумя способами:

Ее размером в пикселях по горизонтали и по вертикали;

Общим количеством пикселей, которые она содержит. Например: изображение 1600х1200 пикселей или 1.92 млн. пикселей.

Увеличение оптического разрешения достигают или увеличением размеров ПЗС-матрицы, или уменьшением размеров ячейки.

Большинство любительских фотоаппаратов имеют разрешение 8-10 млн пикселов. Для сравнения, оптическое разрешение человеческого глаза составляет порядка 120 млн пикселов, традиционные 35-мм слайды, по разным оценкам, содержат от 10-20 млн элементов изображения.

Интерполяционное разрешение – это программное повышение оптического разрешения. Оно не повышает степень детализации изображения, а лишь понижает его зернистость. При интерполяции ПЗС-матрица считывает графическую информацию на пределе своего оптического разрешения. После этого каждый пиксель изображения разбивается на несколько более мелких пикселей, которым присваиваются усредненные значения цвета соседних, реально считанных пикселей.

4. Шумы матриц

Физический размер матрицы и размер каждого пикселя в отдельности значительно влияют на кол-во шумов. Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше. Это позволяет получать более яркую, качественную картинку с естественными цветами. Так же при большом размере каждого отдельного пикселя, слой изоляции, разделяющий пиксели друг от друга, толще и меньше зарядов ее пробивает, т.е. токов утечки меньше, а соответственно шумов меньше.

Аналогом шумов ПЗС-матрицы у пленок является зернистость.



Рекомендуем почитать

Наверх