Простейшие функциональные зависимости. Зависимости между атрибутами

Инструмент 15.06.2019
Инструмент

Зависимости между атрибутами

    Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует только одно значение В.

Обознач-ся:А В

2. Если существует функциональная зависимость вида А В и В А, то между А и В имеется взаимосвязанное соответствие или функциональная взаимозависимость

Обозн: А В

Частичная функциональная зависимость это зависимость неключевого атрибута от части составного ключа.

Полная функциональная зависимость

Когда неключевой атрибут полностью зависит от составного ключа.

Пр: Кафедра(ФИО, должен, оклад, стаж, д_стаж, кафедра, предмет, группа, вид занятий)

ФИО кафедра

ФИО должность

Атрибут С зависит от А транзитивно если для атрибутов А,В,С выполняется условие А В и В С, но нет обратной зависимости А С

Пример. ФИО должность оклад

В отношении rатрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами изr.

Обозн. А В, А В, А В ФИО предмет

Замечание: В общем случае между двумя атрибутами одного отношения могут существовать функциональные и многозначные зависимости (1:1, 1:M,M:M) т.к. зависимость между атрибутами является причиной аномалий, то необходимо разбить отношение с зависимостями атрибутов на несколько отношений. В результате получается совокупность связанных отношений, связи между которыми отражают зависимости между атрибутами различных отношений.

Два или более атрибутов называются взаимонезависимыми, если не один из этих атрибутов не зависит функционально от других атрибутов (Обозн. А¬
В).

Выявление зависимостей между атрибутами

Выявление зависимостей между атрибутами необходимо для выполнения проектирования БД методом нормальных форм.

Основной способ определения функциональной зависимости- это внимательный анализ семантики атрибутов .

A1 A3

Кроме того, А2 ¬ А1, А3 ¬ А1

Перечисляя все существующие функциональные зависимости в отношении rполучим полное множество функциональных зависимостей, которые обозначаютсяF + .

Зная некоторые функциональные зависимости, с помощью аксиом вывода можно получить полное множество F + для какого-либо отношения.

Для отношения “кафедра”:

ФИО оклад

ФИО должность

ФИО стаж

ФИО кафедра

ФИО д_стаж

Стаж д_стаж

Должность оклад

Оклад должность

ФИО.Преподаватель.Группа Вид занятий

Нормализация отношений

В реляционной БД каждое отношение должно быть нормализовано. Нормальная форма – это ограничение на схему БД, которое позволяет избежать аномалий при добавлении, удалении и изменении данных.

Отношение считается нормализованным (1НФ), если каждое значение любого атрибута в каждом картеже является неделимым (атомарным) элементом. Такими атомарными значениями являются простые типы данных.

2НФ В основном используются три нормальных формы.

Для всех нормальных форм соблюдается правило вложенности

Преимущества нормализации :

    Лучшая организация БД, что облегчает работу пользователям и администраторам БД.

    Сокращается избыточность информации, что ведет за собой упрощение структуры и рациональное использование дискового пространства.

    Минимизируется дублируемая информация.

    Нормализация с разбиением БД на более мелкие таблицы дает большую гибкость при изменении структур данных.

    Большая безопасность БД.

После нормализации БД организация защиты информации, содержащейся в ней, значительно упрощается.

Недостатки :

Снижение производительности при выполнении запросов в БД.

Определения:

    Отношение находится в 1НФ, если все элементы соответствующих доменов являются атомарными для каждого атрибута в исходном отношении. Исходное отношение строится таким образом чтобы оно находилось в 1НФ.

    Значение является не атомарным, если оно используется приложением по частям.

Перевод отношения в следующую нормальную форму осуществляется методом декомпозиции без потерь.

Такая декомпозиция должна обеспечивать то что запросы к исходному отношению и к отношениям, получаемым в результате декомпозиции, дадут одинаковый результат.

Основной операцией в методе является операция проекции.

r (A,B,C,D,E) C D

r1(A,B,C,E) r2(C,D)π CD (r)

Частичная зависимость от ключа неключевых атрибутов приводит к следующему:

    1. В отношении имеется явное и не явное избыточное дублирование данных, например, повторение о стаже, должности и окладе преподавателя, проводящих занятия в нескольких группах и/или по разным предметам. Повторение данных об окладах для одной и той же должности или данные о надбавке за стаж.

    Следствием избыточного дублирования является проблема редактирования данных. Часть избыточности устраняется при переходе в 2НФ.

Отношение находится в 2НФ, если:

    Отношение находится в 1НФ.

    Каждый неключевой атрибут функционально полностью зависит от первичного ключа.

Для устранения частичной зависимости и перевода отношения в 2НФ необходимо:

    Построить проекцию без атрибутов, находящихся в частичной функциональной зависимости от первичного ключа.

    Построить проекцию на части составного первичного ключа и атрибута, зависящие от этих частей.

В результате получим два отношения r1,r2, находящихся во 2НФ:

Вид занятий

Иванов И.М

Практика

Иванов И.М

Практика

Петров М.И

Петров М.И

Практика

Сидоров Н.Г

Сидоров Н.Г

Егоров В.В

Переход ко 2НФ позволяет исключить явную избыточность данных в отношении r2, тем не менее, дублирование данных сохраняется и поэтому необходимо преобразоватьr2 в 3НФ.

Опр.1: Отношение находится в 3НФ, если:

    Удовлетворяются все требования 2НФ.

    Если каждый неключевой атрибут не транзитивно зависит от первичного ключа.

Опр.2: Отношение находится в 3НФ в том случае, если все неключевые атрибуты взаимно независимы и полностью зависят от первичного ключа.

ФИО оклад должность

ФИО стаж Д_стаж

ФИО должность оклад

Транзитивные зависимости также порождают избыточное порождение данных.

Чтобы устранить транзитивные зависимости, необходимо использовать проекцию на атрибуты, являющиеся причиной данных транзитивных зависимостей.

В результате получим:

Д_стаж

На практике, в большинстве случаев приведение к 3НФ является достаточным, и дальнейшую нормализацию не проводят.

Если в отношении имеется зависимость атрибутов составного ключа от неключевых атрибутов, то необходимо перейти к усиленной 3НФ, она называется НФБК.

Опр. Отношение находится в НФБК, если оно находится в 3НФ, и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

Аннотация: В данной лекции вводится понятие функциональной зависимости. Это понятие является основой математической теории реляционных баз данных.

Информация, данные, информационные системы

Понятие функциональной зависимости в данных

Оставим пока в стороне ответ на вопрос, почему проекты реляционных баз данных бывают плохими, т.е. зачем нужно проектировать реляционную базу данных. Попытаемся сначала ответить на вопросы "В чем заключается проектирование реляционных баз данных ? и "Что лежит в основе процедур ?"

Как известно, основной единицей представления данных в реляционной модели является отношение, которое математически задается списком имен атрибутов, иначе - схемой отношения . На стадии логического проектирования реляционной базы данных проектировщик определяет и выстраивает схемы отношений в рамках некоторой предметной области, а именно - представляет сущности, группирует их атрибуты, выявляет основные связи между сущностями. Так, в самом общем смысле проектирование реляционной базы данных заключается в обоснованном выборе конкретных схем отношений из множества различных альтернативных вариантов схем.

На практике построение логической модели базы данных, независимо от используемой модели данных, выполняется с учетом двух основных требований: исключить избыточность и максимально повысить надежность данных. Эти требования вытекают из требования коллективного использования данных группой пользователей. Формальных средств описания данных, необходимых для проверки правильности заполнения конструкций моделей, явно недостаточно. Выбор сущностей, атрибутов и фиксация взаимосвязей между сущностями зависит от семантики предметной области и выполняется системным аналитиком субъективно в соответствии с его личным пониманием специфики прикладной задачи. Разные люди определяют и представляют данные по-разному.

Поэтому любое априорное знание об ограничениях предметной области, накладываемых на взаимосвязи между данными и значения данных, и знания об их свойствах и взаимоотношениях между ними может сыграть определенную роль в соблюдении указанных выше требований. Формализация таких априорных знаний о свойствах данных предметной области базы данных нашла свое отражение в концепции функциональной зависимости данных, т.е. ограничений на возможные взаимосвязи между данными, которые могут быть текущими значениями схемы отношений .

Кортежи отношений могут представлять экземпляры сущности предметной области или фиксировать их взаимосвязь. Но даже если эти кортежи определены правильно, т.е. отвечают схеме отношения и выбраны из допустимых доменов, не всякий из них может быть текущим значением некоторого отношения. Например, возраст человека редко бывает более 120 лет, или один и тот же пилот не может одновременно выполнять два различных рейса. Такие ограничения семантики домена практически не влияют на выбор той или иной схемы отношений . Они представляют собой ограничения на типы данных.

Априорные ограничения предметной области на взаимосвязь значений отдельных атрибутов оказывают наибольшее влияние на процесс проектирования схем реляционных баз данных . Соответствие по значению определенных атрибутов различных отношений базы данных, т.е. зависимость их значений друг от друга, определяет показатели надежности и корректности сохраняемых данных при их коллективном и согласованном использовании.

Вспомним определение функции как соответствия множества аргументов определенным значениям из множества определения функции и способы задания функций: формула, график и перечисление (таблица). Нетрудно понять, что функциональную зависимость (ФЗ) можно определить на довольно широком классе объектов. Определение функции не накладывает никаких ограничений на множество аргументов и множество значений функции, кроме их существования и наличия соответствия между их элементами. Поскольку ФЗ можно задать таблично, а таблица есть форма представления отношения, то становится очевидной связь между ФЗ и отношением. Отношение может задавать ФЗ. Это утверждение является первой (1) конструктивной идеей, которая положена в основу теории проектирования реляционных баз данных .

Определение 1. Пусть r (A 1 , A 2 , ..., A n) - схема отношения R , a X и Y - подмножества r . Говорят, что Х функционально определяет Y , если каждому значению атрибутов кортежа отношения из Х соответствует не более одного значения атрибутов того же кортежа отношения из Y . Такая ФЗ обозначается как .

Как видно из определения, функциональная зависимость инвариантна к изменению состояний базы данных во времени.

Пример. Понятие функциональной зависимости Продемонстрируем понятие функциональной зависимости на примере графика полетов аэропорта. ГРАФИК_ПОЛЕТОВ (Пилот, Рейс, Дата_вылета, Время_вылета)

Иванов 100 8.07 10:20
Иванов 102 9.07 13:30
Исаев 90 7.07 6:00
Исаев 100 11.07 10:20
Исаев 103 10.07 19:30
Петров 100 12.07 10:20
Петров 102 11.07 13:30
Фролов 90 8.07 6:00
Фролов 90 12.07 6:00
Фролов 104 14.07 13:30

Известно, что:

  • каждому рейсу соответствует определенное время вылета;
  • для каждого пилота, даты и времени вылета возможен только один рейс;
  • на определенный день и рейс назначается определенный пилот.

Следовательно:

  • "Время_вылета" функционально зависим от "Рейс" : "Рейс" -> "Время_{} вылета" ;
  • "Рейс" функционально зависим от {"Пилот", "Дата_вылета", "Время_вылета"} : {"Пилот", "Дата_вылета", "Время_вылета"} -> "Рейс" ;
  • "Пилот" функционально зависим от {"Рейс", "Дата_вылета"} : {"Рейс", "Дата_вылета"} -> "Пилот" .

Важной задачей при выявлении функциональных зависимостей на атрибутах отношения, которое по определению является множеством, является выяснение, какой из атрибутов выступает как аргумент, а какой - как значение ФЗ. Наиболее подходящими кандидатами в аргументы ФЗ являются возможные ключи , так как кортежи представляют экземпляры сущности , которые идентифицируются значениями атрибутов своего ключа. Нестрого говоря, функциональная зависимость имеет место на отношении, когда значения кортежа на одном множестве атрибутов однозначным образом определяют значения кортежа на другом множестве атрибутов. Это рабочее определение ФЗ не содержит в себе тех формальных элементов, которые позволяют ответить на вопрос "А как проверить наличие ФЗ между атрибутами отношения?" Необходимый для этого формализм дает нам использование реляционных операций . Для получения формального (строгого) определения наличия ФЗ в отношении обратимся к реляционным операциям .

Определение 2. Пусть имеется отношение R со схемой r , X и Y - два подмножества R . ФЗ имеет место на R , если множество имеет не более одного кортежа для каждого значения х . Такая ФЗ называется также F -зависимостью.

Как видно из определения, формальная проверка наличия ФЗ в отношении R состоит в выборе ( селекции ) отношения по значениям возможного ключа и установлении наличия однозначности между его значением и значениями других атрибутов.

Алгоритм, который проверяет, удовлетворяет ли отношение R ФЗ , состоит в сортировке отношения по значениям возможного ключа и установления факта однозначности между его значением и значениями других атрибутов. Этот алгоритм полезен, но он носит вспомогательный характер.

Ясно, что если семантика предметной области базы данных сложна, то проверить кортежи на принадлежность к ФЗ достаточно сложно. Сложно вообще установить наличие самой функциональной зависимости , отвечающей природе рассматриваемых данных. С помощью такого формального метода можно выявить ФЗ, которые не являются реальными и носят случайный характер. Проектировщику реляционных баз данных следует знать о таком методе проверки наличия ФЗ, но при проектировании новой базы данных его применение малоэффективно. Он может быть полезен при реинжиниринге существующей базы данных.

Функциональные зависимости фактически представляют собой утверждения обо всех отношениях предметной области. Эти отношения могут являться значениями схемы r и, в сущности, не могут быть получены формальными методами. Единственный способ установления функциональных зависимостей для схемы отношения r - это исследование семантики атрибутов сущностей предметной области . Являясь высказываниями о сущностях предметной области , они не могут быть доказаны. Это обстоятельство по существу порождает неединственность представления предметной области отношениями реляционной БД.

Здесь уместно высказать гипотезу о том, почему бывают хорошие и плохие проекты баз данных. Во-первых, в силу субъективности подходов к анализу предметной области аналитики могут упустить важные ФЗ. Это может привести к тому, что, работая на множестве заведомо неэквивалентных схем, проектировщик создаст неудовлетворительный проект базы данных. Во-вторых, неединственность представления предметной области отношениями приводит к проблеме выбора из множества альтернатив. При этом схема базы данных, выбранная из набора эквивалентных схем, является правильной, но может организовывать данные для пользователя непривычным образом. В-третьих, можно определить ("накроить") схемы баз данных таким образом, что в результате операций с ФЗ будут потеряны и ФЗ, и сами данные.

Лекции № 8-9.

Функциональная зависимость. Нормальные формы.

Цель занятия: познакомить студентов с определением функциональной зависимости атрибутов, с понятием нормализации исходного отношения, рассказать о причинах, приводящих к необходимости нормализации файлов записи, ввести способы обеспечения требуемого уровня нормальности таблицы, определить нормальные формы на конкретном примере.

Функциональные зависимости

Теория нормализации, как и теория баз данных в целом, опирается на математический аппарат, основу которого составляют теория множеств и элементы алгебры.

Одни и те же данные могут группироваться в таблицы (отношения) различными способами. Группировка атрибутов в отношениях должна быть рациональной (т. е. дублирование данных д.б. минимальным) и упрощающей процедуры их обработки и обновления. Устранение избыточности данных является одной из важнейших задач проектирования баз данных и обеспечивается нормализацией.

Нормализация таблиц (отношений) - это формальный аппарат ограничений на формирование таблиц (отношений), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных. Процесс нормализации заключается в разложении (декомпозиции) исходных отношений БД на более простые отношения. Каждая ступень этого процесса приводит схему отношений в последовательные нормальные формы. Для каждой ступени нормализации имеются наборы ограничений, которым должны удовлетворять отношения БД. Нормализация позволяет удалить из таблиц базы избыточную неключевую информацию.

Вначале вспомним некоторые понятия:

Простой атрибут - это атрибут, значения которого неделимы. Иными словами, в таблице нет полей типа ФИО или Адрес - они разложены на поля Фамилия, Имя, Отчество в первом случае и на поля Индекс, Город и т. д. во втором.

Сложный (составной) атрибут получается путем соединения нескольких атомарных атрибутов, иначе его называют вектором или агрегатом данных.

Определение функциональной зависимости: Пусть X и Y атрибуты некоторого отношения. Если в любой момент времени произвольному значению X соответствует единственное значение Y, то Y функционально зависит от X (X Y)

Если ключ является составным, то любой атрибут должен зависеть от ключа в целом, но не может находиться в функциональной зависимости от какой-либо части составного ключа, т.е. функциональная зависимость имеет вид (X 1 , X 2 , ..., X) Y.

Функциональная зависимость может быть полной или неполной.

Неполной зависимостью называется зависимость неключевого атрибута от части составного ключа.


Полной функциональной зависимостью называется зависимость неключевого атрибута от всего составного ключа, а не от его частей.

Определение транзитивной функциональной зависимости: Пусть X, Y, Z - три атрибута некоторого отношения. При эtom X Y и Y Z, но обратное соответствие отсутствует, то есть Y не зависит от Z, а Х не зависит от Y. Тогда говорят, что Z транзитивно зависит от Х.

Определение многозначной зависимости: Пусть Х и Y атрибуты некоторого отношения. Атрибут Y многозначно зависит от атрибута X, если. каждому значению X соответствует множество значений Y, не связанных с другими атрибутами из отношения. Многозначные зависимости могут носить характер «один ко многим» (1:М), «многие к одному» (М:1) или «многие ко многим» (М:М), обозначаемые соответственно: X=>Y, Y<=X и X<=>Y. Например, преподаватель ведет несколько предметов, а каждый предмет может вестись несколькими преподавателями, тогда имеет место зависимость ФИО <=> Предмет.

Рассмотрим следующий пример: Предположим, что для учебной части факультета создается БД о преподавателях, которая включает следующие атрибуты:

ФИО - фамилия и инициалы преподавателя (совпадения фамилий и инициалов исключаются).

Должность - должность, занимаемая преподавателем.

Оклад- оклад преподавателя.

Стаж - преподавательский стаж. Д_Стаж - надбавка за стаж.

Кафедра - номер кафедры, на которой числится преподаватель.

Предмет - название предмета (дисциплины), читаемого преподавателем.

Группа - номер группы, в которой преподаватель проводит занятия.

Вид занятия - вид занятий, проводимых преподавателем в учебной группе.

Исходное отношение ПРЕПОДАВАТЕЛЬ

Ограничения уникальности, накладываемые объявлениями первичного и кандидатных ключей отношения, является частным случаем ограничений, связанных с понятием функциональных зависимостей .

Для объяснения понятия функциональной зависимости, рассмотрим следующий пример.

Пусть нам дано отношение, содержащее данные о результатах какой-то одной конкретной сессии. Схема этого отношения выглядит следующим образом:

Сессия (№ зачетной книжки , Фамилия, Имя, Отчество, Предмет , Оценка);

Атрибуты «№ зачетной книжки» и «Предмет» образуют составной (так как ключом объявлены два атрибута) первичный ключ этого отношения. Действительно, по двум этим атрибутам можно однозначно определить значения всех остальные атрибутов.

Однако, помимо ограничения уникальности, связанной с этим ключом, на отношение непременно должно быть наложено то условие, что одна зачетная книжка выдается обязательно одному конкретному человеку и, следовательно, в этом отношении кортежи с одинаковым номером зачетной книжки должны содержать одинаковые значения атрибутов «Фамилия», «Имя» и «Отчество».


Если у нас имеется следующий фрагмент какой-то определенной базы данных студентов учебного заведения после какой-то сессии, то в кортежах с номером зачетной книжки 100, атрибуты «Фамилия», «Имя» и «Отчество» совпадают, а атрибуты «Предмет» и «Оценка» – не совпадают (что и понятно, ведь в них речь идет о разных предметах и успеваемости по ним). Это значит, что атрибуты «Фамилия», «Имя» и «Отчество» функционально зависят от атрибута «№ зачетной книжки», а атрибуты «Предмет» и «Оценка» функционально не зависят.

Таким образом, функциональная зависимость – это однозначная зависимость, затабулированная в системах управления базами данных.

Теперь дадим строгое определение функциональной зависимости.

Определение : пусть X, Y – подсхемы схемы отношения S, определяющие над схемой S схему функциональной зависимости X > Y (читается «X стрелка Y»). Определим ограничения функциональной зависимости inv > Y> как утверждение о том, что в отношении со схемой S любые два кортежа, совпадающие в проекции на подсхему X, должны совпадать и в проекции на подсхему Y.

Запишем это же определение в формулярном виде:

Inv > Y> r (S ) = t 1 , t 2 ? r (t 1 [X ] = t 2 [X ] ? t 1 [Y ] = t 2 [Y ]), X , Y ? S;

Любопытно, что в этом определении использовано понятие унарной операции проекции, с которым мы сталкивались раньше. Действительно, как еще, если не использовать эту операцию, показать равенство друг другу двух столбцов таблицы-отношения, а не строк? Поэтому мы и записали в терминах этой операции, что совпадение кортежей в проекции на какой-то атрибут или несколько атрибутов (подсхему X) непременно влечет за собой совпадение этих же столбцов-кортежей и на подсхеме Y в том случае, если Y функционально зависит от X.

Интересно заметить, что в случае функциональной зависимости Y от X, говорят также, что X функционально определяет Y или что Y функционально зависит от X. В схеме функциональной зависимости X > Y подсхема X называется левой частью, а подсхема Y – правой частью.

На практике проектирования баз данных на схему функциональной зависимости для краткости обычно ссылаются как на функциональную зависимость.

Конец определения .


В частном случае, когда правая часть функциональной зависимости, т. е. подсхема Y, совпадает со всей схемой отношения, ограничение функциональной зависимости переходит в ограничение уникальности первичного или кандидатного ключа. Действительно:

Inv <K > S > r (S ) = ? t 1 , t 2 ? r (t 1 [K ] = t 2 [K ] > t 1 (S ) = t 2 (S )), K ? S ;

Просто в определении функциональной зависимости вместо подсхемы X нужно взять обозначение ключа K, а вместо правой части функциональной зависимости, подсхемы Y взять всю схему отношений S, т. е., действительно, ограничение уникальности ключей отношений является частным случаем ограничения функциональной зависимости при равенстве правой части схемы функциональной зависимости всей схеме отношения.

Приведем примеры изображения функциональной зависимости:

{№ зачетной книжки} > {Фамилия, Имя, Отчество};

{№ зачетной книжки, Предмет} > {Оценка};

2. Правила вывода Армстронга

Если какое-либо базовое отношение удовлетворяет векторно определенным функциональным зависимостям, то с помощью различных специальных правил вывода можно получить другие функциональные зависимости, которым данное базовое отношение будет заведомо удовлетворять.

Хорошим примером таких специальных правил являются правила вывода Армстронга.

Но прежде чем приступать к анализу самих правил вывода Армстронга, введем в рассмотрение новый металингвистический символ «+», который называется символом метаутверждения о выводимости . Этот символ при формулировании правил записывается между двумя синтаксическими выражениями и свидетельствует о том, что из формулы, стоящей слева от него, выводится формула, стоящая справа от него.

Сформулируем теперь сами правила вывода Армстронга в виде следующей теоремы.

Теорема. Справедливы следующие правила, называемые правилами вывода Армстронга.

Правило вывода 1. + X > X;

Правило вывода 2. X > Y+ X ? Z > Y;

Правило вывода 3. X > Y, Y ? W > Z + X ? W > Z;

Здесь X, Y, Z, W – произвольные подсхемы схемы отношения S. Символ метаутверждения о выводимости разделяет списки посылок и списки утверждений (заключений).

1. Первое правило вывода называется «рефлексивность » и читается следующим образом: «выводится правило: “X функционально влечет за собой X”». Это самое простое из правил вывода Армстронга. Оно выводится буквально из воздуха.

Интересно заметить, что функциональная зависимость, обладающая и левой, и правой частями, называется рефлексивной . Согласно правилу рефлексивности ограничение рефлексивной зависимости выполняется автоматически.

2. Второе правило вывода называется «пополнение » и читается таким образом: «если X функционально определяет Y, то выводится правило: “объединение подсхем X и Z функционально влечет за собой Y”». Правило пополнения позволяет расширять левую часть ограничения функциональных зависимостей.

3. Третье правило вывода называется «псевдотранзитивность » и читается следующим образом: “если подсхема X функционально влечет за собой подсхему Y и объединение подсхем Y и W функционально влекут за собой Z, то выводится правило: «объединение подсхем X и W функционально определяют подсхему Z»”.

Правило псевдотранзитивности обобщает правило транзитивности, соответствующее частному случаю W: = 0. Приведем формулярную запись этого правила:

Необходимо отметить, что посылки и заключения, приведенные ранее, были представлены в сокращенной форме обозначениями схем функциональной зависимости. В расширенной форме им соответствуют следующие ограничения функциональных зависимостей.

Правило вывода 1. inv X> r(S);

Правило вывода 2. inv Y> r(S) ? inv Y> r(S);

Правило вывода 3. inv Y> r(S) & inv Z> r(S) ? inv Z> r(S);

Проведем доказательства этих правил вывода.

1. Доказательство правила рефлексивности следует непосредственно из определения ограничения функциональной зависимости при подстановке вместо подсхемы Y – подсхемы X.

Действительно, возьмем ограничение функциональной зависимости:

Inv Y> r(S) и подставим в него X вместо Y, получим:

Inv X> r(S), а это и есть правило рефлексивности.

Правило рефлексивности доказано.

2. Доказательство правила пополнения проиллюстрируем на диаграммах функциональной зависимости.

Первая диаграмма – это диаграмма посылки:

посылка: X > Y


Вторая диаграмма:

заключение: X ? Z > Y


Пусть кортежи равны на X ? Z. Тогда они равны на X. Согласно посылке они будут равны и на Y.

Правило пополнения доказано.

3. Доказательство правила псевдотранзитивности также проиллюстрируем на диаграммах, которых в этом конкретном случае будет три.

Первая диаграмма – первая посылка:

посылка 1: X > Y


посылка 2: Y ? W > Z


И, наконец, третья диаграмма – диаграмма заключения:

заключение: X ? W > Z


Пусть кортежи равны на X ? W. Тогда они равны и на X, и на W. Согласно Посылке 1, они будут равны и на Y. Отсюда, согласно Посылке 2, они будут равны и на Z.

Правило псевдотранзитивности доказано.

Все правила доказаны.

3. Производные правила вывода

Другим примером правил, с помощью которых можно, при необходимости вывести новые правила функциональной зависимости, являются так называемые производные правила вывода .

Что это за правила, как они получаются?

Известно, что если из одних правил, уже существующих, законными логическими методами вывести другие, то эти новые правила, называемые производными , можно использовать наряду с исходными правилами.

Необходимо специально отметить, что эти самые произвольные правила являются «производными» именно от пройденных нами ранее правил вывода Армстронга.

Сформулируем производные правила вывода функциональных зависимостей в виде следующей теоремы.

Теорема.

Следующие правила являются производными от правил вывода Армстронга.

Правило вывода 1. + X ? Z > X;

Правило вывода 2. X > Y, X > Z + X ? Y > Z;

Правило вывода 3. X > Y ? Z + X > Y, X > Z;

Здесь X, Y, Z, W, так же как и в предыдущем случае, – произвольные подсхемы схемы отношения S.

1. Первое производное правило называется правилом тривиальности и читается следующим образом:

«Выводится правило: “объединение подсхем X и Z функционально влечет за собой X”».

Функциональная зависимость с левой частью, являющейся подмножеством правой части, называется тривиальной . Согласно правилу тривиальности ограничения тривиальной зависимости выполняются автоматически.

Интересно, что правило тривиальности является обобщением правила рефлексивности и, как и последнее, могло бы быть получено непосредственно из определения ограничения функциональной зависимости. Тот факт, что это правило является производным, не случаен и связан с полнотой системы правил Армстронга. Подробнее о полноте системы правил Армстронга мы поговорим чуть позднее.

2. Второе производное правило называется правилом аддитивности и читается следующим образом: «Если подсхема X функционально определяет подсхему Y, и X одновременно функционально определяет Z, то из этих правил выводится следующее правило: “X функционально определяет объединение подсхем Y и Z”».

3. Третье производное правило называется правилом проективности или правилом «обращение аддитивности ». Оно читается следующим образом: «Если подсхема X функционально определяет объединение подсхем Y и Z, то из этого правила выводится правило: “X функционально определяет подсхему Y и одновременно X функционально определяет подсхему Z”», т. е., действительно, это производное правило является обращенным правилом аддитивности.

Любопытно, что правила аддитивности и проективности применительно к функциональным зависимостям с одинаковыми левыми частями позволяют объединять или, наоборот, расщеплять правые части зависимости.

При построении цепочек вывода после формулировки всех посылок применяется правило транзитивности с той целью, чтобы включить функциональную зависимость с правой частью, находящейся в заключении.

Проведем доказательства перечисленных произвольных правил вывода.

1. Доказательство правила тривиальности .

Проведем его, как и все последующие доказательства, по шагам:

1) имеем: X > X (из правила рефлексивности вывода Армстронга);

Правило тривиальности доказано.

2. Проведем пошаговое доказательство правила аддитивности :

1) имеем: X > Y (это посылка 1);

2) имеем: X > Z (это посылка 2);

3) имеем: Y ? Z > Y ? Z (из правила рефлексивности вывода Армстронга);

4) имеем: X ? Z > Y ? Z (получаем при помощи применения правила псевдотранзитивности вывода Армстронга, а потом как следствие первого и третьего шагов доказательства);

5) имеем: X ? X > Y ? Z (получаем, применяя правило псевдотранзитивности вывода Армстронга, а после следует из второго и четвертого шагов);

6) имеем X > Y ? Z (следует из пятого шага).

Правило аддитивности доказано.

3. И, наконец, проведем построение доказательства правила проективности :

1) имеем: X > Y ? Z, X > Y ? Z (это посылка);

2) имеем: Y > Y, Z > Z (выводится при помощи правила рефлексивности вывода Армстронга);

3) имеем: Y ? z > y, Y ? z > Z (получается из правила пополнения вывода Армстронга и следствием из второго шага доказательства);

4) имеем: X > Y, X > Z (получается, применением правила псевдотранзитивности вывода Армстронга, а затем как следствие из первого и третьего шагов доказательства).

Правило проективности доказано.

Все производные правила вывода доказаны.

4. Полнота системы правил Армстронга

Пусть F (S ) - заданное множество функциональных зависимостей, заданных над схемой отношения S.

Обозначим через inv <F (S )> ограничение, накладываемое этим множеством функциональных зависимостей. Распишем его:

Inv <F (S )> r (S ) = ?X > Y ?F (S ) [inv Y> r (S )].

Итак, это множество ограничений, накладываемое функциональными зависимостями, расшифровывается следующим образом: для любого правила из системы функциональных зависимостей X > Y, принадлежащего множеству функциональных зависимостей F (S ), действует ограничение функциональных зависимостей inv Y> r (S ), определенных над множеством отношения r (S ).

Пусть какое-то отношение r (S ) удовлетворяет этому ограничению.

Применяя правила вывода Армстронга к функциональным зависимостям, определенным для множества F (S ), можно получить новые функциональные зависимости, как уже было сказано и доказано нами ранее. И, что показательно, ограничениям этих функциональных зависимостей отношение F (S ) будет автоматически удовлетворять, что видно из расширенной формы записи правил вывода Армстронга. Напомним общий вид этих расширенных правил вывода:

Правило вывода 1. inv < X > X > r (S );

Правило вывода 2. inv Y> r (S ) ? inv ? Z > Y> r (S );

Правило вывода 3. inv Y> r (S ) & inv ? W > Z> r (S ) ? inv ? W > Z>;

Возвращаясь к нашим рассуждениям, пополним множество F (S ) новыми, выведенными из него же с помощью правил Армстронга зависимостями. Будем применять эту процедуру пополнения до тех пор, пока у нас не перестанут получаться новые функциональные зависимости. В результате этого построения мы получим новое множество функциональных зависимостей, называемое замыканием множества F (S ) и обозначаемое F + (S) .

Действительно, такое название вполне логично, ведь мы собственноручно путем длительного построения «замкнули» множество имеющихся функциональных зависимостей само на себе, прибавив (отсюда «+») все новые функциональные зависимости, получившиеся из имеющихся.

Необходимо заметить, что этот процесс построения замыкания конечен, ведь конечна сама схема отношения, на которой и проводятся все эти построения.

Само собой разумеется, что замыкание является надмножеством замыкаемого множества (действительно, ведь оно больше!) и ни сколько не изменяется при своем повторном замыкании.

Если записать только что сказанное в формулярном виде, то получим:

F (S ) ? F + (S ), [F + (S )] + = F + (S );

Далее из доказанной истинности (т. е. законности, правомерности) правил вывода Армстронга и определения замыкания следует, что любое отношение, удовлетворяющее ограничениям заданного множества функциональных зависимостей, будет удовлетворять ограничению зависимости, принадлежащей замыканию.

X > Y ? F + (S ) ? ?r (S ) [inv <F (S )> r (S ) ? inv Y> r (S )];

Итак, теорема полноты системы правил вывода Армстронга утверждает, что внешняя импликация может совершенно законно и обоснованно быть заменена эквивалентностью.

(Доказательство этой теоремы мы рассматривать не будем, так как сам процесс доказательства не столь важен в нашем конкретном курсе лекций.)



Рекомендуем почитать

Наверх