Самый первый процессор intel. Основные характеристики процессоров и ЭВМ

Авто 19.05.2019
Авто

История появления и развития первых процессоров для компьютеров берет своё начало в середине двадцатого века. Сейчас уже невозможно себе представить, что как-то можно обойтись без персональных компьютеров, но не так давно, всего каких-то сорок лет назад, слова «компьютер» и «процессор» были известны лишь узкому кругу специалистов. И лишь в 1971 году произошло знаковое событие — никому тогда ещё неизвестная фирма Intel из американского города Санта-Клара дала жизнь первому микропроцессору , благодаря чему в дальнейшем различных типов, конфигураций и назначения, прочно вошли в нашу жизнь, и ими пользуются все и везде, от учащихся школ до инженеров и ученых.

Процессоры с применением электромеханических реле, вакуумных ламп, ферритовых сердечников (то есть специальных устройств памяти)

Данный этап эволюции процессоров затронул период с сороковых по самый конец пятидесятых годов. Такие процессоры устанавливали в специальные разъёмы на отдельных модулях, которые были собраны в стойки. Огромное количество подобных стоек, соединённых проводниками, в совокупности представляли собой процессор. Отличительной чертой являлась их низкая надёжность, небольшое быстродействие, а также огромное выделение теплоты.

Процессоры на транзисторах

Это был второй этап эволюции процессоров, который длился, начиная с середины пятидесятых годов до середины шестидесятых. Транзисторы монтировали уже на платы весьма близкие к нынешним платам по облику, которые устанавливались в стойки. Как и раньше, процессор в среднем состоял из нескольких подобных стоек. Выросло быстродействие, повысился уровень надёжности, уменьшился уровень энергопотребления.

Процессоры на микросхемах

Это был третий этап эволюции процессоров, который наступил в середине шестидесятых годов. Первоначально применялись микросхемы с низкой степенью интеграции, которые содержали простейшие транзисторные, а также резисторные схемы. Потом по мере развития технологий, стали применять микросхемы, которые реализовывали отдельные части цифровой схемотехники. По началу элементарные ключи, а также различные логические элементы, потом более элементы посложнее - элементарные регистры, сумматоры, счётчики, позднее возникли микросхемы, которые содержали функциональные блоки самого процессора - арифметическо-логическое устройство, микропрограммное устройство, регистры, а также устройства для работы с шинами данных и различных команд.

Микропроцессоры

Четвёртым этапом, в самом начале семидесятых годов, было создание микропроцессора, то есть специальной микросхемы, на кристалле у которой физически были расположены все главные элементы, а также блоки процессора. Корпорация Intel в 1971 году смогла создать первый во всем мире четырехразрядный микропроцессор 4004, который состоял из 2300 транзисторов, имел рабочую частоту 108 кГц — это 0,108 МГц или 0,000108 ГГц (где-то в 20000 раз меньше частоты ). Производился этот 4-битный процессор по 10-микронной технологии и был предназначен для применения в микрокалькуляторах. В последствии Intel 4004 стали использовать в анализаторах крови, в схемах управления светофоров и даже на межпланетных космических станциях.

Со временем почти все процессоры стали выпускать в формате таких микропроцессоров. Исключением длительное время были только лишь малосерийные процессоры, которые аппаратно оптимизировались для решения различных специальных задач. К примеру, суперкомпьютеры или процессоры для осуществления решения целого ряда военных задач, или же какие-нибудь процессоры, к которым, как правило, предъявлялись некие особые требования по уровню надёжности, своему быстродействию, либо же защите от воздействия электромагнитных импульсов, а также воздействия ионизирующей радиации. С удешевлением, а также распространением самых современных технологий, данные процессоры тоже начинают делать в формате микропроцессора.

Развитие микропроцессоров

Процесс перехода к микропроцессорам дал возможность создавать персональные компьютеры, проникшие сейчас практически в каждый дом. Самым первым общедоступным микропроцессором явился четырехразрядный Intel 4004, который весной 1972 года сменил восьмибитный Intel 8008, состоявший из 3500 транзисторов и работавший на частоте 200 кГц, имел 8-разрядную шину данных, хотя и производился также по 10-микронной технологии. Сфера его применения ограничивалась терминалами и программируемыми калькуляторами.

Следующим шагом в развитии микропроцессоров стало создание в 1974 году Intel 8080. Новый 8-битный процессор содержал уже 6000 транзисторов и мог адресовать 64 Кбайт памяти. Кроме всего прочего, это был первый микропроцессор, который уже мог делить числа. Именно он стал основой для создания первого персонального компьютера Altair 8800, в котором использовалась операционная система СР/М. Простота общения с компьютером Altair 8800 и легкость написания для него программ — заслуга будущих основателей фирмы Мicrosoft Пола Аллена и Билла Гейтса, которые в конце 1975 года создали для него интерпретатор языка Ваsic (Бэйсик), что немало поспособствовало популяризации в то время.

Но история Intel 8080 на этом не закончилась. Кучка бывших инженеров Intel, которые занимались разработкой процессора 8080, объединившись, в конце 1975 года создали компанию Zilog Corporation, которая выпустила микропроцессор Z80, представляющий собой значительно улучшенную версию 8080. Изначально Z80 содержал 8500 транзисторов, работал на частоте 2,5 МГц и мог адресовать 64 Кбайт памяти. Позднее он стал работать уже на частоте 10 МГц. Самым, пожалуй, ярким представителем компьютеров на базе Z80 был «Sinclair ZX Spectrum» английской компании Sinclair Research Ltd.

В 1978 году Intel выпускает новый шестнадцатиразрядный микропроцессор Intel 8086, содержащий набор команд х86, который заложил основы архитектуры всех нынешних настольных процессоров. 8086 работал на частоте 5 МГц и содержал 29000 транзисторов. Он мог адресовать 1 Мбайт памяти благодаря 20-разрядной адресной шине. По причине большой распространённости восьмиразрядных модулей памяти выпущен был весьма дешевый Intel 8088, являющийся упрощенной версией 8086 со всеми теми же характеристиками, но с восьмиразрядной шиной данных. Это дало возможность программной и аппаратной совместимости как с процессором 8086, так и с предыдущими 8-разрядными процессорами 8085 и 8080.

Использование Intel 8088

позволило в значительной мере увеличить потенциал и возможности персональных компьютеров, так как он позволил работать с 1 Мб памяти, тогда, как все имевшиеся на тот момент компьютеры были ограничены 64 Кб. Программное обеспечение для компьютеров на Intel 8088 разрабатывала фирма Microsoft. И в 1981 году для компьютера IBM РС была представлена первая версия операционной системы MS DOS 1.0. Дальше по мере прогресса анонсировались и новые версии DOS, которые предоставляли пользователям дополнительные удобства с учётом новых возможностей компьютеров. Тем самым через пару лет, вытеснив с рынка 8-битовые модели компьютеров, IВМ РС занял ведущее место.

В 1982 году Intel выпускает новый 16-разрядный микропроцессор Intel 80286, разработанный по 1,5 микронной технологии. Он имел 134000 транзисторов, виртуальную память размером до 1 Гб, а также защищённый режим с 24-битной адресацией, который позволял использовать 16 мегабайт памяти на частоте: 8, 12 и 16 МГц.

Процессор типа Intel 80386 возник в 1985 году и смог привнести улучшенный защищённый режим, 32-битную адресацию, которая позволила применять до 4 гигабайт оперативной памяти, а также еще и поддержку механизма применения виртуальной памяти. Intel 80386 изготавливался по 1,5 мкм технологии, имел уже 275000 транзисторов и работал на частотах: 16, 20-40 МГц. Данная линейка процессоров была построена на вычислительной регистровой модели. Параллельно шло развитие микропроцессоров, которые взяли за основу вычислительную стековую модель.

В 1989 году увидел свет новый микропроцессор Intel 80486, в котором на одном, изготовленном по 1 мкм технологии, кристалле 1200000 транзисторов, первичный кэш и встроенный математический сопроцессор 80487. 486 работал на частотах: 25, 33, 50 и 66 МГц и, как его предшественник, мог использовать до 4 Гб .

Первые 32-разрядные процессоры Pentium

появились в 1993 году. Они уже имели 3 миллиона транзисторов, были изготовлены по 0,8 мкм технологии, имели частоту 60 и 66 МГц и 64-битную шину данных. В следующем 1994 году вышло второе поколение процессоров Pentium с частотой 75, 90 и 100 МГц, изготовленных по 0,6 мкм технологии, что снизило потребляемую ими мощность.

И вот, последние 20 лет, начиная с 1993 года, с момента появления первого процессора Intel Pentium, прогресс в развитии компьютерных процессоров продвигался так быстро, что сейчас в наших домашних персональных компьютерах уже стоят четырех- , шести- , восьми-ядерные процессоры тактовой частотой более 3 ГГц, созданные по 22 нм технологии, со встроенным видеоядром, но использующие всё ту же х86 архитектуру. И хотя, за время существования микропроцессоров разработано было большое множество разных архитектур, часть из них (в усовершенствованном и дополненном виде) применяется и поныне. К примеру, Intel x86, который развился сначала в 32-битную IA-32, а позднее в 64-битную x86-64 (у Intel получила название EM64T). Процессоры с архитектурой x86 использовались вначале только в компьютерах корпорации IBM (IBM PC), однако, ныне они всё более активно применяются во всех сферах компьютерной индустрии, от огромных суперкомпьютеров до небольших встраиваемых процессоров.

И это далеко не предел. В планах корпорации в ближайшие годы перейти на производство микропроцессоров по 14 нм технологии, далее 10 нм и 8 нм, и соответственно увеличение их производительности с одновременным снижением энергопотребления.

Хотите верьте – хотите нет, но скоростной Core i7 из новой линейки Intel содержит архитектуру DNA, которой уже более трех десятков лет! То же самое можно сказать и про новый Phenom II X4 от AMD. Фактически, это все тот же «долгожитель» - микропроцессорная архитектура x86, которая доминировала в настольных и мобильных системах еще до рождения многих из ныне читающих эту статью и, скорее всего, останется доминирующей еще долгие годы.

Архитектура х86 была изобретена в Intel в 1978 году. Шли годы, архитектура развивалась, становилась не только быстрее, но и гибче, и с каждым релизом приобретала все более широкий набор встроенных инструкций. Это триумфальное шествие длится уже свыше 30 лет – срок вполне солидный. Самое время остановиться и вспомнить хотя бы самые популярные процессоры на основе x86, которые вышли в свет за этот период.

Intel 8086

Сначала Intel создал 8086 и свой первый 16-разрядный микропроцессор. И сказал Intel: «Пусть будет х86»! И стал он х86. И увидел Intel, что х86 – это хорошо… В общем, впоследствии таким образом был создан целый мир, вместе с Интернетом, объединившим все население Земли в один общий дом.

Конечно, Intel - не бог, но в каждой шутке есть доля истины. Создатель чипов дал рождение процессору х86. И даже теперь, спустя 30 лет со времени скромного старта в 1978 году, х86 продолжает эволюционировать. В том же году Intel создала 3-микронный процессор 8086, работающий с частотой 4.77 МГц и разогнанный до 10 МГц в последующей версии. 8086 содержал 29000 транзисторов – всего в 4 раза больше, чем выпущенный в 1976 году 8085. Это был первый 16-разрядный микропроцессор Intel, который и положил начало 16-разрядной эре, хотя и не являлся первым в мире 16-битным процессором. Способность поддерживать софт, написанный для 8008, 8080 и 8085 и 1 МБ ОЗУ предвосхитили мгновенный и безусловный успех 8086.

Год выпуска: 1978 Тактовая частота: 4.77 МГц - 10 МГц

Знаете ли вы, что благодаря успешному акту промышленного шпионажа Советский Союз создал свой аналог 8086 - K1810BM86?

Intel 286

8086 и последовавший за ним 8088 завершили 70-е годы и открыли первое действие на сцене 80-х. А затем Intel порадовал мировое сообщество новым процессором – 80286, созданным по 1,5-микронной технологии и обладающим грандиозным числом транзисторов (134000 штук) и 16 МБ памяти. Первые 286 работали с тактовой частотой 6 МГц, которая, как и в случае оригинального 8086, была впоследствии удвоена. Однако 286 сразу же в два раза превысил по эффективности 8086, осуществив таким образом удвоение эффективности для архитектуры х86, что впоследствии больше не было осуществлено ни разу. На протяжении десятилетия 286-е процессоры стали синонимом IBM PC. По оценкам Intel, за 6 лет на 286-х процессорах в мире было выпущено около 15 миллионов ПК.

Вместе с 286 процессором был введен так называемый защищенный режим работы, при котором контролируется объем доступной оперативной памяти. Хотя эта функция позволяла выполнять прямую адресацию всех 16 МБ памяти, но разместить в 286 алгоритм переключения из защищенной моды в совместимую моду реального режима оказалось совсем не просто, поэтому эта функция не получила широкого распространения.

Год выпуска: 1982 Тактовая частота: 6.0 МГц – 12.5 МГц

Знаете ли вы, что Билл Гейтс обозвал 286 «глупым чипом», так он не «умел» запускать многозадачные приложения MS-DOS в среде Windows.

Рождение конкурента - AMD Am286

Многое было достигнуто в последние годы в результате лицензионного соглашения между Intel и AMD по использованию последней архитектуры х86. Но чтобы посмотреть как все начиналось, вернемся в 1982 – именно в этом году AMD подписала контракт на производство и продажу процессоров 8086 и 8088. А уже на следующий год AMD выпустила Am286 – точный (вплоть до числа пинов) клон интеловского 286, но работающий с более высокой частотой. Новый процессор Am286 от AMD был не просто быстрее – он был быстрее почти в два раза. Его тактовая частота составляла 20 МГц. Так что Am286 вполне можно рассматривать как «первый удар» в конкурентной борьбе, которая длится между двумя этими компаниями вот уже почти 30 лет.

Год выпуска: 1983 Тактовая частота: 8 МГц – 20 МГц

Знаете ли вы, что подобно Intel 286, Am286 был создан по 1500 нм технологии. Сегодня процессоры изготовляют по технологиям, в 33 раза более миниатюрными.

Intel 386

Процессор Intel 386, который, в отличие от более «бюджетного» варианта 386SX, впоследствии получил название 386DX, вначале работал с тактовой частотой в 16 МГц. Затем быстродействие было удвоено до 33 МГц, а число транзисторов – до 275000. Таким образом, 386 стал первым интеловским 32-разрядным процессором. Он мог использовать уже 4 ГБ памяти, а также переключаться между защищенным и реальным режимами. Также был добавлен виртуальный режим, который позволял исполнять приложения, не работающие в защищенном режиме.

Год выпуска: 1985 Тактовая частота: 16 МГц – 33 МГц

Знаете ли вы, что 386 стал первым массовым микропроцессором, производимым только одной компанией. Таким образом, производители ПК могли закупать процессор только у Intel. Такая маркетинговая политика в значительной степени способствовала успеху компании на рынке центральных процессоров.

Intel i486

К концу 80-х годов Intel успела выпустить еще один процессор – 486DX. Он стал первым процессором со встроенным математическим сопроцессором и первым, преодолевшим планку в 1 миллион транзисторов – число транзисторов в нем составило 1.2 млн. Подобно 386, 486DX мог адресовать до 4 ГБ памяти, имел встроенный кэш, оптимизированный набор команд и шину большей пропускной способности. Новый процессор нашел применение не только в ПК, но и в серверах.

Большинство игроков старой школы, скорее всего, сохранили в памяти самые теплые воспоминания о часах, проведенных за миссиями различных компьютерных игр на процессорах 486DX2-66. Но с новыми требованиями, предъявляемыми 3D-графикой, 486-й процессор справлялся уже с трудом.

Год выпуска: 1989 Тактовая частота: 25 МГц – 100 МГц

Знаете ли вы, что изначально 486-й процессор был запущен в производство в качестве модели i486DX, но впоследствии приобрел множество модификаций, включая i486SX, i486SL и i486DX2, ставшую наиболее популярной.

AMD Am386

AMD также не сидела сложа руки: нанеся Intel первый пробный удар в виде Am286, в 1991 году компания выводит на рынок новый процессор AM386, являющийся точной копией 386, но с тактовой частотой выше, чем у интеловского оригинала. Кроме того, впервые был предпринят такой маркетинговый ход, как использование логотипа «Windows Compatible», означавшего совместимый с ОС Windows продукт, который Нью-Йорк Таймс назвала «неприкрытым намерением завоевать доверие к клону интеловских микропроцессоров от AMD».

Intel приложила все усилия, чтобы воспрепятствовать продаже AMD новых процессоров, утверждая, что соглашение по x86 касалось только 80286 и предыдущих моделей. AMD выиграла процесс, и, хотя Intel уже выпустила в продажу следующий - 486 CPU, Am386 выдавал ту же производительность за существенно меньшую цену. Возмущение рынка продаж привело к укреплению позиций AMD в качестве реального конкурента Intel.

Год выпуска: 1991 Тактовая частота: 12 МГц – 40 МГц

Знаете ли вы, что Am386 был готов к выпуску еще до 1991 года, но AMD потратила массу времени на судебные разбирательства с Intel.

Cyrix Cx486

Cyrix начинал как производитель математических сопроцессоров для 286 и 386 систем в 1988 и 1992 годах, когда компания выпустила свои первые x86: 486SLC и 486DLC. Оба процессора были пин-совместимыми с 386SX/DX, предоставляя пользователям 386 платформы привлекательные возможности обновления.

Производимая Texas Instruments серия Cyrix 486 вышла без математического процессора, хотя добавление его было возможным. Серия Cx486 могла работать с первичной кэш-памятью от 1 КБ до 8 КБ и тактовой частотой до 100 МГц.

Год выпуска: 1992 Тактовая частота: 20 МГц – 100 МГц

Знаете ли вы, что из-за небольшой потребляемой мощности Cyrix Cx486 стал популярным процессором в лэптопах начала 90х.

Intel Pentium

Пятое поколение интеловских процессоров – Pentium – не только получило новое название, но и подняло архитектуру х86 на новый уровень. Не имея возможности запатентовать серийные номера, Intel вводит название Pentium, исключив таким образом копирование числового номера ее нового 586 чипа другими производителями.

В Pentium был воплощен ряд усовершенствований, направленных на решение нескольких проблем в предыдущих процессорах, заметно ограничивавших их производительность. Главными нововведениями стали 64-разрядная шина, два исполнительных модуля, значительно улучшенный модуль вычислений с плавающей точкой (FPU) и более быстрая тактовая частота. Начальная частота у Pentium составляла 60 МГц, но последующие процессоры уже могли работать на частотах вплоть до 233 МГц. За время производства Pentium технология изготовления этих процессоров сменилась с 0.8 до 0.3 мк, тем самым число транзисторов было увеличено с 3.1 до 4.5 млн.


Год выпуска: 1993 Тактовая частота: 60МГц – 233МГц

В 1996 году Intel начинает продажу процессоров Pentium MMX. Набор команд MMX добавил дополнительные регистры к архитектуре и поддерживал приложения связи и мультимедиа.

Знаете ли вы, что имя Pentium образовано от греческого слова "penta" и латинского окончания "-ium" и обозначает пятый.

AMD Am486

Последний в «войне клонов» Am486 от AMD дебютировал почти на четыре года позже интеловского 486 и на один месяц позже начала выпуска Pentium. Чтобы сделать его конкурентноспособным, AMD пришлось снизить цену, подняв при этом тактовую частоту по сравнению с интеловским 486.

Год выпуска: 1993 Тактовая частота: 60МГц – 233МГц

Знаете ли вы, что AMD также продавал в 4 раза более скоростной вариант Am486 в качестве процессора AMD 5x86. Он работал с частотой 133 МГц и по производительности соответствовал Pentium 75 MHz.

Intel Pentium Pro

Несмотря на незначительное обновление спецификаций, Pentium Pro был заметно улучшен по сравнению с оригинальным Pentium. Фактически, Pentium Pro продемонстрировал не просто набор улучшений, а новую архитектуру, а приставка Pro «добавила» еще один миллион транзисторов (теперь их стало 5.5 млн). Но более важным стало добавление первичной кэш-памяти в 256 КБ, которая потом была увеличена до 1 МБ. Пока еще не интегрированная непосредственно в ядро процессора, кэш-память работала на той же частоте, что и CPU - между 150 и 200 МГц.

Но введение новой кэш-памяти помимо положительных моментов, принесло и проблемы процессору: размещалась она на отдельном кристалле, что вело к удорожанию производства. Тем не менее, выпуск 32-разрядных Pentium Pro играл заметную роль – началась эпоха заката 16-разрядных процессоров и ОС.

Год выпуска: 1995 Тактовая частота: 150 МГц – 200 МГц

Знаете ли вы, что в 1998 году Intel реализовала процессор "Overdrive" (300 МГц Pentium II), который подходил для Socket 8 и должен был заменить Pentium Pro.

Cyrix Cx5x86

Все еще будучи новичком на рынке х86 процессоров, Cyrix доказала, что ее первый шаг не был случайностью: за Cx486 последовал выход новой успешной серии Cx5x86. Cyrix ориентировалась на потребителей, которые искали подходящую замену своим 486. И, в отличие от интеловских Pentium, процессор Cx5x86 был совместим с 486 Socket 3 на системных платах. Тем самым Intel отдала Cyrix на откуп целый сегмент рынка.

Проблемы со стабильностью вынудили Cyrix отключить ряд возможностей, которые рекламировались для новой серии, включая предсказание ветвлений и другие функции усиления производительности. Однако, продажи Cx5x86 на рынке не были длительными и закончились преждевременно, что, впрочем, не было связано с какими-то проблемами с реализацией. Просто Cyrix не желала ограничивать сегмент рынка продаж своего нового процессора 6x86, который был выпущен всего 6 месяцев спустя после 5x86.

Знаете ли вы, что Cyrix оценивала скорости своих процессоров весьма либерально: лишь немногие из Cx5x86 действительно работали на 133 МГц.

AMD Am5x86

Предлагая легкие возможности обновления для 486 компьютеров, Am5x86 от AMD был в действительности 486DX с внутренним множителем x4. Это позволяло процессору достигать быстродействия в 133 МГц и обеспечивать совместимость с большинством существующих под 486 системных плат. При этом производительность Am5x86 была не хуже, чем у Pentium 75.

Но что действительно отличало Am5x86, так это первое использование оценки производительности (PR – P erformance R ating). В дальнейшем эта тактика сыграет еще большую роль. AMD продавала эти процессоры под маркой Am5x86-P75, предоставляя покупателю информацию о том, что это эквивалент Pentium 75.

Знаете ли вы, что AMD могла бы выполнять оценку производительности вплоть до линейки процессоров Athlon 64 X2.

AMD K5

Intel сама «помогла» конкурентам, заключив лицензионное соглашение, которое открыло путь к разработке и выпуску клонов их продукции. Но эту ошибку компания не собиралась повторять, приступив к выпуску линейки Pentium. В результате AMD и все остальные не могли теперь просто производить клоны интеловской продукции и продавать в качестве собственной. В силу этого и был создан K5 от AMD - как первая попытка собственной разработки процессоров следующего поколения. Но, как и предполагалось, еще в процессе проектирования возник ряд проблем, что вызвало задержку выпуска чипа. В итоге К5 вышел в свет только в 1996 году. Технически более совершенный по отношению к Pentium, К5 содержал 4.5 млн транзисторов, 5 модулей целочисленных операций, значительно более мощный модуль предсказателя ветвлений и 16 КБ кэш (в два раза больше, чем у Pentium). К сожалению для AMD, принципиальным недостатком K5 стала низкая тактовая частота и поэтому процессор не смог нанести ожидаемый нокаут Pentium. Соответственно, не получилось и сногсшибательного коммерческого успеха.

Год выпуска: 1996 Тактовая частота: 75 МГц - 133 МГц

Знаете ли вы, что «K» в K5 и последующих процессорах от AMD было навеяно происхождением с планеты Криптон знаменитого героя американских комиксов конца 30-х, Супермена.

Cyrix 6x86 and MII

Изначально процессор Cyrix 6x86 получил название MI и был совместим с интеловским Pentium и по вольтажу, и по пинам. Однако, это был не перепроектированный клон, а оригинальный проект, который не повторял Pentium на все 100%. Ранние версии с 16 КБ кэш показывали внушительную производительность, превосходящую в ряде сценариев тестовых испытаний Pentium. Это привело к тому, что Cyrix ввел собственную оценку производительности по отношению к Pentium, несмотря на сравнительно слабую производительность при операциях с плавающей точкой. Более позднюю версию 6x86 переименовали в MII. Переработка MII обеспечила меньшее тепловыделение процессора, что позволяло разогнать тактовую частоту, но иногда вело к дополнительным затратам, так как требовались шины с нестандартными частотами 75 МГц или 83 МГц для системных плат с Socket 7.

Знаете ли вы, что было три различные версии Cyrix 6x86: оригинальная версия, версия с раздельными маломощными ядрами и версия с продвинутыми MMX командами.

AMD K6

В то время как K5 от AMD легко забылся, продвижение процессора K6 прошло более гладко, и его ждал теплый прием пользователей. Частично это произошло благодаря усилиям разработчика Vinod Dham, который известен как «отец Пентиума». Мистер Dham оставил Intel в 1996 году, чтобы перейти в NexGen, которую впоследствии приобрела AMD. Компания NexGen фактически проектировала то, что могло бы стать К6, включая инструкции MMX и блок для операций с плавающей точкой. Запущенный в апреле 1997 года К6, наряду с приобретением NexGen, еще раз дал понять, что AMD по-прежнему остается одним из главных игроков среди разработчиков центральных процессоров.

Год выпуска: 1997 Тактовая частота: 166 МГц - 300 МГц

Знаете ли вы, что К6 некоторое время использовал основанный на сравнении с Pentium II индекс производительности (PR2), но это обозначение было в конечном счете удалено.

Intel Pentium II и Pentium II Xeon

Чтобы увеличить объемы производства, Intel перемещает вторичный кэш во внешний чип. Такое исполнение подразумевало работу кэш-памяти на скорости в два раза меньшей скорости процессора. В последних Pentium II Intel пыталась компенсировать снижение скорости увеличением кэша с 256 КБ до 512 КБ. Это делалось не только с целью снижения цены (в начале выпуска Pentium II стоил немалые деньги), но также чтобы упаковать процессор в единый контактный блок для системных плат с новым процессорным разъёмом Slot1. Pentium II впервые был произведен по 0.35-мкм технологии, которая впоследствии была заменена на 0.25-мкм. Он содержал 7.5 млн транзисторов и мог адресовать 64 ГБ памяти. Вдобавок, Pentium II стал родоначальником первых процессоров Xeon, реализованных в 1998 году. Но, в отличие от Pentium II, у Xeon объем L2 кэша достиг 2 МБ.

Знаете ли вы, что процессоры серии Pentium II для настольных компьютеров имели кодовые имена Klamath и Deschutes, а для их портативных аналогов - Tonga и Dixon.

Cyrix Media GX (National Semiconductor)

Столкнувшись с финансовыми трудностями, в 1997 году Cyrix был приобретен компанией National Semiconductor (NS). Это привело к изменению философии деятельности, так как NS был значительно больше заинтересован в обширном рынке, чем в производстве высококачественной продукции высшего класса. Результатом нового менталитета стал процессор Media GX на базе Cyrix 5x86 с интегрированными графикой, контроллером памяти и PCI контроллером. Он мог работать в паре с процессором, который содержал IDE контроллер, звуковые функции и другие задачи.

Знаете ли вы, что процессор MediaGX мог работать только на системных платах, разработанных специально под него?

Centaur Technology WinChip

Вряд ли вы вспомните сегодня WinChip и уж тем более цепочку бизнес-приобретений и сотрудничества между VIA, Cyrix, National Semiconductor, IDT и Centaur Technology среди других подобных фирм, кто каким-либо образом объединялся для завоевания рынка. В этой ситуации Centaur Technology выпустила процессор WinChip под Socket 7. Отклоняясь от традиционного дизайна х86, Centaur использовала все свои знания о процессоре RISC и создала чип с меньшим вентильным счетчиком и уменьшенной площадью кристалла. Это был простой и энергетически эффективный дизайн, больше подходящий для задач с невысокими требованиями к производительности. Процессор не имел вторичного кэша, но имел первичный кэш на 64 КБ и поддерживал MMX и 3DNow! Но Интел со своим более дешевым и более быстрым Celeron положил конец всяким надеждам Centaur на успех WinChip.

Знаете ли вы, что Centaur был продан VIA в 1999 году и элементы WinChip были использованы в линейке Cyrix III.

Intel Celeron

Intel сделала отличный шаг на рынке профессиональных и высокопроизводительных серверных процессоров, выпустив Pentium II и Xeon. Но компании недоставало процессора начального уровня, ориентированного на огромный сектор рынка ПК. Intel заполнила эту нишу, выпустив в 1998 году процессор Celeron со значительно меньшей производительностью и с намного более «бюджетной» ценой.

Позже, в игровых версиях х86 несколько моделей Celeron стали настоящим искушением для любителей сэкономить на процессоре путем его разгона. Но первые Celeron на ядре Pentium II вызвали прохладную реакцию у основной массы пользователей. В первую очередь, это было обусловлено отсутствием вторичного кэша, позволявшего увеличить производительность. Позже Intel реализовала другую версию с вторичным КЭШем объемом 128 КБ, что в некоторых случаях позволило увеличить производительность в два раза. Комбинация полнокровного вторичного кэша со скоростью чипа и способностью к разгону сделали Celeron хитом среди массы разгоняемых процессоров.

Год выпуска: 1998 Тактовая частота: 266 МГц – 3.2 ГГц

Знаете ли вы, что Mendocino Celeron, дублировавший 300А, был самым популярным у оверклокеров, у которых он устойчиво работал на 450 МГц.

AMD K6-2 and K6-2+

Продолжая успех К6, K6-2 был выпущен компанией AMD в 1998 году. Он имел другой модуль ММХ и новые инструкции SIMD, известные как 3DNow! Эти нововведения на некоторое время сделали AMD лидером в среде 3D-приложений, пока Intel не «засверкал» опять с собственным набором команд SSE. Тем не менее, К6-2 стал вполне привлекательным апгрейдом для считающих деньги владельцев системной платы с Super Socket 7. Позже AMD выпустил K6-2+, в котором добавил 128 КБ вторичной кэш-памяти и уменьшил технологический процесс с 250 нм до 180 нм.

Год выпуска: 1998 Тактовая частота: 233 МГц – 500 МГц

Знаете ли вы, что набор инструкций SIMD, известный как "3Dnow!", обозначает «Single Instruction, Multiple Data». Эти инструкции известны большинству как "vector instructions" – команды обработки векторов.

AMD K6-3

Последний в линейке K6, К6-3 от AMD, был анонсирован в начале 1999 года как последний процессор для системных плат с Socket 7. Но К6-3 не довелось понежиться в лучах успеха, так как Intel выпустил новый процессор Pentium III всего через несколько дней. Значительным шагом вперед в K6-3 были 256 КБ вторичной кэш-памяти и более чем в два раза увеличенное число транзисторов - с 9.3 млн до 21.3 млн. К6-3 был успешной разработкой, но ее быстро забыли, так как AMD выпустила серию Athlon.

Год выпуска: 1999 Тактовая частота: 350 МГц – 570 МГц?

Знаете ли вы, что кодовым названием К6-3 был "Sharptooth" («острый зуб»).

Intel Pentium III и Pentium III Xeon

В 1999 Intel выпускает Pentium III. Дополнительные инструкции SSE позволили выполнять до четырех вычислений одинарной точности с плавающей запятой одновременно, что повысило эффективность обработки 3D-изображений, потокового видео и других мультимедийных задач по сравнению с Pentium II.

Позже Intel выпустила Pentium III Coppermine. Coppermine имел интегрированные 256 КБ вторичной кэш-памяти, работающие с частотой ядра, удвоенный конвейер и другие улучшения, которые привели к повышению производительности в несколько раз по сравнению с первым Pentium III.

Другой PIII чип, названный Tualatin, имел более высокую тактовую частоту, больший объем кэш-памяти, меньший размер кристалла и более низкое энергетическое потребление. Tualatin обеспечил начальную структуру интеловских мобильных процессоров Pentium-M, которые позже привели к появлению Core i7.

Как и для Pentium III Xeon, интеловский процессор для серверов не отличался принципиально от аналогов для настольных компьютеров, хотя позже для PIII Xeon кэш-память была увеличена до 2 МБ и была реализована поддержка четырех-ядерной конфигурации.

Год выпуска: 1999 Тактовая частота: 450 МГц – 1.4 ГГц

Знаете ли вы, что оригинальный Xbox от Microsoft использовал вариант процессора Pentium III Celeron в Micro-PGA2 форм-факторе.

AMD Athlon (Classic и Thunderbird)

Вероятно, наиболее заметной серией центральных процессоров в истории AMD и, определенно, наиболее важной в недавней истории компании стала линейка Athlon, которая нанесла Intel довольно сокрушительный удар. Дирк Мейер, впоследствии ставший исполнительным директором AMD, руководил командой, которая разработала Athlon с вторичной кэш-памятью в 512 КБ. Стартовав с 500 МГц, AMD опередил Intel и первым покорил важный рубеж в 1 ГГц.

Через некоторое время AMD еще больше усовершенствовал Athlon и дал новой версии имя Thunderbird. Новая ревизия ядра вместе с повышением производительности L2 кэша и рядом других улучшений, сделали новый процессор еще более качественным. Вместе с этим AMD ввел Socket A (462) – один из наиболее успешных во все времена сокетов в системных платах.

Год выпуска: 1999 Тактовая частота: 500 МГц – 1.4 ГГц

Знаете ли вы, что процессор Athlon Thunderbird от AMD был наиболее успешным процессором со времен Am386. Имя Athlon греческое и обозначает «состязание».

National Semiconductor Geode

Geode представила усовершенствованный процессор Media GX, производство которого на некоторое время прекратил Cyrix. В 2003 National Semiconductor продал Geode компании AMD, которая продолжила совершенствовать принцип размещения системы в чипе процессора. Ранние версии существуют в нескольких вариантах OLPC (O ne L aptop p er C hild), а более поздние Geodes от AMD (Geode NX) уже базировались на ядре Athlon XP Thoroughbred и включали 256 КБ вторичной кэш-памяти.

Год выпуска: 1999 Тактовая частота: 166 МГц – 1.4 ГГц

Знаете ли вы, что проект OLPC использует процессор Geode LX.

Transmeta Crusoe и Efficeon

Новый участник - Crusoe от Transmeta - дебютировал в на рынке х86 процессоров 2000 году. Crusoe был разработан в качестве процессора, управляющего потреблением энергии и потребляющего от 1 до 3 Вт при работе в обычном режиме. Первые чипы изготавливались с использованием 180-нм процесса (потом был осуществлен 130-нм процесс) и демонстрировали значительную экономию энергии.

Через некоторое время Transmeta усовершенствовала Crusoe, но отсутствие производительности, сравнимой с продуктами Intel и AMD, а также отсутствие в то время повышенного спроса на энергосбережение ограничило успех этого процессора. В 2004 году Transmeta выпускает второй х86 чип, названный Efficeon. Новая микроархитектура Efficeon основывалась на 256-битной VLIW (V ery L ong I nstruction W ord), в отличие от 128-битного Crusoe. Кроме того, благодаря Morphing Software, была значительно улучшена совместимость с х86, включая инструкции MMX, SSE и SSE.

Принято считать, что новая архитектура Efficeon, реализованная на чипе Crusoe, существенно улучшила производительность (на 200%), но столкнулась с постоянно растущей конкуренцией со стороны Intel и AMD. После потери сотен миллионов долларов за несколько лет, Transmeta остановила производство процессоров и сфокусировалась на продаже технологий. В январе 2009 Transmeta была приобретена компанией Novafora.

Год выпуска: 2000 Тактовая частота: 300 МГц – 2 ГГц

Знаете ли вы, что процессор Crusoe был так назван в честь Robinson Crusoe, учредителя Transmeta.

VIA Cyrix III и C3

Cyrix опят перешла из рук в руки, будучи проданной VIA в 1999 году. После этого, в начале 2000 года был реализован процессор Cyrix III x86 для системных плат с Socket 370. Когда Cyrix III находился в разработке, было выявлено несколько проблем из-за которых число транзисторов пришлось сократить с 22 млн до 11 млн. В результате у Cyrix III была увеличена тактовая частота, которая стала отличительным признаком чипа.

В результате последующей доработки был выпущен процессор с кодовым названием Samuel 2 с 64 КБ вторичной кэш-памяти, произведенный по технологии 150 нм (а не 180 нм), что также позволило увеличить тактовую частоту. Позднее VIA изменила имя Cyrix III на C3, так как Cyrix перестал быть частью архитектуры.

Год выпуска: 2000

Знаете ли вы, что процессоры С3 поступали в продажу в красочных жестяных коробках. Кроме того, экономный С3 потреблял менее 10 Вт.

AMD Duron

Занимать лидирующее положение по производительности – это только половина успеха, и поэтому в 2000 году в дополнение к интеловскому Celeron AMD выпускает процессор Duron и покоряет «бюджетный» сектор рынка. Первые Duron обладали медленной шиной со 100 МГц и урезанным кэшем, что и определяло их низкую стоимость. Duron выпускался только с 64 КБ вторичной кэш-памяти (в отличие от привычных к тому времени 256 или 512 КБ). Диапазон частот лежал в области от 600 МГц до 950 МГц.

Следующее поколение процессоров Duron производилось на базе архитектуры Athlon XP, в них также была добавлена поддержка инструкций SSE. Финальная версия Duron базировалась на Thoroughred Athlon XP и использовала более быструю шину (133 МГц) и тактовую частоту до 1.8 ГГц.

Год выпуска: 2000 Тактовая частота: 350 МГц – 1.4 ГГц

Знаете ли вы, что оверклокеры обнаружили, что первые экземпляры "Applebred" класса Duron могли в действительности догонять по скорости "Thoroughbred B" Athlon XP, который имел вторичную кэш-память в 256 КБ.

Intel Pentium 4

Благодаря высокоэффективному дизайну, Pentium III пользовался большой популярностью. Если бы Intel продолжила совершенствование этой версии, AMD вряд ли смогла бы подняться так высоко. Но вместо этого Intel все больше внимания уделяла увеличению тактовой частоты, и для достижения этой цели в итоге ввела в Pentium 4 чрезвычайно длинную конвейерную архитектуру. С одной стороны, это действительно позволяло повышать тактовую частоту, с другой – появлялась большая вероятность того, что для выполнения команды потребуется результат предыдущей команды, а это означало перезагрузку конвейера.

Но Pentium 4 вовсе не был плох и он поддерживал наборы инструкций SSE2 и SSE3. А в комбинации с HyperThreading, Pentium 4 превосходно справлялся как с мультимедийными и контентными задачами, так и с кодами, оптимизированными под новое ядро. А использование графических карт для 3D-графики еще больше улучшало производительность, таким образом, процессор Р4 заложил основу для развития игровых инструментов. Оверклокеры проявили большой интерес к ядру Northwood, выпущенному в 2002 году. С подходящей системной платой и памятью даже начинающие оверклокеры могли поднять тактовую частоту на 1 ГГц при воздушном охлаждении.

Но чтобы Pentium 4 действительно заблистал, потребовалось поднять тактовую частоту до рекордных цифр. Intel предполагала, что этого удастся добиться с ядром Prescott - первым чипом, изготовленным по 90 нм технологии. Но Prescott дал лишь незначительное повышение производительности, в противовес громким рекламным обещаниям, а в игровых тестах значительно уступал процессорам AMD.

Год выпуска: 2000 Тактовая частота: 1.40 ГГц – 3.8 ГГц

Знаете ли вы, что разогнанный "Northwood" Pentium 4 был «существом» мало управляемым, так как даже незначительное превышение рабочего напряжения до 1.7 В могло привести к быстрому выходу процессора из строя. Этот феномен стал широко известен под названием Sudden Northwood Death Syndrome (синдром внезапной смерти "Northwood").

AMD Athlon XP

Часть семейства Athlon, после ревизии XP и добавления инструкций SSE, стала еще одним агрессивным шагом в маркетинге AMD. XP поддерживал eXtreme Performance и прекрасно ладил с Windows XP. Кроме того, AMD вернулась к использованию системы Performance Rating (PR) для маркирования процессоров. Официально, PR от AMD должно было характеризовать производительность процессора XP по отношению к ядру Thunderbird, так что теоретически AMD Athlon XP 1800+ должен был иметь такую же производительность, как и Thunderbird на частоте 1.8 ГГц. Однако, на практике эта аббревиатура ошибочно использовалась гораздо шире, например, в качестве указателя на соответствующий интеловский процессор - во многом из-за совпадения аббревиатур «P entium R ating» и «P erformance R ating».

Другие версии процессора – Thoroughbred или T-Bred – были реализованы с изменением технологии изготовления со 180 нм до 130 нм. Позже модели также увеличили свои шины от 100 МГц (Thunderbird) и 133 МГц (XP) до 166 МГц (T-Bred).

Но самый популярный Socket A Athlon был создан на основе ядра Barton, появившегося в 2003 году и обещавшего огромные возможности разгона. В частности, интерес вызвала первая версия процессора - Barton 2500+, которая поставлялась с разблокированным множителем. При увеличении значения множителя большинство процессоров Barton 2500+ могли легко достигать производительности флагманской модели AMD 3200+.

Но не только процессоры Barton хорошо подходили для разгона: высокопроизводительные системные платы Asus A7N8X Deluxe и Abit NF7-S Rev2, на которые устанавливались эти процессоры, в то время были двумя самыми подходящими для этих целей. Когда AMD сделал блокировку множителя, эти и другие высокопроизводительные системные платы все равно позволяли работать 2500+ подобно 3200+ за счет увеличения тактовой частоты шины.

С технической стороны ядро Barton увеличило вторичную кэш-память до 512 КБ и нарастило число транзисторов с 37 млн до 54.3 млн.

Год выпуска: 2001 Тактовая частота: 650 МГц – 2.25 ГГц

Знаете ли вы, что мобильные Athlon XP пользовались повышенным вниманием не только за их возможности для разгона (сообщалось о достижении частоты в 3.1 ГГц) , но и за стабильную работу в разогнанном состоянии.

AMD Sempron

Там, где не справлялся Duron, ему на смену приходил Sempron – «бюджетный» конкурент от AMD интеловскому процессору Celeron. Подобно Duron, большинство Sempron имели «урезанную» вторичную кэш-память. Несколько в стороне стоял Sempron 3000+. Ранние модели Sempron, в большей степени, отличались от Athlon XP именем, а не конструкцией. Однако, Sempron 3000+ уже имел вторичную кэш-память 512 КБ, частоту ядра 2.0 ГГц и частоту шины 166 МГц. Во многих отношениях Sempron 3000+ был бы практически идентичен Barton 2700+ (если бы такой процессор существовал в природе).

Sempron продолжали эволюционировать вместе с главными линейками процессоров| AMD и продолжают существовать и по сей день.

Год выпуска: 2004 Тактовая частота: 1.4 ГГц – 2.3 ГГц

Знаете ли вы, что в то время как процессоры Athlon XP соответствовали семейству Pentium 4, Sempron соответствовал, скорее, «бюджетному» Celeron.

AMD Athlon 64

Вершиной успеха AMD стал 64-разрядный процессор Athlon 64, предназначенный для основной массы пользователей. В то время как инженеры Intel пытались создать процессор Р4 на базе NetBurst, AMD занялась производством чипов с более эффективной архитектурой и интегрированным контроллером памяти.

Не без некоторых начальных усилий А64 стал первым подходящим процессором для системных плат Socket 754, которые нуждались в поддержке двухканальной памяти и для сервер-ориентированной Socket 940, требовавшей буферизации памяти.

Хотя А64 предложил собственную 64-разрядную основу, он был также полностью совместим с 32-битной кодировкой без какой-либо заметной потери в производительности. Это было очень важно для пользователей Windows, которые все еще жили в 32-разрядном мире (это все еще справедливо и сегодня, хотя у многих работают 64-разрядные ОС Vista и XP).

Год выпуска: 2004

Знаете ли вы, что Athlon 64 был разработан под 5 сокетов, включая 754, 939, 940, AM2 и Socket F (имеющий 1207 контактов).

Intel Pentium D

Невезучая архитектура NetBurst окончательно сдала свои позиции в последнем бренде Intel Pentium D. Процессоры Pentium D, содержащие два одноядерных процессора, трансформировались впоследствии в многоядерные модули. Не столь элегантный, как двуядерная разработка AMD, Pentium D предлагал приличную многозадачную производительность, хорошие возможности для разгона по сравнительно невысокой цене. Pentium D обеспечил приверженцам Intel уверенную альтернативу AMD.

Год выпуска: 2005 Тактовая частота: 2.66 ГГц – 3.73 ГГц

Знаете ли вы, что Pentium D 965 был самым быстрым процессором Intel с тактовой частотой 3.73 ГГц (который можно было разогнать до 4.26 ГГц), хотя технически это был Pentium Extreme Edition.

AMD Athlon 64 X2

Продолжая доминировать на рынке настольных ПК, серия процессоров Athlon 64 X2 от AMD содержала два ядра в одном кристалле, совместно использующих интегрированный контроллер памяти. Эта внутренняя структура обмена данными обеспечивала огромное преимущество в производительности по сравнению с интеловской двуядерной конфигурацией, у которой ядра осуществляли коммуникацию через общую шину. В серии X2 были добавлены SSE3 команды, но, что более важно, AMD сохранила совместимость нового чипа с Socket 939.

Год выпуска: 2006 Тактовая частота: 1.0 ГГц – 3.2 ГГц

Знаете ли вы, что Athlon 64 4000+ был последней моделью с одиночным ядром в серии Athlon 64, но одноядерные процессоры продолжили свою жизнь в FX-серии.

Intel Core 2

Пробудившись от «спячки», Intel начинает штурмовать процессорный мир со своей новой архитектурой Core 2. Вместо концентрации на достижении максимальной тактовой частоты, Intel сфокусировался на более высокой производительности его процессорного конвейера. Это означало возврат к более низким тактовым частотам, но с другой стороны, повышало производительность процессоров. Но после того, как обнаружилась несостоятельность Prescott, средства массовой информации с осторожностью отнеслись к обещаниям Intel по поводу производительности Core 2. Но, к глубокому разочарованию AMD, Core 2 полностью соответствовал заявленным возможностям.

Первый Core 2 Duos буквально взорвал рынок со своими 167 млн транзисторов, 65 нм технологией, 2 МБ вторичной кэш-памяти и 1,066 МГц частотой шины. Несмотря на дебют с невысокими частотами 1.86 МГц и 2.13 МГц (Е6300 и Е6400 соответственно), производительность, а также агрессивная ценовая политика сделали Core 2 желанным и популярным.

Позднее Core 2 был переведен на 45 нм технологию изготовления. Так появилась версия Penryn, в которой 820 млн транзисторов было упаковано в четырехядерный процессор, работающий с частотой, достигающей 3.2 ГГц.

Год выпуска: 2006 Тактовая частота: 1.8 ГГц – 3.2 ГГц

Знаете ли вы, что Intel действительно сделал одноядерный Core 2 чип для мобильной линейки, базируясь на разработках Merom и Penryn.

Intel Pentium Dual-Core

Воскрешение имени Pentium на данном этапе может показаться странным, но Intel все же решилась на это. Хотя то, что Pentium Dual-Core базируется на интеловской технологии Core, а не на более раннем процессоре Pentium или Pentium D, действительно сбивает с толку.

Первые процессоры Pentium Dual-Core были нацелены на рынок ноутбуков, но затем стали использоваться и в ПК.

Год выпуска: 2006 Тактовая частота: 1.4 ГГц – 2.8 ГГц

AMD Phenom

Передав пальму первенства в производительности интеловской архитектуре Core 2, AMD, тем не менее, надеялась осуществить рывок на рынке с будущим процессором Barcelona, который был впоследствии переименован в Phenom. Но ранние версии Phenom содержали багги и часто давали сбои в работе. А в затылок ему уже дышала интеловская архитектура Nehalem.

Нельзя сказать, чтобы Phenom был такой уж плохой архитектурой – у него, несомненно, имелись и собственные достоинства: несколько SIMD инструкций, включая MMX, Enhanced 3DNow!, SSE, SSE2, SSE3 и SSE4a, 4-ядерный процессор и неплохая производительность. Но все это несравнимо уступало уровню последних процессоров Intel, к тому же, AMD проиграл Intel в ценовой политике.

Год выпуска: 2007 Тактовая частота: 1.8 ГГц – 3.0 ГГц

Знаете ли вы, что четырехядерный Phenom от AMD был первым действительно монолитным чипом с четырьмя ядрами, что в будущем нашло свое отражение и у Intel в процессоре Core i7.

Intel Core i7

Процессор Core i7 еще больше укрепил беспокойство AMD, которая все еще надеялась побороться за создание архитектуры, способной конкурировать с Core 2. Тем временем Core i7 (ранее известный под именем Nehalem) остался вне конкуренции.

А Intel тем временем окончательно отошел от традиционной шины в пользу QuickPath Interconnect, которая являлась аналогом HyperTransport от AMD. Это двухточечное межкомпонентное соединение (point-to-point interconnect) позволяет намного быстрее осуществлять связь между процессором и различными подсистемами. Правда, из-за этого оверклокерам пришлось «повышать квалификацию», в том числе осваивать несколько новых терминов, чтобы научиться грамотно осуществлять разгон.

На момент написания статьи в продаже есть три Core i7 – Core i7-920, Core i7-940 и Core i7-965 – все производятся с использованием 45 нм технологии, имеют 731 млн транзисторов и 8 МБ вторичный кэш.

Год выпуска: 2008 Тактовая частота: 2.66 ГГц – 3.2 ГГц

Знаете ли вы, что Core i7 имеет размер кристалла в 263 кв. мм, по сравнению с площадью кристалла в 143 кв. мм у Core 2.

AMD Phenom II

Многие считают, что Phenom II - это то, чем должен был стать оригинальный Phenom. Вместе с утроенным объемом кэш-памяти третьего уровня (6 МБ вместо 2 МБ), поддержкой DDR3 и удалением «холодных багов», которые отравляли жизнь оверклокерам, Phenom II закрыл брешь в производительности с интеловской линейкой Core 2. Но у AMD по-прежнему оставалась проблема: Intel уже осуществил следующий шаг, а AMD пока нечего было предложить пользователям в качестве конкурента Core i7.

Будучи не в состоянии конкурировать с Intel в производительности, AMD пришлось снизить цены на свои процессоры значительно больше, чем того хотелось бы. Тогда как Athlon 64 X2 имели тенденцию к высоким ценам, Phenom II X4 940 имел розничную цену всего $215 – ощутимо ниже $1000, которую обычно просили за флагманские процессоры.

Год выпуска: 2008 Тактовая частота: 2.5 ГГц – 3.0 ГГц

Знаете ли вы, что трехядерные Phenom II 700 серии это четырехядерные процессоры у которых одно нерабочее ядро отключено.

Intel Atom

Нельзя проигнорировать также интеловскую серию Atom, которая стала движущей силой в суперпопулярных сегодня нетбуках (мобильный вариант) и неттопах (десктопы). Почему это важно? Потому что, вопреки экономическому кризису, мировые продажи компьютеров продолжают расти, благодаря именно нетбукам, у большинства из которых внутри именно интеловский процессор Atom.

С точки зрения «железа» одноядерные чипы Atom имеют всего 47 млн транзисторов, 512 КБ вторичной кэш-памяти и предельную тактовую частоту 1.86 ГГц. Чипы Atom с двумя ядрами существуют пока только для ПК и отсутствуют для мобильных вариантов.

Год выпуска: 2008 Тактовая частота: 800 МГц – 2 ГГц

Знаете ли вы, что почти 15 млн нетбуков с процессорами Atom были проданы в 2008 году, а в 2009 году ожидается дальнейший рост продаж.

VIA Nano

Серия Intel Atom постепенно завоевывает рынок компьютерных устройств с низким потреблением энергии. На этом фоне продукции VIA не уделяется должного внимания. И хотя линейка Nano от VIA пока не достигла уровня продаж Atom, но по ряду тестов Nano показывают более высокую производительность, хотя и потребляют чуть больше энергии.

Процессоры Nano работают в диапазоне частот от 1 ГГц до 1.8 ГГц с 533 МГц или 800 МГц шиной, имеют вторичную кэш-память до 1 МБ и поддерживают инструкции MMX, SSE, SSE2, SSE3 и SSSE3.

VIA обещает выпустить двухядерные Nano для нетбуков в 2010 году. Таким образом, возможно, скоро на этом рынке появится новый игрок, возможно даже определяющий правила игры.

Год выпуска: 2008 Тактовая частота: 1 ГГц – 1.8 ГГц

Знаете ли вы, что Atom создавался для работы с потреблением малых мощностей и использования специально в нетбуках, тогда как Nano нацелен на рынок малых форм-факторов и экологичных настольных ПК.

Начиная с 70-х гг. прошлого века процессоры для ПК выпускались довольно большим количеством различных компаний, причем каждая из них вносила в разработку устройств новые технологии. Но далеко не у всех получилось завоевать мировой рынок, так, как у Intel или AMD: одни компании начинали выпускать иную продукцию, другие – просто прекратили свое существование. Но сначала – обо всем по порядку.

История создания процессора

Первые процессоры компьютеров 50-х гг. прошлого века работали на основе механического реле, позже появлялись модели, задействовавшие электронные лампы, затем — транзисторы. Сами же компьютеры, использующие данные виды процессоров, представляли собой огромные, очень дорогие и сложные устройства.

Компоненты процессора, отвечающие за производимые вычисления, необходимо было соединить в одну микросхему. Этого удалось достигнуть лишь после появления интегральных полупроводниковых схем. Хотя в первое время разработчики даже и не догадывались, что данная технология может принести пользу, поэтому устройства еще довольно продолжительное время изготавливались как набор отдельных микросхем.

В 1969 г. компанией Busicom было заказано 12 микросхем у Intel , предназначенных для их собственной разработки – настольного калькулятора. Уже тогда у разработчиков Intel возникла мысль – соединить несколько микросхем в одну. Идея была одобрена руководством корпорации, так как технология позволяла хорошо сэкономить на производстве микросхем, к тому же, специалисты смогли сделать процессор универсальным и использовать его во многих других устройствах, производящих вычисления.

Так появился первый микропроцессор, который получил название . Он мог выполнять 60000 операций в секунду, обрабатывать двоичные числа. Но процессор так и не смогли применить в ПК – их тогда попросту не выпускали.

«Mark 8» — первый ПК на земле

Разработал американский студент Джонатан Титус. Известный журнал «Электроника» назвал его ПК «Mark 8» (с англ. «Модель 8»). В издании также было дано описание компьютера, показана детальная конструкция. Титус хотел заработать, продавая печатные платы тем, кому нужно было собрать свой собственный ПК. Остальные устройства клиентам приходилось покупать в магазинах.

Естественно, «Модель 8» не принесла много прибыли своему создателю, но Джонатан оказал человечеству бесценную услугу, создав полноценный ПК.

История процессоров Intel

После Intel 4004 на свет появился процессор Intel 8008, который работал с частотой 600-800 кГц, содержал 3500 транзисторов, он сильно отличался от своего предшественника. Intel 8008 применялся в различных цифровых устройствах и калькуляторах. В то время на рынке высоких технологий стали появляться персональные компьютеры, поэтому корпорация Intel вскоре решила, что для ПК будут нужны куда более мощные процессоры. Вскоре был разработан производительный Intel 8080, который по своим характеристикам превосходил «808-ого» примерно в десять раз.

По тем временам устройство стоило достаточно дорого, но, как считали специалисты Intel, цена была оптимальной для использования процессора в ПК. Финансовое положение корпорации стремительно улучшалось благодаря его удачным продажам.

В скором времени вышел Altair-8800, персональный компьютер, выпущенный компанией MITS, (который, кстати, работал на чипе Intel 8800). Он начал эру ПК, что побудило многие компании начать разрабатывать собственные микропроцессоры.

Тем временем в СССР

Отечественная вычислительная техника быстро развивалась вплоть до начала 70-х гг., в то время разрабатывались различные ЭВМ, которые не уступали в производительности зарубежным образцам. В 1970 году правительство нашей страны издало указ «об аппаратной и программной совместимости ЭВМ», который способствовал появлению новой концепции вычислительных машин. В их основу легла американская технология IBM 360, а позже ее место заняла архитектура PDP-11.

Советские разработки стали не нужны, компьютерное производство включало в себя лишь копирование импортных образцов, что привело к неизбежному отставанию СССР от Америки в плане электронного производства. Полностью исчезла технология PDP-11, все компьютеры, выпущенные в 80-е гг. работали на аналогах процессоров Zilog и Intel. Американские технологии опережали отечественные более чем на 10 лет.

История развития процессоров

В 1974 г. Компания Motorola выпустила свою первую разработку — процессор MC6800 , который был достаточно производителен (частота 1-2 МГц, 64 кб обрабатываемой памяти, 4500 транзисторов), оперировал 16-битными числами и имел такую же цену, как и Intel 8080, но очень плохо продавался, из-за чего не нашел применения в ПК. Позже, потерпевшая неудачу компания распустила более 4 тыс. сотрудников.

В 1975 г. бывшие сотрудники компании Motorola образовали свою собственную компанию под названием MOS Technology, первым процессором которой стал MOS Technology 6501 , по характеристикам схожий с MC6800. Но угрозы судом от Motorola за плагиат вынудили компанию устранить все сходства с их процессором, поэтому вскоре вышла новая модель – чип версии 6502, который стоил относительно дешево, вследствие чего широко применялся на различных ПК, в числе которых были компьютеры компании Apple. Процессор отличался от предыдущей версии более современной технологией вычислений и высокой тактовой частотой.

Бывшие сотрудники Intel тоже решились на создание собственного проекта – в 1976 г. они выпустили процессор Zilog Z80, который не особо отличался от Intel 8080. У устройства была всего одна линия питания, довольно низкая цена, на нем работали все те же самые программы, что и на чипе от Intel. Мало того, процессор можно было разогнать, т. е. увеличить его производительность, не задействовав при этом оперативную память – все это привело к успеху компании Zilog на рынке.

В нашей стране процессор Z80 долгое время использовался как микроконтроллер в военной технике, пультах дистанционного управления, а также как процессор игровых приставок и различных электронных играх. Z80 широко применялся в России в 80-х – 90-х годах.

«Устаревший» терминатор

В фильме «Терминатор» есть сцены, в которых робот глазами сканирует окрестности, а в это время на его экране постоянно бегают строчки неизвестного программного кода. Спустя несколько лет выяснилось, что эти строчки принадлежат программе процессора MOS Technology 6502. Сей факт выглядит очень забавно, ведь действие фильма происходит в далеком будущем, где, однако, до сих пор используются процессоры 70-х годов.

История развития процессоров Intel, Motorola, Zilog

В 1979 году корпорация Intel снова совершила технологический прорыв, разработав новый процессор Intel 8086 , который все эксперты сразу же окрестили «убийцей» Zilog и MOS Technology. Новый чип был гораздо мощнее своих конкурентов, но ожидаемого успеха он так и не достиг, так как для 16-разрядной шины процессора требовались соответствующие дорогостоящие микросхемы для материнских плат. Это послужило образованию высоких цен на ПК с Intel 8086, которые впоследствии плохо продавались. Но это не отменяет больших заслуг нового процессора — он задал очень высокую планку производительности, а потомки Intel 8086 прочно занимают лидирующие позиции на рынке микропроцессоров для ПК.

Следующий чип — Intel 8088 — был работой над ошибками и имел успехи в продажах. Он содержал 30000 транзисторов, работал на частоте 10 МГц. Небезызвестный IBM PC работал именно с этим процессором.

Motorola в 1979 году выпустила чип MC68000 , который по тем временам был мощнейшим – 24-разрядная шина памяти, частота 10-16 МГц. Процессор был очень дорогим, требовал соответствующие микросхемы, но все равно имел значительный успех, подкупая пользователей своими широкими возможностями.

В этом же году компанией Zilog был выпущен весьма спорный процессор – Z8000 . Он был довольно производительным, но в то же время не был совместим аппаратно и программно с Z80, из-за чего новый процессор почти никто не хотел покупать.

Процессоры и числа

Первые модели микропроцессоров могли обрабатывать целые и дробные числа, но для вычисления последних нужно было сначала преобразовать дробь в несколько целых чисел и после операций привести полученное число к начальному виду. Но такие постоянные преобразования – довольно затратный процесс, в смысле памяти ПК, поэтому нужно было как-то улучшить технологию процессоров. Вскоре многие компании начали разрабатывать дополнительные чипы, специально предназначенные для расчетов с дробями. Сначала их продажу осуществляли отдельно от основных процессоров, но позже производители смогли соединить два чипа в один, интегрировав дополнительный процессор в основной. Проблема была решена.

Компания Intel стала лидером среди производителей процессоров

В 1982 году вышел процессор Intel 80286, который разгромил конкурентов в лице Motorola и Zilog. Он был намного мощнее и быстрее своего предшественника Intel 8086, работал с большими объемами памяти и не имел проблем с аппаратной и программной совместимостью. Значит, пользователям больше не нужно было обновлять дорогостоящее программное обеспечение. Все это было достигнуто с помощью введения нового режима работы процессора, благодаря которому обеспечивалась работа сразу нескольких программ. Защищенный режим повышал производительность чипа в разы – в этом был секрет успеха Intel 80286.

Новое поколение процессоров Intel

Процессор P5 от Intel вышел в марте 1993 года, он стал называться Pentium. Технологии чипа были переработаны до неузнаваемости – появилась возможность выполнять сразу две команды, процесс кэширования информации радикально изменился, пропускная способность 64-разрядной шины повысилась в 2 раза. Но процессоры, которые работали на частоте 60 МГц, не были успешны, так как они требовали новую материнскую плату с гнездом Socket 4, а старые не могли полноценно использовать Pentium. Поэтому в конце 1993 года вышел Pentium II, еще более производительный процессор, ситуацию удалось исправить.

Таким образом, чипы от компании Intel обошли своих конкурентов на рынке ПК и прочно заняли лидирующую позицию в стремительной гонке развития процессоров.

Бюджетные версии процессоров Intel

Для успешной конкуренции с AMD компания Intel должна была возглавить рынок бюджетных версий процессоров. Руководство компании приняло решение не снижать цены, а выпускать не слишком мощные процессоры, которые стали называться Intel Celeron.

Первая подобная модель вышла 1998 году. Celeron работал на ядре процессора Pentium II, но в нем отсутствовал кэш, да и сам процессор имел довольно среднюю производительность, хотя был совместим с новыми технологиями. Именно такое устройство и нужно было Intel, чтобы заполнить бюджетный рынок, при этом избежав снижения цен на свои главные разработки.

Cyrix и IDT – производители процессоров версии x86

Компания Cyrix была основана в 1988 году. Ее разработчики создавали процессоры, использующие все те же технологии, что и Intel. Cyrix выпускала вспомогательные чипы для процессоров Intel 80286 и Intel 80386. Последний продукт, кстати, даже смог перегнать по продажам сопроцессор Intel той же версии.

Свои же собственные процессоры – 486DLC и 486SLC – Cyrix выпустили только в 1991 году. Они были совместимы с Socket Intel 80386. Разработки Cyrix ничуть не уступали чипам Intel в плане производительности и были довольно популярны среди пользователей, желающих сделать апгрейд своего ПК.

Еще через четыре года компания выпустила два новых процессора – Cx5x86, с помощью которого можно было перейти с версии 80486 на Intel Pentium, а также Cyrix версии 6×86. Он стал первым чипом, сумевшим превзойти аналог Intel – процессор под маркой Pentium. Но и 6х86 не был лишен недостатков: по тактовой частоте и производительности в трехмерных играх Pentium все же его превосходил.

Преимущество на рынке процессоров закончилось для Cyrix ближе к концу 90-х гг., так как производимым компанией процессорам недоставало мощности и скорости работы. Вскоре Cyrix была куплена тайваньской компанией VIA Technologies.

История компании IDT началась в 1997 году, когда она выпустила Win Chip – этот процессор был разработан по технологиям Pentium. Он продавался по низкой цене, потреблял мало электроэнергии и слабо нагревался, но вместе с тем имел низкую производительность, если сравнивать с конкурентами. Такие особенности Win Chip приобрел с помощью хитрой технологии – несложный набор команд сочетался со специальным устройством, преобразующим команды х86 в свои собственные.

Процессор громоздких компьютеров середины XX века, основанный на механических реле, затем на электронных лампах, а потом на транзисторах, представлял собой целый шкаф (а то и не один), набитый электроникой. Каждое такое устройство было ненадежным, сложным и дорогим и потребляло огромное количество электроэнергии.

КОНСТРУКТОР ДЛЯ ЭНТУЗИАСТА

Первый ПК был разработан в 1974 году студентом Джонатаном Титусом. Дебютировавший на обложке журнала «Радиоэлектроника» компьютер Титуса, названный автором «Модель 8» (Mark 8), представлял собой проект для любителей­самодельщиков и распространялся в виде буклета, в котором были подробно расписаны конструкция и электрическая схема чудо­аппарата. Сам изобретатель попытался заработать на продаже набора печатных плат для всех желающих собрать собственный компьютер. Прочие компоненты, включая процессор Intel 8008, предлагалось приобретать в магазине.

Конечно, такой продукт не мог рассчитывать на коммерческий успех. Тем не менее он создал совершенно новую, доселе невиданную отрасль – полноценные компьютеры, доступные широкому кругу частных лиц.

Лишь при появлении полупроводниковых интегральных схем удалось объединить все компоненты, отвечающие за вычисления, в одном компактном чипе. Преимущества такого подхода разработчики осознали отнюдь не сразу, еще долго процессоры выпускались в виде целого набора микросхем.

В 1969 году японская компания Busicom заказала у корпорации Intel комплект из дюжины микросхем для своего нового настольного калькулятора. Один из разработчиков Intel предложил объединить часть их в микросхему, сочетающую в себе все необходимые функции. Руководство обеих фирм приняло новую идею благосклонно, так как она сулила немалую экономическую выгоду.

Дело в том, что стоимость производства слабо коррелирует со сложностью микросхемы, и двенадцать простых (то есть маленьких) чипов обойдутся гораздо дороже, нежели четыре больших, до которых сократился комплект для калькулятора Busicom. Причем основную, «вычислительную» микросхему, названную процессором, нетрудно сделать универсальной и применять в самых разных устройствах, где требуется выполнять какие-либо вычисления.

Именно этот чип, выпущенный в 1971 году под маркой Intel 4004, стал первым коммерческим однокристальным микропроцессором. Он работал с 4-разрядными двоичными числами и выполнял 60 тысяч операций в секунду. Правда, до персональных компьютеров Intel 4004 так и не добрался – в те годы такая концепция попросту отсутствовала.

Процессор для народа

Следующий процессор, Intel 8008, был 8-разрядным, умел адресовать до 16 кб памяти, состоял из 3,5 тысяч транзисторов и работал на тактовой частоте от 500 до 800 кГц. Именно он сделал возможным появление недорогого компактного компьютера, впоследствии названного персональным.

Отметим, что Intel 8008 имел мало общего с Intel 4004. Архитектуру и набор инструкций разрабатывал заказчик (компания Computer Terminal Corporation, CTC), причем исходя из его будущего применения в терминалах для «больших» компьютеров. Из-за срыва сроков поставки и недостаточной мощности процессора CTC отказалась от заказа. Стремясь хоть как-то компенсировать затраты на разработку, Intel выпустила свой продукт в широкую продажу. Мало кто ожидал, что частные умельцы не только оценят по достоинству недорогой процессор, но и смогут создать на его основе самые настоящие самодельные компьютеры. CTC же построила свой терминал по старинке, с применением комплекта специализированных микросхем.

Появление первых персональных компьютеров заставило специалистов Intel задуматься о перспективах микропроцессоров. Intel 8008 был тепло принят маленькими радиоэлектронными компаниями, разрабатывающими калькуляторы и специализированные цифровые устройства. Но «модель 8» и подобные ей показали, что у «легких» процессоров может быть и другое применение. Сделав ставку на призрачную пока новую отрасль, компания Intel пошла на риск – в 1974 году был выпущен новый процессор Intel 8080, более чем в десять раз превосходивший 8008 по производительности. Достигнуто это было как увеличением тактовой частоты до 2 МГц, так и более совершенной архитектурой, потребовавшей уже 6 тысяч транзисторов. Шина памяти была доведена до 16 разрядов, благодаря чему 8080 мог адресовать до 64 кб памяти, а система команд была значительно расширена по сравнению с Intel 8008.

ТЕМ ВРЕМЕНЕМ В СССР…

До конца 60­х годов XX века советская вычислительная техника развивалась быстрыми темпами. Множество НИИ разрабатывали ЭВМ самых разных типов, не уступавших лучшим западным образцам. Все это богатейшее хозяйство было совершенно несовместимо друг с другом, да такой задачи разработчикам и не ставилось.

Тем не менее ближе к 70­м годам руководство страны приняло решение унифицировать выпускаемую электронно­вычислительную технику и ввести аппаратную и программную совместимость между ЭВМ различного применения. Новая концепция получила название «Единое Семейство» (ЕС ЭВМ), причем за основу были взяты не отечественные разработки, а архитектура IBM 360. Чуть позже, в середине 70­х, для мини­ и микро­ЭВМ приняли архитектуру PDP­11 американской компании DEC.

Для отрасли это имело катастрофические последствия. Все многолетние наработки были выброшены на свалку. Отныне уделом разработчиков ЭВМ стало копирование западных образцов и освоение импортных технологий.

После отмирания PDP­11 советская промышленность перешла на копирование процессоров Intel и Zilog. Так, все персональные компьютеры 80­х годов, такие как «Радио 86РК», «Микроша», «Вектор­06Ц», «Корвет», «СМ­1800» и т.д., были построены на отечественных аналогах Intel 8080, а чуть позже большую популярность получили клоны ZX Spectrum, построенные на микросхемах КР1858ВМ1 и КР1858ВМ3, неотличимых от Zilog Z80.

Вынужденное следование «в хвосте» привело к неизбежному отставанию электронной промышленности Советского Союза от западных компаний. Постепенно отставание накапливалось и к 1991 году составляло уже около десятка лет.

Для калькуляторов новинка была дороговата, в розницу 8080 продавался за $360, но для применения в компьютерах цена была довольно приемлемой.

Хитрость таилась в скидках. При партиях от тысячи штук цена Intel 8080 составляла уже не $360, а $75. Этим и воспользовалась «калькуляторная» компания MITS, заключив OEM-контракт с Intel и выпустив персональный компьютер Altair-8800. Компьютер стоил всего $397 (что было совсем недалеко от розничной цены одного только процессора), при этом он поставлялся собранным и готовым к работе. Бешеный успех «Альтаира» положил начало буму персональных компьютеров, что заставило многие электронные компании начать разработку и выпуск собственных универсальных микропроцессоров.

Волна восьмиразрядных

Если разработка процессоров для мэйнфреймов была по плечу только крупным корпорациям, таким как Intel и Hewlett-Packard, то сконструировать и выпустить микропроцессор для ПК могла практически любая маломальски серьезная электронная компания. Перечислим самые известные чипы, появившиеся на волне успеха Intel 8080.

Motorola MC6800, 1974 год. Вышедший вскоре после Intel 8080 MC6800 предлагал несколько большую производительность примерно за те же деньги. Главными преимуществами процессора считались: питание всего по одной линии 5 В (вместо трех у большинства конкурентов), способность оперировать 16-битными числами и более солидное происхождение – архитектура MC6800 была прямым наследником архитектуры процессора компьютера DEC PDP-11.

Ключевой ошибкой Motorola стало уравнивание отпускной цены с главным конкурентом – Intel 8080. Большинство потенциальных заказчиков отказались переходить на совершенно новый процессор, не имевший, в отличие от процессоров Intel, наработанного парка ПО, без существенного экономического выигрыша. В результате Motorola MC6800 практически не получил применения в ПК (кроме собственного компьютера Motorola EXORciser) и использовался в основном как контроллер периферийных устройств, хотя какое-то время выпускался Altair 680 – аналог Altair 8800, но на другом процессоре.

Motorola MC6800 состоял из 4,5 тыс. транзисторов, работал на тактовой частоте от 1 до 2 МГц и адресовал до 64 кб памяти. Для применения в качестве микроконтроллера в последующие годы было разработано несколько вариаций процессора, оснащенных собственной памятью и тактовым генератором.

В середине 70-х годов США пережили кризис полупроводниковой индустрии, и микропроцессорный бум не оказал на это заметного влияния – слишком уж малы были объемы продаваемых персональных компьютеров. Многие электронные компании были вынуждены сократить штат. Так, Motorola покинуло 4,5 тысяч сотрудников, в том числе инженеры, разрабатывавшие MC6800.

MOS Technology 6502, 1975 год. Уволенная команда разработчиков Motorola MC6800 вскоре затеяла собственный проект, которым стала компания MOS Technology. Первым продуктом был MOS Technology 6501, электрически совместимый с 6800, что позволяло устанавливать его на ту же системную плату, что и мотороловский процессор. Получив вполне ожидаемый судебный иск от Motorola, MOS Technology была вынуждена спешно устранить скандальную совместимость. Так родился 6502, для популяризации которого был специально спроектирован компьютер KIM-1.

Главным преимуществом новинки была ее стоимость. Притом что в 1975 году Intel 8080 продавался в розницу за $179, MOS Technology 6502 стоил всего $25. Для небогатых одиночек – первопроходцев отрасли персональных компьютеров – это было как манна небесная. Несмотря на непререкаемый авторитет Intel 8080, процессор 6502 получил применение во многих ПК тех лет, включая неудачный Apple I и хитовый Apple II, давший путевку в жизнь фруктовой компании двух Стивов.

Как и все микропроцессоры того периода, 6502 был 8-разрядным и работал с 16-разрядной адресной шиной, что позволяло адресовать до 64 кб памяти. Тактовая частота была невысокой даже для тех лет – от 1 до 2 МГц, но благодаря продуманной архитектуре, во многом близкой к более поздним RISC-процессорам, 6502 работал наравне с более высокочастотными конкурентами.

НИЗКОЧАСТОТНЫЙ ТЕРМИНАТОР

В знаменитом фантастическом боевике «Терминатор» в те моменты, когда камера смотрит глазами главного героя – робота, на экране мелькают строчки какого­то ассемблерного кода. Дотошным фанатам фильма удалось установить источник – это оказалась программа для компьютеров семейства Apple II, основанных на 2­мегагерцевом процессоре MOS Technology 6502. Судя по всему, ресурсы Скайнет к 2029 году основательно истощились, вследствие чего враждебный к людям искусственный интеллект был вынужден строить роботов на основе антикварных процессоров, выпущенных за полвека до того…

Zilog Z80, 1976 год. Созданный бывшими сотрудниками Intel, 8-разрядный процессор основывался на архитектуре Intel 8080 и имел совместимую с ним систему команд. Благодаря этому часть программ, разработанных для интеловского процессора, работала на Z80 без изменений, что послужило залогом успеха – продукт Zilog был гораздо дешевле интеловского. Кроме того, Z80 требовал менее сложной обвязки, всего одну линию питания; также сыграло свою роль то, что компания Zilog свободно продавала лицензии на его выпуск.

Изначально работавший на тактовой частоте 2,5 МГц Z80 был впоследствии разогнан до 20 МГц. Процессор содержал 8,5 тыс. транзисторов и имел расширенный набор регистров, за счет чего при использовании в качестве микроконтроллера мог обходиться без оперативной памяти.

Отечественному читателю процессор может быть знаком по популярному в нашей стране в 90-е годы компьютеру ZX Spectrum. Кроме того, он широко использовался до последнего времени в качестве процессора для игровых приставок и игровых автоматов, в качестве микроконтроллера в электронных игрушках, автоматических определителях номера, пультах ДУ и даже в устройствах, предназначенных для военного применения.

Поколение 1979

Флагманом следующего технологического прорыва опять-таки стала Intel. Новейший 16-разрядный процессор Intel 8086 призван был наголову разгромить MOS Technology и Zilog. Новинка основывалась на усовершенствованной архитектуре и имела новую систему команд, не полностью совместимую с 8080. Размер шины адреса был увеличен с 16 до 20 разрядов, что позволяло адресовать до 1 Мб памяти. Шина данных была 16-разрядной, но делила одни и те же физические линии с шиной адреса, что позволило упростить число контактов процессора, но снизило производительность.

Новый процессор оказался почти в десять раз мощнее Intel 8080. Тем не менее успеха 8086 не имел. Увлекшись технологическим усовершенствованием, разработчики упустили из вида экономическую эффективность. 16-разрядная шина данных требовала использования дорогих 16-разрядных микросхем при построении системных плат для процессора. Это резко увеличивало себестоимость ПК на 8086, потому лишь несколько производителей рискнуло выпустить компьютеры на новом чипе, но заметного успеха они не добились. Intel 8086 задал новую планку производительности, послужил фундаментом для огромного семейства x86. Именно его потомки впоследствии целиком и полностью заняли весь рынок микропроцессоров для персональных компьютеров.

По пути, проложенному 8086, пошли его более успешные потомки и конкуренты.

Intel 8088, 1979 год. Своеобразная работа над ошибками, выполненная Intel, получила признание заказчиков. Этот процессор был аналогом 8086, но имел важное отличие: 8-разрядную шину данных. Таким образом, он стал связующим звеном между 8- и 16-разрядными процессорами.

Intel 8088 содержал 29 тысяч транзисторов, работал на тактовых частотах от 5 до 10 МГц, имел 20-разрядную шину адреса и 8-разрядную шину данных. Именно этот процессор лег в основу легендарного IBM PC. Множество компаний выпускали свои аналоги этого популярного процессора: NEC, Siemens, AMD и даже советские заводы освоили производство клонов 8088, на основе которых собирались ПЭВМ «Поиск», «Агат-П», «Искра-1030».

ДРУЗЬЯ МАТЕМАТИКА

Ранние микропроцессоры умели работать лишь с целыми числами. Естественно, для них не было ничего сложного и в вычислении дробей, программе надо было только представить дробные числа в виде нескольких целых и выполнить обратное преобразование после вычислений. Большинству пользователей этого было достаточно. Но многие программные пакеты для научных расчетов, работы с графикой и звуком производят огромное количество вычислений с числами с плавающей точкой (то есть с дробями). Постоянные преобразования из дробных в целые и обратно требуют выполнения многих «лишних» команд, в результате чего производительность резко падает.

При этом усложнять архитектуру процессора ради дробных чисел было расточительно: не каждый заплатит в полтора раза больше за ускорение научных расчетов. Потому практически все производители выпускали дополнительные процессоры, берущие на себя расчеты с дробными числами. Такие чипы называли математическими сопроцессорами, и продавались они отдельно от основных процессоров. Более того, докупить и установить сопроцессор пользователь мог и потом, после покупки ПК. Также можно было запросто комбинировать процессор одной фирмы с сопроцессором другой, лишь бы семейство совпадало. Впоследствии Intel начала выпускать процессоры с интегрированным сопроцессором, а начиная с Intel Pentium чипы получили встроенные возможности для работы с числами с плавающей точкой.

Motorola MC68000, 1979 год. Являвшийся на тот момент самым мощным и универсальным 16-разрядным процессором, он был прямым наследником «динозавра» PDP-11. Его разработчики не шли ни на какие компромиссы: 24-разрядная шина памяти (позволявшая адресовать до 64 Мб памяти), 16-разрядная шина данных, 32-битные регистры, тактовая частота от 8 до 16 МГц. В отличие от Intel 8086 инженеры Motorola не стали мультиплексировать шины данных и адреса, ввиду чего пришлось оснастить процессор 64 ножками.

Излишне говорить, что новинка была дорогой и требовала дорогих микросхем системной логики. Тем не менее высочайшая по тем временам производительность, удобная система команд, наличие встроенных средств отладки склонили многих заказчиков в пользу продукта Motorola: так, Apple выбрала MC68000 в качестве процессора для нового ПК, названного Apple Macintosh, также их применяли Commodore и Atari.

Zilog Z8000, 1979 год. Воодушевленная успехом Z80, Zilog выпустила новый, весьма претенциозный процессор. Подобно Intel 8086, Z8000 работал с 16-разрядной шиной данных, мультиплексированной c шиной адреса, ширина которой составляла от 16 до 23 разрядов. Работал процессор на частотах от 4 до 20 МГц, имел 16-битные регистры, которые можно было объединять попарно для работы с 32-битными числами.

Увы, Zilog допустила фатальную ошибку – Z8000 не был совместим с Z80 ни аппаратно, ни программно. Прямой конкурент, Intel 8088, был такого недостатка лишен. И если из-за ве сомого авторитета Motorola заказчики были готовы сменить парк ПО при переходе с MC6800 на MC68000, то Zilog была новичком в полупроводниковой индустрии.

Новые процессоры никто не хотел покупать. Благодаря встроенным средствам разделения процессорных ресурсов (так, операционная система и приложение работали с разными режимами процессора) Z8000 получил некоторое распространение в мини-серверах, работавших под управлением ОС UNIX. На этом его успехи и закончились. По иронии судьбы простенький Z80 надолго пережил своего потомка.

Чемпион на пьедестале

Intel 80286 практически уничтожил конкуренцию архитектур на рынке процессоров персональных компьютеров. Отныне Motorola выпускала процессоры для Apple, все же остальные производители компьютеров перешли на х86. Что же произошло?

Вышедший на рынок в 1982 году Intel 80286 имел важнейшую особенность. Будучи в пять раз быстрее 8086 и умея работать с многократно большим объемом памяти, новый процессор остался полностью программно совместимым с предыдущими моделями. Ни один из конкурентов такого весомого преимущества не имел. Покупая компьютер на основе Intel 80286, пользователь мог не менять ПО, стоимость которого, как известно, может превышать стоимость самого ПК в несколько раз. Как же это было достигнуто?

Очень просто. Инженеры Intel применили не слишком изящный, зато действенный способ: ввели новый режим работы процессора. При включении компьютера Intel 80286 запускался в базовом режиме, названном реальным. Для программ процессор 80286 в реальном режиме ничем не отличался от 8086, кроме производительности. Те же программы, которые нуждались в объеме оперативной памяти большем, чем 1 Мб, и многозадачности, переключали процессор в защищенный режим. В этом режиме 80286 мог адресовать уже до 16 Мб и обеспечивал одновременную работу нескольких приложений. Ради совместимости такой «костыль» присутствует в процессорах семейства x86 до сих пор.

Войны клонов

Дальновидная корпорация Intel не стремилась ограничивать доступ конкурирующих компаний к своим наработкам. Стремясь обеспечить доминирование архитектуры x86 на рынке, она подписывала лицензионные соглашения буквально со всеми желающими. Многие компании, не имея возможности разработать свой чип с нуля и продвинуть его на рынок, модернизировали процессоры х86 и выпускали под собственной маркой. Такие процессоры были зачастую быстрее и дешевле оригинала от Intel, ввиду чего получили большую популярность в сегменте домашних.

Основные производители х86-совместимых процессоров

Cyrix. В отличие от большинства копировщиков Cyrix всегда разрабатывала выпускаемые x86-процессоры самостоятельно, старательно создавая аналоги технологий Intel. Основанная в 1988 году компания Cyrix ориентировалась на выпуск математических сопроцессоров для Intel 80286 и 80386. Первых успехов компания добилась уже в 1989 году: ее FastMath 83D87, предназначенный для использования совместно с Intel 80386, обгонял аналог от Intel на 50%.

ПРОЦЕССОР ДЛЯ ЭКОНОМНЫХ

Конкуренция с AMD и Cyrix вынудила Intel принять меры для удержания за собой бюджетного сегмента рынка процессоров. Снижать цены было бы неразумно – на плечах Intel и так лежали расходы на совершенствование процессоров, конкуренты же шли проторенным путем. Было принято простое решение – выпуск «урезаных» версий популярных процессоров, названных Intel Celeron.

Первенец, выпущенный в 1998 году, основывался на ядре Pentium II без кэш­памяти L2. Эффект был вполне ожидаем, по производительности в большинстве приложений Celeron не мог конкурировать со «старшим братом», но при этом имел ту же архитектуру и поддерживал все новые технологии. Это и требовалось, чтобы насытить бюджетный сегмент рынка, не снижая цены на основные модели.

Первые «селероны» были восприняты настороженно: полное отсутствие кэша L2 слишком сильно било по производительности, что ставило новый процессор на ступеньку ниже, чем даже Pentium MMX. Intel учла критику и исправила свою ошибку в последующих моделях, оснащая их лишь меньшим объемом кэша L2, чем у Pentium. Эти усовершенствованные Celeron по­прежнему уступали Pentium в большинстве приложений, но уже не так сильно, а в играх и вовсе отставание было незаметно. После «развода» Intel и AMD последняя повторила этот трюк, выпустив Duron, урезаный аналог Athlon, правда, со значительно меньшим успехом.

Три года спустя Cyrix представила собственные центральные процессоры – 486SLC и 486DLC. Любопытно, что эти процессоры устанавливались в гнезда не для Intel 80486, а для 80386. Название символизировало то, что производительность новинок вплотную подбирается к мощности новейших 80486. Они имели успех у пользователей, желающих модернизировать свои старые компьютеры на Intel 80386. Впоследствии был выпущен Cx5x86, предназначенный для апгрейда с 80486 до уровня Pentium.

Впервые ЦП от Cyrix обогнал интеловский аналог лишь в 1995 году. Cyrix 6x86 работал на более низкой тактовой частоте, чем Intel Pentium, но в целом был эффективнее. Уступал он Pentium лишь в операциях с числами с плавающей точкой, вследствие чего меньше подходил для новейших игр с трехмерной графикой.

Увы, ввиду все усложнявшейся разработки более мощных процессоров, наметившееся лидирование Cyix сошло на нет в конце 90-х, и компания превратилась в производителя «лоу-энд» чипов. Впоследствии Cyrix была приобретена тайваньским производителем чипсетов VIA Technologies.

IDT. Не все производители х86-совместимых процессоров придерживались интеловской архитектуры. В 1997 году компания IDT выпустила процессор WinChip (IDT-C6), соответствовавший Intel Pentium. Изначально нацеленный на нижний сегмент рынка, WinChip отличался низкой себестоимостью производства, скромными энергопотреблением и тепловыделением. Достигнуто это было весьма изощренным способом: WinChip имел RISC-архитектуру и упрощенный набор команд и при помощи специального блока транслировал команды x86 в собственные команды. Естественно, такой подход обусловил откровенно позорную производительность.

ПЯТОЕ ПОКОЛЕНИЕ

В марте 1993 года Intel продемонстрировала процессор нового поколения P5. Вопреки ожиданиям, новинка обрела не традиционное обозначение 586, а более звучную марку Pentium. Архитектура x86 была кардинально переработана: процессор получил возможность выполнять две команды одновременно, механизм предсказания адреса перехода и радикально переработанный механизм кэширования данных. Кроме того, шина данных стала 64­разрядной, что вдвое повысило ее пропускную способность по сравнению с Intel 80486.

Первые модели Intel Pentium, работавшие на тактовых частотах 60 и 66 МГц, громкого успеха не получили. Мало того что они требовали замены системной платы из­за нового процессорного гнезда Socket 4, так еще и работали заметно медленнее топовых моделей 80486. Оптимизированных под новую архитектуру программ еще не было, а старые не могли использовать все преимущества P5.

AMD. Американская компания Advanced Micro Devices начала выпуск микропроцессоров еще в 1974 году. Первый продукт, AMD 9080, был полным клоном процессора Intel 8080, причем параллельно с ним выпускался собственный, ни с чем не совместимый 4-разрядный комплект микросхем Am2900, использовавшийся в разнообразных цифровых устройствах.

Продолжая производить клоны по лицензии Intel, AMD долгое время поддерживали свое семейство 32-разрядных RISC-процессоров Am29000, широко использовавшихся в лазерных принтерах. В 1995 году компания прекратила разработку Am29000 и перебросила освободившихся инженеров на x86-проекты. Вскоре это дало плоды, AMD начала уходить от копирования интеловских процессоров. Уже в следующем году был выпущен процессор AMD K5, имевший производительность большую, чем Intel Pentium, за счет четырехконвейерной архитектуры, позволявшей выполнять до четырех команд одновременно, причем новой технологии поддержка со стороны ПО не требовалась. Зато желательна была оптимизация программ под K5, за счет чего производительность повышалась на 30%.

В данный момент маятник качнулся в сторону Intel. Выпустив крайне удачный Intel Core второго поколения, компания стремительно увеличивает свою долю десктопного рынка, в то время как обещанный AMD Bulldozer задерживается. Вернет ли AMD позиции и сможет хотя бы немного потеснить Intel? Время покажет.

1. Волков Ю.А. Microsoft Office 2000 Professional. 6 книг в одной. – М.: Лаборатория Базовых Знаний, 2001 – 944 с.

2. Симонович С.В. Информатика. Базовый курс – СПб.: Питер, 1999. – 640 с.

3. Информатика. 10-11 класс /Под ред. Н.В. Макаровой. – СПб.: Питер, 2000. – 304 с.

4. Стоцкий Ю. Самоучитель Office-2000. – СПб.: Питер, 1999. – 576 с.

Министерство образования Российской Федерации

Рязанская Государственная

Радиотехническая Академия

Кафедра АиММ

Курсовая работа на тему:

«Процессоры»

Рязань 2004

1.История появления процессоров. ---3стр.

2.Процессор и его составляющие. ---7стр.

3. Современная микропроцессорная технология фирмы Intel. ---11стр.

3,1. Первые процессоры фирмы Intel. ---11стр.

3,2. Процессор 8086/88. ---12стр.

3,3. Процессор 80186/88. ---12стр.

3,4. Процессор 80286. ---12стр.

3,5. Процессор 80386. ---12стр.

3,6. Процессор 80486. ---13стр.

3,7. Процессор i486SX. ---14стр.

3,8. Intel OverDrive процессор. ---14стр.

3,9. Процессор Pentium. ---16стр.

3,10. Процессор Pentium Pro---19стр.

3,10,1. Общее описание. ---19стр.

3,10,2. Два кристалла в одном корпусе. ---20стр.

3,10,3. Значения тестов для некоторых чипов фирмы Intel. ---21стр.

3,11. Intel® Pentium® 4 с технологией Hyper-Threading, Intel® Pentium® 4, Intel® Pentium® III Processor , Intel® Pentium® II-в сравнительной характеристике. ---22стр.

3,12. Hyper-Threading: зачем она нужна? ---24стр.

3,13. Pentium 5. ---27стр.

4. AMD---28стр.

4,1. Развитие семейства K-6. ---28стр.

4,2. Технология 3DNow! ---31стр.

4,3. AMD Duron 650. ---34стр.

4,4.AMD Athlon. ---37стр.

4,4,1. Архитектура. Общие положения. ---39стр.

4,5.Чипсеты. ---42стр.

4,6. AMD Athlon (Thunderbird) 800. ---42стр.

4,7. AMD Athlon XP 1800+ (1533 MHz). ---44стр.

4,8. Athlon XP 3200+.---45стр.

5.Многопроцессорные системы. (SMP). ---48стр.

5,1. Многопроцессорные системы. Opteron. ---49стр.

6. Советы по выбору процессора Intel и AMD. ---56стр.

7.Другие фирмы-производители и некоторые процессоры этих фирм. ---57стр.

7,1. Cyrix. ---57стр.

7,2.Rise. ---57стр.

7,3.Centaur. ---58стр.

7,4. VIA. ---58стр.

7,5. SiS. ---59стр.

7,6. Transmeta. ---59стр.

7,7. Compaq.---59стр.

8. Разгон процессора или overclocking. ---61стр.

9.Системы охлаждения процессора.--- 64стр.

9,1. Радиаторы. ---64стр.

9,2. Вентиляторы.--- 67стр.


История появления процессоров.

С чего же всё началось?

Может быть, всё началось с изобретения транзистора в 1947 году?

А может, всё началось с первого электронного компьютера ENIAC (1946 г.), который умел считать на три порядка быстрее релейных машин (прорыв!). Система насчитывала 18 тыс. электронных ламп, занимала помещение 9x15 кв. метров, весила 30 т, потребляла 150 кВт, имела тактовую частоту 100 кГц (разгону не поддавалась), складывала за 0,2 мс, умножала за 2,8 мс.

И, конечно, у ENIAC имелся ворох недостатков. Во-первых, десятичная система счисления. Во-вторых, чрезвычайно сложное программирование, на перепрограммирование элементарной задачи уходили недели человекотруда. Третье вытекает из второго - очень низкая надёжность системы из-за большой зависимости от человеческого фактора, а на поиск неисправности уходили часы и даже дни.

А может, всё начиналось в 1705 году, когда Фрэнсис Хуксби изобрёл свой электростатический генератор?

Вот он, самый первый электрический генератор, основанный на трении, назывался он автором “influence machine” (машина влияний).

Началось это всё в апреле 1969 года, когда некая японская компания Busicom заказала у молодой, но уже очень амбициозной Intel несколько специальных микросхем для своих будущих калькуляторов. Сама же Intel к тому времени занималась относительно мелкими заказами типа биполярной статической памяти Шотки.

Так вот, прикинув смету на заказ японцев, Intel приходит к выводу, что необходимо разрабатывать десятки микросхем. Говорят, Les Vadasz (тогдашний президент Intel) даже грязно выругался – у них просто не было достаточно людей для подобных разработок. Кроме того, японцы хотели сделать чипам дорогостоящую (по тем временам) упаковку и программировать микросхемы на языке высокого уровня, что, естественно, скорости работы им не добавляло. Но Intel, поднапрягши свои мозги, подтвердил народную русскую пословицу о том, что голь на выдумку хитра.

Вот тут на сцену и выходит Тед Хофф младший (1937 г. рождения), который предлагает все функции возложить на один-единственный центральный процессор.

Идея нравится Бобу Нойсу (на тот момент большой шишке маленькой компании), он всячески помогает Теду продолжить свои разработки. Японские же инженеры, постоянно навещающие Санта-Клару, ставят палки в колёса нового изобретения, не принимая дизайн и идеи Теда, параллельно разрабатывая свои микросхемы. Так отвергалось изобретение, которое в будущем будет стоять в одном ряду с двигателем внутреннего сгорания, радио и электрической.лампочкой. И тем не менее, на очередном собрании где-то в октябре 1969 года японцы понимают все преимущество идеи Теда и дают полное добро на новую разработку от Intel “компьютер на чипе”.

К тому времени помогал Теду младшему некий Стен Мэйзор. Вместе они работали над системой команд, так как в архитектурных нюансах конструирования микрочипа не сильно-то и разбирались. Злые языки даже утверждают, что Хофф и Ко. “позаимствовали” систему команд из разработок IBM и Digital.

Intel постоянно искал талантливых разработчиков, и в апреле 1970 года к группе присоединяется Федерико Фэджин. Трудолюбие его не знало предела, на протяжении девяти месяцев всё возможное время Федерико посвятил разработке новых чипов.

Первый рабочий камень сошел с конвейера в январе 1971 года. Федерико получил камень около шести часов вечера, после чего заперся в лаборатории, нацепил свой футуристический (по тем временам) защитный костюм, защитные очки и стал проводить опыты. Вышел из Intel lab он только в 3 часа ночи и, качаясь от многомесячного перенапряжения, отправился домой, где его давно ожидала всё понимающая жена Эльвия. С порога бросив: “Он работает, он работает!”, он принялся её радостно обнимать.

Однако процессор содержал несколько серьёзных ошибок, и после напряженного труда, Федерико к февралю представляет вторую, подправленную, версию.

Много позже разгорятся споры, кто же из родителей первого процессора “круче”. Интересно, что об этом думают сами изобретатели:

Стен Мазор: “...самый крутой был Фэджин. Этот парень днём и ночью сидел в лабораториях и тестировал, тестировал, тестировал новое детище. Я сомневаюсь, что без Федерико этот чип действительно когда-либо заработал бы.”

Федерико Фэджин: “Ха-ха! Написать систему команд (фундаментальная работа Хоффа и Стена в 1971 году) мог каждый выпускник колледжа.”

Les Vadasz: “Безусловно, Федерико внёс огромный вклад в разработку. И, тем не менее, нельзя преуменьшать заслугу Теда Хоффа, ведь это он предложил концептуальную модель - новый скачок в информационных технологиях.”

Выходит так, что каждый внёс большой вклад в изобретение. Убрать из цепочки даже одного из них – и, вполне возможно, 4004 так бы и не увидел свет. Кроме того, задолго до 1969 года Нойс, когда он ещё работал в Fairchild Semiconductor, придумал напылять транзисторы на кремний, вместо того, чтобы изнурительным ручным трудом пытаться соединить каждый транзистор проводками с нарезанными треугольниками кремния.

Итак, 15 ноября 1971 года (в красный день календаря) Intel представила миру свой новый микрочип. Официальный День Рождения Процессора состоялся!

Характеристика нового чипа:

4-разрядный, 2300 р-канальных МОП-транзисторов, кристалл площадью 3,8x2,8мм, тактовая частота 108кГц.

Обеспечивал адресацию 4Кб ПЗУ и 512байт ОЗУ.

Позже, в 1974 году Федерико уйдёт из Intel, основывает свою компанию Zilog которая будет напрямую конкурировать с Intel.

После его ухода роль Фэджина в создании i4004 будет всячески преуменьшаться менеджерами Intel. Имя Федерико в Санта-Кларе будет всеми силами придаваться забвению.

Производство первого процессора постоянно затягивалось, что никак не радовало Busicom. Прежде всего, из-за растущей конкуренции на рынке калькуляторов. Получилось так, что к выходу i4004 Busicom просто не имел необходимой суммы денег на оплату услуг Intel. И тогда принимается соломоново решение: Intel урезает стоимость контракта на 60 тыс. долларов, но при этом все права на новую разработку остаются у Intel.

Запатентовали новое изобретение на имя всем известной, всеми любимой троицы: Хоффа, Мазора и Фэджина.

Как ни странно, рынок далеко не сразу хорошо принял нововведение. Пройдут годы и десятилетия, прежде чем новое изобретение раскроется во всей красе. Маркетологи Intel на всевозможных форумах и выставках достижений будут рассказывать о своём изобретении и его преимуществах, в космос полетит спутник, в сердце которого будет биться 4004, заработают калькуляторы в конце концов обанкротившейся Busicom.

И, тем не менее, Intel всерьёз воспринимать не будут. Стандартное мнение середины 70-ых, главный инженер DEC:

“Intel никогда не будет представлять серьёзной угрозы. Мы не берём их в расчет”.

Пройдёт 10 лет со времени изобретения первого процессора. И тогда Intel заговорит со всеми конкурентами в полный голос.



Рекомендуем почитать

Наверх