Импульсные источники питания и преобразователи. Теперь пробежимся по результатам

Бытовая техника 21.06.2019
Бытовая техника

ИМПУЛЬСНЫЕ ИСТОЧНИКИ ПИТАНИЯ

Известно, что источники электропитания являются неотъемлемой частью радиотехнических устройств, к которым предъявляется целый ряд требований; они представляют собой комплекс элементов, приборов и аппаратов, вырабатывающих электрическую энергию и преобразующих ее к виду, необходимому для обеспечения требуемых условий работы радиоустройств.

Источники питания подразделяются на две группы: источники первичного и вторичного питания: Первичные источники - это устройства, преобразующие различные виды энергии в электрическую (электромашинные генераторы, электрохимические источники тока, фотоэлектрические и термоэмиссионные преобразователи и др.).

Вторичные устройства питания - это преобразователи одного вида электрической энергии в другой. К ним относятся: преобразователи переменного напряжения в постоянное (выпрямитель); преобразователи величины переменного напряжения (трансформаторы); преобразователи постоянного напряжения в переменное (инверторы).

На долю источников электропитания в настоящее время приходится от 30 до 70% общей массы и объема аппаратуры РЭА. Поэтому проблема создания миниатюрного, легкого и надежного устройства электропитания с хорошими технико-экономическими показателями является важной и актуальной. Данная работа посвящена разработке вторичного источника электропитания (ИВЭ) с минимальными массогабаритными и высокими техническими характеристиками.

Обязательным условием проектирования источников вторичного электропитания является четкое знание предъявляемых к ним требований. Эти требования весьма разнообразны и определяются особенностями эксплуатации тех комплексов РЭА, которые питаются от заданного ИВЭ. Основными требованиями являются: к конструкции - надежность, ремонтопригодность, габаритно-массовые ограничения, тепловые режимы; к технико-экономическим характеристикам - стоимость и технологичность изготовления.

Основные направления улучшения массогабаритных и технико-экономических показателей ИП: использование новейших электротехнических материалов; применение элементной базы с использованием интегрально-гибридной технологии; повышение частоты преобразования электрической энергии; поиски новых эффективных схемотехнических решений. Для выбора схемы ИВЭ был произведен анализ эффективности использования импульсных источников питания (ИИП) по сравнению с силовыми ИП, выполненными по традиционной технологии.

Главные недостатки силовых ИП - это высокие массогабаритные характеристики, а также значительное влияние на другие устройства РЭА сильного магнитного поля силовых трансформаторов. Проблемой ИИП является создание ими высокочастотных помех, и, как следствие этого - электромагнитная несовместимость с некоторыми типами РЭА. Анализ показал, что наиболее полно предъявляемым требованиям отвечают ИИП, что подтверждается их широким использованием в РЭА.

В работе рассмотрен ИИП мощностью 800 Вт, который отличается от других ИИП применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой, имеющей средний вывод. Полевые транзисторы обеспечивают более высокий КПД и пониженный уровень высокочастотных помех, а трансформатор со средним выводом - вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

На базе выбранной принципиальной электрической схемы была разработана конструкция и был изготовлен опытный образец ИИП. Вся конструкция представлена в виде модуля, установленного в алюминиевый корпус. После первичных испытаний был выявлен ряд недостатков: ощутимый нагрев радиаторов ключевых транзисторов, сложность отвода тепла от мощных отечественных резисторов и большие габариты.

Конструкция была доработана: изменена конструкция платы управления с использованием компонентов поверхностного монтажа на двухсторонней плате, её перпендикулярная установка на основной плате; применение радиатора со встроенным вентилятором от компьютера; все теплонапряженные элементы схемы были специально расположены с одной стороны корпуса вдоль направления продувки основного вентилятора для наибольшего эффективного охлаждения. В результате доработки габариты ИПП уменьшились в три раза и выявленные в ходе первичных испытаний недостатки были исключены. Доработанный образец имеет следующие характеристики: напряжение питания Uпит=~180-240 В, частота fраб=90 кГц, отдаваемая мощность Pп=800 Вт, кпд=85%, масса =2,1 кг, габаритные размеры 145Х145Х80 мм.

Данная работа посвящена конструкции импульсного источника питания, предназначенного для питания усилителя мощности звуковой частоты, входящего в состав домашней звуковоспроизводящей системы высокой мощности. Создание домашней звуковоспроизводящей системы было начато с выбора схемного решения УМЗЧ. Для этого был произведен анализ схемного решения звуковоспроизводящих устройств. Выбор был остановлен на схеме УМЗЧ высокой верности.

Данный усилитель имеет очень высокие характеристики, содержит в своем составе устройства защиты от перегрузки и коротких замыканий, устройства поддержания нулевого потенциала постоянного напряжения на выходе и устройство компенсации сопротивления проводов, соединяющих усилитель с акустикой. Несмотря на то, что схема УМЗЧ опубликована уже давно, радиолюбители и по сей день повторяют его конструкцию, ссылки на которую есть практически в любой литературе, касающейся сборки устройств для высококачественного воспроизведения музыки. На основе данной статьи было принято решение собрать четырехканальный УМЗЧ, суммарная потребляемая мощность которого составила 800 Вт. Поэтому следующим этапом сборки УМЗЧ стала разработка и сборка конструкции источника питания, обеспечивающего мощность на выходе не менее 800 Вт, малые габариты и массу надежность в работе и защиту от перегрузки и коротких замыканий.

Источники питания строятся в основном по двум схемам: традиционной классической и по схеме импульсных преобразователей напряжения. Поэтому было принято решение собрать и доработать конструкцию импульсного источника питания.

Исследование источников вторичного электропитания. Источники электропитания подразделяются на две группы: источники первичного и вторичного электропитания.

Первичные источники - это устройства, преобразующие различные виды энергии в электрическую (электромашинные генераторы, электрохимические источники тока, фотоэлектрические и термоэмиссионные преобразователи и др.).

Вторичные устройства питания - это преобразователи одного вида электрической энергии в другой. К ним относятся:

  • * преобразователи переменного напряжения в постоянное (выпрямители);
  • * преобразователи величины переменного напряжения (трансформаторы);
  • * преобразователи постоянного напряжения в переменное (инверторы).

Источники вторичного электропитания строятся в основном по двум схемам: традиционной классической и по схеме импульсных преобразователей напряжения. Главный недостаток силовых ИП, выполненных по традиционной классической схеме, в их больших массогабаритных характеристиках, а также значительным влиянием на другие устройства РЭА сильного магнитного поля силовых трансформаторов. Проблемой ИИП является создание ими высокочастотных помех, и как следствие этого - электромагнитная несовместимость с некоторыми типами РЭА. Анализ показал, что наиболее полно предъявляемым требованиям отвечают ИИП, что подтверждается их широким использованием в РЭА.

Трансформаторы импульсных источников питания отличаются, от традиционных следующим: - питанием напряжением прямоугольной формы; усложненной формой обмоток (выводы средней точки) и работой на повышенных частотах (до нескольких десятков кГц). Кроме того, параметры трансформатора оказывают существенное влияние на режим работы полупроводниковых приборов и характеристики преобразователя. Так, индуктивность намагничивания трансформатора увеличивает время переключения транзисторов; индуктивность рассеяния (при быстро меняющемся токе) является причиной возникновения перенапряжений на транзисторах, что может привести к их пробою; ток холостого хода уменьшает к. п. д. преобразователя и ухудшает тепловой режим транзисторов. Отмеченные особенности учитываются при расчете и проектировании трансформаторов ИИП.

В данной работе рассматривается импульсный блок питания мощностью 800 Вт. От описанных ранее он отличается применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой со средним выводом. Первое обеспечивает более высокий КПД и пониженный уровень высокочастотных помех, а второе - вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

Недостаток такого схемного решения — высокое напряжение на половинах первичной обмотки, что требует применения транзисторов с соответствующим допустимым напряжением. Правда, в отличие от мостового преобразователя, в данном случае достаточно двух транзисторов вместо четырех, что упрощает конструкцию и повышает КПД устройства.

В импульсных блоках питания (ИБП) используют одно- и двухтактные высокочастотные преобразователи. КПД первых ниже, чем вторых, поэтому однотактные ИБП мощностью более 40...60 Вт конструировать нецелесообразно. Двухтактные преобразователи позволяют получать значительно большую выходную мощность при высоком КПД. Они делятся на несколько групп, характеризующихся способом возбуждения выходных ключевых транзисторов и схемой включения их в цепь первичной обмотки трансформатора преобразователя. Если говорить о способе возбуждения, то можно выделить две группы: с самовозбуждением и внешним возбуждением.

Первые пользуются меньшей популярностью из-за трудностей в налаживании. При конструировании мощных (более 200 Вт) ИБП сложность их изготовления неоправданно возрастает, поэтому для таких источников питания они малопригодны. Преобразователи с внешним возбуждением хорошо подходят для создания ИБП повышенной мощности и порой почти не требуют налаживания. Что касается подключения ключевых транзисторов к трансформатору, то здесь различают три схемы: так называемую полумостовую (рис.1, а), мостовую (рис. 1, б). На сегодняшний день наибольшее распространение получил полумостовой преобразователь.

Для него необходимы два транзистора с относительно невысоким значением напряжения Uкэmax. Как видно из рис.1а, конденсаторы С1 и С2 образуют делитель напряжения, к которому подключена первичная (I) обмотка трансформатора Т2. При открывании ключевого транзистора амплитуда импульса напряжения на обмотке достигает значения Uпит/2 - Uкэ нac. Мостовой преобразователь аналогичен полумостовому, но в нем конденсаторы заменены транзисторами VT3 и VT4 (рис. 1б), которые открываются парами по диагонали. Этот преобразователь имеет несколько более высокий КПД за счет увеличения напряжения, подаваемого на первичную обмотку трансформатора, а следовательно, уменьшения тока, протекающего через транзисторы VT1—VT4. Амплитуда напряжения на первичной обмотке трансформатора в этом случае достигает значения Uпит - 2Uкэ нас.

Особо стоит отметить преобразователь по схеме рис.1в, отличающийся наибольшим КПД. Достигается это за счет уменьшения тока первичной обмотки и, как следствие, уменьшения рассеиваемой мощности в ключевых транзисторах, что чрезвычайно важно для мощных ИБП. Амплитуда напряжения импульсов в половине первичной обмотки возрастает до значения Uпит - Uкэ нас.

Следует также отметить, что в отличие от остальных преобразователей для него не нужен входной развязывающий трансформатор. В устройстве по схеме на рис.1в необходимо использовать транзисторы с высоким значением Uкэ mах. Поскольку конец верхней (по схеме) половины первичной обмотки соединен с началом нижней, при протекании тока в первой из них (открыт VT1) во второй создается напряжение, равное (по модулю) амплитуде напряжения на первой, но противоположное по знаку относительно Uпит. Иными словами, напряжение на коллекторе закрытого транзистора VT2 достигает 2Uпит. поэтому его Uкэ mах должно быть больше 2Uпит. В предлагаемом ИБП применен двухтактный преобразователь с трансформатором, первичная обмотка которого имеет средний вывод. Он имеет высокий КПД, низкий уровень пульсации и слабо излучает помехи в окружающее пространство.

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Импульсный источник питания - это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.

Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы - ферритовые сердечники.

Рис. Как работает импульсный источник питания.

Выходное напряжение импульсного источника питания стабилизировано , это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.

Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.

Основные плюсы импульсных источников питания (ИИП):

  • малый вес конструкции;
  • небольшие размеры;
  • большая мощность;
  • высокий КПД;
  • низкая себестоимость;
  • высокая стабильность работы;
  • широкий диапазон питающих напряжений;
  • множество готовых компонентных решений.

К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.

Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.

Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.

Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.

Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.

Обычно для обеспечения надежности в импульсных источниках питания используют высоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).

Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.

Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.

Схема генератора импульсов регулируемой ширины

Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2.

Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.

Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.

На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, СЗ, VD5) подаются прямоугольные импульсы.

Заряд конденсаторов С2, СЗ происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или СЗ достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.

Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.

Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, СЗ) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.

Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.

При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.

В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.

Схема испульсного источника питания

Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.

Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DDI .1, DDI .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.

Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предварительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.

На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзистор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.

Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).

На выходе этого элемента формируются широкие управляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.

Рис. 2. Схема импульсного источника питания.

Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.

При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запуска схемы.

При максимальной длительности положительные и отрицательные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обусловленная наличием резистора R3 в формирующей цепи.

Тем самым снижается вероятность протекания сквозных токов через выходные относительно низкочастотные транзисторы оконечного каскада усиления мощности, которые имеют большое время рассасывания избыточных носителей на базовом переходе. Выходные транзисторы установлены на ребристые теплоотводящие радиаторы с площадью не менее 200 см^2. В базовые цепи этих транзисторов желательно установить сопротивления величиной 10…51 Ом.

Каскады усиления мощности и схема формирования двухполярных импульсов получают питание от выпрямителей, выполненных на диодах VD5 — VD12 и элементах R9 — R11, С6 — С9, С12, VD3, VD4.

Трансформаторы Т1, Т2 выполнены на ферритовых кольцах К10x6x4,5 ЗОООНМ; ТЗ — К28х16х9 ЗОООНМ. Первичная обмотка трансформатора Т1 содержит 165 витков провода ПЭЛШО 0,12, вторичные — 2×65 витков ПЭЛ-2 0,45 (намотка в два провода).

Первичная обмотка трансформатора Т2 содержит 165 витков провода ПЭВ-2 0,15 мм, вторичные — 2×40 витков того же провода. Первичная обмотка трансформатора ТЗ содержит 31 виток провода МГШВ, продетого в кембрик и имеющего сечение 0,35 мм^2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.

Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.

При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.

Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.

Сетевой импульсный источник питания

Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.

Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.

Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.

Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.

Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.

Рис. 3. Схема сетевого импульсного источника питания.

Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.

Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.

Высоковольтный источник постоянного напряжения

Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ .

Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.

Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, СЗ и R4, С4 задают частоту генератора. Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.

Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.

Рис. 4. Схема высоковольтного источника питания постоянного тока.

Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.

В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.

Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.

Корректор коэффициента мощности

Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.

Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.

Импульсный источник питания с микросхемой

Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.

Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.

Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.

Простой и высокоэффективный преобразователь напряжения

На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.

Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.

Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.

Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.

Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?

Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется , выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

Виды импульсных источников электропитания

Импульсные или ключевые, источники электропитания в настоящее время получили распространение не меньше, чем линейные стабилизаторы напряжения. Их основными достоинствами являются: высокий коэффициент полезного действия, малые габариты и масса, высокая удельная мощность. Это стало возможным благодаря применению ключевого режима работы силовых элементов. В ключевом режиме рабочая точка большую часть времени находится в области насыщения или области отсечки ВАХ, а зону активного (линейного) режима проходит с высокой скоростью за очень малое время переключения. В состоянии насыщения напряжение на транзисторе близко к нулю, а в режиме отсечки отсутствует ток, благодаря чему потери в транзисторе оказываются достаточно малыми. Поэтому средняя за период коммутации мощность, рассеиваемая в ключевом транзисторе, оказывается намного меньше, чем в линейных регуляторах. Малые потери в силовых ключах приводят к уменьшению или полному исключению радиаторов.

Улучшение массогабаритных характеристик источников питания обусловлено, прежде всего, тем, что из схемы источника питания исключается силовой трансформатор, работающей на частоте 50 Гц. Вместо него в схему вводится высокочастотный трансформатор или дроссель, габариты и масса которого намного меньше низкочастотного силового трансформатора.

К недостаткам импульсных источников электропитания относятся: сложность схемы, наличие высокочастотных шумов и помех, увеличение пульсаций выходного напряжения, большое время выхода на рабочий режим. Сравнительные характеристики обычных (т.е. с низкочастотным силовым трансформатором) и импульсных источников питания приведены в таблице 2.1.

Сравнение этих характеристик показывает, что КПД импульсных источников питания увеличивается по сравнению с обычными (линейными) в отношении 1:2, а удельная мощность в отношении 1:4. При повышении частоты преобразования с 20 кГц до 200 кГц удельная мощность возрастает в соотношении 1:8, т.е. почти в два раза. Импульсные источники питания имеют также большее время удержания выходного напряжения при внезапном отключении сети.

Это обусловлено тем, что в сетевом выпрямителе импульсного источника используются конденсаторы большой емкости и с высоким рабочим напряжением (до 400 В). При этом размеры конденсаторы растут пропорционально произведению CU, а энергия конденсатора пропорционально CU 2 . Этой энергии конденсатора достаточно для поддержания в рабочем состоянии источника питания в течении примерно 30 мс, что очень важно для сохранения информации в компьютерах при внезапном отключении питания.

Таблица 2.1 – Сравнение импульсных и линейных источников

В то же время пульсации выходного напряжения в импульсных источниках питания больше, чем у линейных, что обусловлено сложностью подавления коротких импульсов при работе импульсного преобразователя. Другие характеристики у этих источников практически совпадают.

Структура построения ИВЭП . При всем разнообразии структурных схем рисунки 2.1…2.8 обязательным является наличие силового каскада,

осуществляющего преобразование постоянного напряжения в другое постоянное, условно будем считать, что импульсные преобразователи реализуют функцию электрической изоляции (гальванической развязки) входных и выходных цепей, а импульсные стабилизаторы нет. Функциональное назначение силовых каскадов преобразователей и стабилизаторов одинаково.

Широкое распространение получили ИВЭП компенсационного типа, выполненного с обратной связью рисунок 2.1, Силовой каскад 3,на управляющий вход которого подается последовательность импульсов с определенными временными параметрами, осуществляет импульсное преобразование напряжения постоянного тока от первичного источника Еп в выходное напряжение Uн (утолщенными линиями показаны силовые цепи ИВЭП).

В общем случае выходных цепей с напряжениями Uн у одного ИВЭП может быть несколько. Усилитель импульсов 2 может выполнять не только функцию усиления управляющих импульсов по мощности для транзисторов 3, но и функции формирования импульсов: осуществляет временное разделение импульсов, например, для двухтактных преобразователей напряжения формирует короткие управляющие импульсы для схем 3 с трансформаторами тока или специальными типами силовых транзисторов и др..

Рисунок 2.1 - Структурная схема импульсного компенсационного ИВЭП

Импульсы, синхронизирующие работу ИВЭП, вырабатываются модулятором 1. Выходное напряжение постоянного тока Uн подается на вход схемы сравнения 4, где сравнивается с опорным напряжением Uоп. Сигнал рассогласования (ошибки) поступает на вход модулятора, который задает временные параметры синхронизирующих импульсов. Увеличение или уменьшение напряжения Uн приводит к изменению сигнала рассогласования на выходе 4 и временных параметров синхронизирующих импульсов на входе 1, что вызывает восстановление прежнего значения напряжения Uн, т.е. его стабилизацию. Таким образом, ИВЭП, выполненный по схеме рисунка 2.1 является стабилизирующим импульсным преобразователем напряжения компенсационного типа, поддерживающим неизменность выходного напряжения при изменениях выходного тока Iн, входного напряжения Еп, температуры окружающей среды и воздействия других дестабилизирующих факторов.

Рассмотрим ИВЭП с инвариантной (называемой иногда параметрической) стабилизацией выходного напряжения на рисунке 2.2 .

Сущность такого способа стабилизации заключается в том, что при воздействии какого-либо фактора, который может вызвать отклонение значения напряжения Uн от заданного, происходит изменение временных параметров управляющих импульсов, приводящее к тому, что Uн останется неизменным. Однако, в отличие от компенсационных стабилизаторов, изменение временных характеристик управляющих импульсов в этом случае зависит от величины отклонения самого дестабилизирующего воздействия.

Рисунок 2.2 - Структурная схема импульсного параметрического ИВЭП

На рисунке 2.2 генератор, обеспечивающий подобную функциональную зависимость, обозначен 1. Здесь штриховой линией показана связь Еп с управляющим входом генератора для обеспечения закона инвариантности Uн от Еп.

Источники вторичного электропитания без стабилизации выходного напряжения выполняются по схеме, приведенной на рисунок 2.3. Генератор импульсов 1 вырабатывает импульсы с неизменными временными параметрами. Очевидно, что для неизменности напряжения Uн необходимо иметь стабильное напряжение Еп.

Рисунок 2.3 - Структурная схема нестабилизированного ИВЭП

ИВЭП представленный на рисунке 2.4, осуществляет двойное преобразование энергии постоянного тока. Первый силовой каскад 1, как правило, импульсный стабилизатор преобразует напряжение Еп в стабилизированное напряжение Еп1. Второй силовой каскад 2 осуществляет гальваническую развязку напряжения и при необходимости дополнительную стабилизацию Uн. В общем случае компенсация и инвариантная стабилизация может осуществляется не только в 1, но и в обоих каскадах, что показано штриховыми линиями цепей отрицательной обратной связи. Силовые каскады 1 и 2 могут представлять собой различные варианты силовых каскадов любого из ИВЭП.

Рисунок 2.4 - Структурная схема ИВЭП двойного преобразования

Структурная схема блочного ИВЭП со ступенчатым наращиванием мощности приведена на рисунке 2.5. Для увеличения выходной мощности применено параллельное включение каскадов 3…5.

Рисунок 2.5 - Структурная схема модульного ИВЭП

Так как параллельное включение традиционных ИВЭП без применения специальных мер выравнивания мощности каждого из них невозможно, то в данном случае использован принцип многофазного построения ИЭВП. Он заключается в том, что модулятор-формирователь МФ осуществляет не только преобразование сигнала рассогласования СС в соответствующую импульсную последовательность, но и выполняет функцию фазового распределения импульсных сигналов по нескольким силовым каскадам. В результате такой работы ИЭВП временные этапы открытого и закрытого состояния силовых ключей транзисторов различных силовых каскадов оказываются разнесенными во времени.

Все рассмотренные схемы ИВЭП можно сравнивать по различным параметрам – стабильности выходных напряжений, массогабаритным характеристикам, энергетическим показателям, технологичности и себестоимости, а также возможности унификации. При этом, одна и та же схема в зависимости от заданных требований может оказаться неоптимальной по комплексу показателей. Заранее невозможно выбрать конкретную схему как наиболее эффективную, поэтому целесообразно рассмотреть наиболее общие свойства приведенных схем. Будем считать, что надежностные, энергетические и массогабаритные показатели силовых каскадов одинаковы и в равной степени зависят от мощности, выходного напряжения и частоты преобразования.

Наибольшей стабильностью выходного напряжения обладает ИВЭП, реализованный по схеме рисунка 2.1, так как обратная связь, воздейстующая на временные параметры управляющих импульсов, берётся непосредственно с выхода ИЭВП. Высокой стабильностью выходного напряжения обладает и схема ИВЭП, приведенная на рисунке 2.4, если обратная связь на СС берётся с выхода - Uн. Несколько худшей стабильностью, но большей простой схемы управления обладает ИВЭП, выполненные по схеме рисунка 2.2. Однако, здесь не учитывается изменение падения напряжения на индуктивных и активных элементах 3 при изменении тока нагрузки Iн. Дестабилизирующие изменения напряжения Еп могут быть скомпенсированы введением дополнительной, прямой связи (штриховая линия). Бывают ИВЭП с инвариантной стабилизацией не только возмущающего воздействия по напряжению Еп, но и возмущающих воздействий по току нагрузки Iн, температуре окружающей среды и др., однако они не получили широкого применения. Наихудшей стабильностью обладают ИВЭП, выполненные по схеме рисунка 2.3, из-за отсутствия какой-либо обратной связи при воздействии дестабилизирующих факторов. Схема ИВЭП рисунок 2.4, как указывалось выше, принципиально может иметь высокую стабильность выходного напряжения, однако при отсутствии инвариантных или компенсационных каналов регулирования ее показатели идентичны схеме рисунка 2.3.

Применение схем ИВЭП рисунка 2.2 предпочтительно при относительно высоких напряжениях Uн, во много раз превышающих падение напряжения на силовых ключах 3, так как получение требуемой функции 1, учитывающей изменения падения напряжения на этих ключах при колебаниях тока нагрузки и температуры окружающей среды, затруднительно.

Таким образом, в тех случаях, когда выходное напряжение ИВЭП невелико (не превышает нескольких вольт) и имеются значительные изменения тока нагрузки, температуры окружающей среды и напряжения Еп, необходимо использовать ИВЭП, выполненные по структурным схемам (см. рисунки 2.2,2.4,2.5) с компенсационным принципом регулирования.

Схема рисунка 2.2 может применяться также при удовлетворении компромиссных требований по стабильности выходного напряжения и простоте схемы управления ИВЭП. Если первичное напряжение стабильно и изменения падения напряжения на внутренних элементах СК заметно не влияют на точность поддержания напряжения Uн, применяют более простые ИВЭП (рисунки 2.3 и 2.5).

Приведенные схемы ИВЭП могут использоваться в широком диапазоне первичных напряжений – от единицы до сотен вольт. Однако, для высоких первичных напряжений целесообразной может оказаться схема ИВЭП рисунка 2.4, в которой двойное преобразование электрической энергии дает возможность понизить импульсным стабилизатором СКI высокое первичное напряжение Еп постоянного тока до Еп1 и использовать его в качестве первичного для импульсного преобразователя СК2. В этом случае преобразователь СК2, как более сложное по сравнению с СКI устройство работает в облегченных электрических режимах, что может обеспечить уменьшение количества элементов, повышение надежности работы и улучшение энергетических показателей преобразователя.

Крупногабаритными, наиболее материалоемкими и трудно поддающимися микроминиатюризации элементами являются дроссели и трансформаторы. В схемах ИВЭП необходимо стремиться к минимизации их числа. В схеме ИВЭП рисунка 2.4 для двойного преобразования энергии требуются два силовых каскада с принципиально необходимыми индуктивными элементами.

Блочное наращивание выходной мощности требуется для построения различных систем электропитания, которые должны выполняться на базе однотипных, унифицированных ИВЭП. В этом случае разработка и изготовление ИВЭП, питающих электронную аппаратуру, целесообразно при использовании однотипных блоков с возможностью параллельного соединения для получения требуемой суммарной выходной мощности. В итоге возможно получение экономического эффекта. В этом случае одной из основных целей разработки ИВЭП является выбор дискретного значения мощности единичного блока, который должен удовлетворять всем технико-экономическим требованиям имеющихся систем электропитания. Другим преимуществом блочных (многофазных) преобразователей является уменьшение суммарной емкости конденсаторов выходных фильтров, что объясняется распределением во времени процессов переноса энергии на выход отдельных силовых каскадов. Кроме того, многофазные преобразователи позволяют реализовать различные варианты сложных систем электропитания, состоящие их одинаковых унифицированных блоков.

На рисунке 2.6 приведена схема ИВЭП, содержащего нерегулируемый сетевой выпрямитель 1 и конвертор выпрямленного напряжения сети. Конвертор состоит из регулируемого инвертора 2, работающего на повышенной частоте (обычно 20…100 кГц), трансформаторного выпрямительного узла 3 и высокочастотного фильтра 4. Для стабилизации выходного напряжения используется схема управления 5.

Рисунок 2.6 - Структурная схема импульсного ИВЭП с регулируемым инвертором

В схеме управления сравнивается выходное напряжение Uн и напряжение опорного источника 6. Разность этих напряжений, называется сигналом ошибки, используется для регулировки частоты регулируемого инвертора (f = var) или скважности импульсов при их неизменной частоте (g = var) . Конвертор, выполненный на базе однотактного трансформаторного инвертора, называют трансформаторным однотактным конвертором - ТОК. Конвертор, выполненный на базе двухтактного трансформаторного инвертора, называют трансформаторным двухтактным конвертором - ТДК.

На рисунке 2.7 приведена схема ИВЭП с регулируемым сетевым выпрямителем 1 и нерегулируемым инвертором 2. Остальные узлы этой схемы имеют то же назначение, что и предыдущих схемах. Отличительной особенностью этой структурной схемы является использование нерегулируемого инвертора (НИ). Стабилизация выходного напряжения в этой схеме обеспечивается за счет регулирования напряжения на входе конвертора с помощью 1, который обычно выполняется на тиристорах с фазовым управлением.


Рисунок 2.7 - Структурная схемы импульсного ИВЭП с регулируемым сетевым выпрямителем

Для схемы, приведенной на рисунке 2.6 характерным является то, что инвертор должен быть рассчитан на работу от выпрямленного напряжения сети, которое имеет максимальное значение около 311В для однофазной сети и около 530 В для трехфазной сети. Кроме того, изменение частоты или скважности импульсов инвертора 2 приводит к ухудшению фильтрации выходного напряжения. В результате ухудшаются массогабаритные показатели фильтра 4, так как его параметры рассчитываются исходя из минимального коэффициента заполнения импульсов g min при условии непрерывности тока в нагрузке.

Положительными свойствами схемы рисунка 2.7 является совмещение функции преобразования напряжения и стабилизации выходного напряжения Uн. Это позволяет упростить схему управления 5, так как уменьшается число управляемых ключей. Кроме того, наличие паузы позволяет устранить сквозные токи в ключах инвертора. Достоинством схемы является также возможность обеспечить работу инвертора при пониженном входном напряжении (обычно его снижают в 1,5…2 раза, то есть до 130…200В). Это существенно облегчает работу ключей транзисторного инвертора. Другим достоинством этой схемы является то, что инвертор работает с максимальным коэффициентом заполнения g max импульсов, что существенно упрощает фильтрацию выходного напряжения. Исследование кпд и удельной мощности обоих схем показало, что эти показатели у них отличаются незначительно.

Схемы многоканальных ИВЭП с нерегулируемым выпрямителем 1 приведены на рисунках 2.8 и 2.9. В схеме на рисунке 2.8, используется нерегулируемый инвертор 2 и индивидуальные стабилизаторы 5…7 , в отдельных каналах. Такая структурная схема может использоваться при небольшом количестве выходных каналов. При увеличении числа выходных каналов схема становится неэкономичной.

Рисунок 2.8 - Структурная схема многоканального ИВЭП с индивидуальной стабилизацией

Схема, изображенная на рисунке 2.9, работает на принципе групповой стабилизации выходного напряжения. Для этого в ней применяется регулируемый инвертор, который управляется напряжением наиболее мощного из каналов. Стабилизация выходных напряжений в других каналах в этом случае ухудшается, так они не охвачены отрицательной обратной связью. Для улучшения стабилизации напряжения в других каналах, можно использовать дополнительные индивидуальные стабилизаторы, так же, как в схеме рисунка 2.8.

Рисунок 2.9 - Структурная схема ИВЭП с групповой стабилизацией



Рекомендуем почитать

Наверх