Самые надежные SSD: результаты эксперимента продолжительностью в полтора года. Надёжность SSD: результаты ресурсных испытаний

Авто 03.06.2019
Авто

Сейчас кажется, что SSD были вообще всегда. Мол, куда ж без них? На самом деле, хотя первые модели появились еще в начале девяностых, более-менее массовыми SSD стали с 2009 года. Поначалу они представляли собой флэшку с SATA-интерфейсом, но постепенно поумнели и обрели массу полезных функций, позволяющих скрыть ущербность флэш-памяти по сравнению с магнитными пластинами в нормальных жестких дисках (да-да, именно так!). Подчеркну, в этом тексте мы говорим исключительно о 2.5-дюймовых потребительских SSD с интерфейсом SATA. О корпоративных моделях с PCI-Express я вообще смысла писать не вижу, а про модели с M.2 для ультрабуков и продвинутых материнских плат лучше поговорить отдельно.

Часто приходится слышать – мол, хочу перейти на SSD, но знаю, что они не надежные, сколько-то там циклов записи и кирдык. Поэтому не перехожу. Это, конечно, правильное решение. В метро вот поезда иногда резко останавливаются. Можно упасть и набить шишку. Поэтому в метро ездить не надо. Машины врезаются. Вычеркиваем. А велосипед в детстве – вообще шайтан-машина. Если хочет ребенок покататься – пусть в лифте это делает. C бабушкой. И водичку с собой возьмите.

Если судить только по одному показателю, числу циклов записи, тогда SSD – это тихий ужас. На обычный хард можно писать до морковкиного заговенья, а тут какая-то три тысячи раз – и все, хана. Любознательный паренек может за пару суток уложиться. Ужас-ужас, не будем брать.

Я вам сейчас совсем страшную вещь скажу. Три тысячи – это в идеале. На практике флэш-память может “протереться” уже после пары тысяч циклов. И это в случае, если внутри SSD стоит память типа MLC. А у новомодной TLC даже официальный порог 1000 циклов. И кирдык-бабай может подкрасться после 700-800. Есть, правда, памяти типа SLC, где число циклов записи достигает 100 000, но она стоит примерно 10 баксов за гигабайт. Можно прикинуть – в какую сумму обойдутся даже демократичные 128 Гбайт.

Но вот какое дело. Есть у меня SSD производства Intel. Он работает у меня в разных компьютерах с 2009 года. Сначала в домашней системе в качестве основного года три. Потом в NAS в круглосуточном режиме вплоть до конца 2014-го. И до сих пор по всем тестам флэш-память в нем как новенькая. Контроллер, правда, из первых, ничего толком не умеющий, поэтому скорость записи упала до смешных 26 Мбайт/с. Но если отформатировать, опять будет больше ста. А чтение держится на уровне 250 Мбайт/с, что даже по нынешним временам вполне приемлемо.

Как такое возможно? А вот как. В Политбюро, знаете ли, не дураки сидят. И контроллер SSD никогда не позволит записать данные тысячу раз подряд в одну и ту же ячейку. Он будет старательно отбирать самые новые, и сначала писать в них. Чтобы все старели равномерно. Если накопитель заполнен не до упора, и на нем есть достаточно свободного места (скажем, гигабайт 60), уработать SSD до износа в обозримом будущем вряд ли получится. Есть и еще одна хитрость. У многих пользовательских SSD заявленный объем составляет 120, 240 или 480 Гбайт. Так вот на самом деле памяти там 128, 256 или 512 Гбайт, просто скрытый объем используется для подстраховки. И если вы таки протрете флэш в рамках заявленного объема, он будет подменен запасным. И вы долго еще ничего не заметите.

Поэтому на практике даже SSD с ненадежной флэш-памятью типа TLC проживет дольше, чем наступит срок, когда вам захочется его поменять из-за недостаточного объема. Если, конечно, не помрет по причине брака, скачка электричества, вздутия конденсатора или отказа контроллера. Но от этого не застрахованы и обычные HDD.

Есть, пожалуй, только один способ надежно ухайдакать SSD в течение короткого срока. Его освоил один мой знакомый видеооператор. По несколько раз в день он записывал на SSD по сотне-другой гигабайт данных с камеры. Отправлял их в эфир, стирал, и на следующий день записывал заново. SSD при этом забивался почти до упора. В таком режиме первые два SSD сдохли за полгода. Перед покупкой третьего он спросил меня – что за дела, не вернуться ли обратно на HDD. Я объяснил ему некоторые принципы работы SSD и посоветовал впредь брать не совсем уж пользовательские SSD, для которых рекомендованный объем записи составляет 20 Гбайт в сутки, а что-то класса Enterprise с лимитом в 80-100 Гбайт. Плюс посоветовал взять объем не 256 Гбайт, а 480. И оставлять немного свободного места. Наподобие того, как часть сельскохозяйственных земель ежегодно оставляют под “пар”, не используя по прямому назначению. Судя по всему, совет пришелся впору. Уже полтора года никаких горестных стенаний не слышал.

Наверное, подобного эффекта можно добиться, если каждый день качать огромные объемы торрентов, стирать, и качать снова. Не знаю, не пробовал. По моему скромному мнению, SSD предназначен для записи операционной системы, наиболее важных приложений (например, графического или видеоредактора), а также игр. Да-да, игр. Они подгружают в память такие нечеловеческие объемы данных, что лучше это делать с SSD. Для всего остального есть традиционные HDD, стоящие по соседству. Если SSD устанавливается в ноутбук, и места под HDD там попросту нет, рекомендую обзавестись внешним. При нынешней скорости USB разница с внутренним расположением будет незначительной. И, в любом случае, крайне полезно организовать автоматическое резервное копирование SSD на HDD. Раза в неделю будет вполне достаточно.

SSD, в отличие от HDD, не беспокоят удары ногой по корпусу в случае неудачного боя в World of Tanks, он довольно равнодушен к температуре вокруг. Ноутбук с SSD даже после падения в работающем состоянии не потеряет данные, что лично меня всегда волнует больше разбитого экрана. И его можно крутить-вертеть, как угодно. Ну и еще он конкретно БЫСТРЕЕ. И не столько по абсолютным показателям (хотя и это тоже), сколько по времени доступа к данным. Так что, если подходить к делу с пониманием, от SSD толку очень даже много. Главное – не гробить его умышленно, как мужики из анекдота японскую бензопилу.

Да, от чтения данных SSD не изнашивается. Только от записи. Многие этого почему-то не знают.

И вот теперь мы подходим к самому главному – как выбрать SSD, чтобы радовал? Скучные железные парни начнут вам загибать всякое про контроллеры, последовательную запись, кучу бенчмарков и тому подобную мутотень. Но я уважаю ваше время, и объясню все просто и быстро.

1) Определитесь с объемом. Даже если денег немеряно, и они уже не раз прожигали карман – не надо брать что-то конское, вроде терабайтника. SSD плохо предназначен для хранения и обработки больших объемов данных. Нужна файлопомойка – бери HDD, будет в разы дешевле и надежнее. Нормальному человеку вполне достаточен объем 240-256 Гбайт. Если надо таскать с собой большие видеофайлы и базу фотографий (с оговорками, сделанными выше) – можно взять 480-512. Можно и больше, я ж по рукам не бью и чужие доходы не считаю. Но терабайт с большой долей вероятности будет базироваться на TLC, которая – вот парадокс – для записи больших объемов данных предназначена очень средне. А вот модели на 128 Гбайт я бы советовал брать с осторожностью, потому что у них зачастую скорость записи вдвое ниже, чем у 256-гигабайтных моделей. Да и что такое по нынешним временам 128 Гбайт? Смех один. Вот “Танки” уже на тридцатку тянут.

2) Не парьтесь насчет контроллера. Не, я серьезно. Скучные парни про них целые повести пишут, но надо понимать, что даже не самые удачные из современных моделей обеспечивают больше 400 Мбайт/с при чтении и 200 Мбайт/с при записи. Ну, если уж прямо вот совсем не повезет – 150 Мбайт/с. Но, скорее всего, повезет. Есть ли разница между чтением 400 Мбайт/с и, скажем, 500 Мбайт/с? В бенчмарках есть, в реальной жизни нет. С записью еще интереснее. Есть ли какой-то источник, с которого вы будете писать потоком большие файлы со скоростью хотя бы 150 Мбайт/с? Что-то не мог такого представить. Все реальные ситуации гораздо медленнее. Плюс у SSD есть буфер объемом 128-512 Мбайт, куда сваливаются все относительно небольшие файлы, и это происходит мгновенно. Так что, как ни крути, упереться в скорость записи очень проблематично, и поэтому переживать из-за нее не стоит категорически. Да, конечно, оно дико приятно, когда по бенчмаркам все огого как круто, но нормальному человеку будет хорошо и удобно при любом раскладе. Лично мне (лично мне) нравятся контроллеры Intel, Marvell, Jmicron и Toshiba. Но при покупке SSD даже я обычно больше интересуюсь надежностью и ценой, а не контроллерами.

3) Надежность – штука относительная. В том плане, что много зависит от внешних факторов, и даже самые проверенные железки могут пасть смертью храбрых, если их хозяин балбес. Например, накопители традиционно нервно относятся к качеству электропитания, и если БП в компьютере кривой, возможно всякое. Но вы уже читали и не промахнетесь. Плюс сетевой фильтр. Настоящий, а не розетка с лампочкой.

SSD каких марок можно смело брать?

Intel
Intel (очень хорошие, поэтому два раза)
ADATA
Crucial
Kingston
OCZ
Sandisk
Seagate
Samsung
Silicon Power
Transcend

Есть еще несколько производителей калибром поменьше. В принципе, и на них можно обратить внимание, если продавец надежный, и точно не будет проблем с возвратом/заменой. Но я бы не стал. Благо у перечисленных марок есть модели из очень разных ценовых категорий.

4) Важный момент – срок гарантии. В среднем он составляет 3 года, но некоторые особенно ответственные производители (Intel! Intel!) дают пять лет. Время наработки на отказ у SSD огромное, от 1 до 2 миллиона часов, так что в этот параметр вы упретесь вряд ли (ну, 114 лет-то еще может не хватить, а 228 хватит наверняка). Если будете постоянно делать бэкап, даже безвременная кончина SSD во время гарантийного срока вряд ли огорчит. А бэкап SSD, повторюсь, делать необходимо. Потому мрут они не частями, как HDD, а обычно – сразу целиком. И данные оттуда вынуть крайне дорого. Хотя бэкапить надо и то, и другое.

Так что определяемся с объемом, не паримся с контроллером, выбираем хорошую марку и смотрим – какой гарантийный срок у конкретной модели. И всё! Будете довольны.

По традиции, вот 10 моделей SSD, которые можно смело брать.

1. Intel SSDSC2BP240G401 710-Series 240 Гбайт (2 миллиона часов наработки на отказ, 5 лет гарантии)
2. ADATA Premier Pro SP920 256 Гбайт (хорошо сбалансированная модель, скорость чтения до 560 Мбайт/с)
3. Samsung 850 Pro 512 Гбайт (для тех, кому надо много быстрого места, запись до 520 Мбайт/с, чтение еще быстрее. 512 Мбайт буфер. Но недешево).
4. SanDisk X300s 256 Гбайт (корпоративная модель с повышенным дневным ресурсом записи, до 80 Гбайт)
5. Silicon Power Slim S55 240 Гбайт (не самый быстрый, запись “всего” 440 Мбайт/с, но и цена симпатичная).
6. OCZ Saber 1000 240 Гбайт (еще одна быстрая корпоративная модель. Можно перезаписывать каждый день до 100 Гбайт на скорости 500 Мбайт/с, и при этом три года проработает гарантированно).
7. Kingston SSDNow V300 480 Гбайт (многие морщатся из-за контроллера SandForce внутри, но скорости достаточно. Плюс это один из самых доступных вариантов SSD такой емкости).
8. Transcend SSD370 (Premium) 256 Гбайт (не выдающаяся по скорости, но надежная и недорогая модель)
9. Intel DC S3710 Series 800 Гбайт (запредельно надежная модель, способная вынести перезапись почти 17 Петабайт. Петабайт, это не опечатка. И если у вас есть свободные 90 000 рублей, лучшего варианта просто не найти).
10. Samsung 850 Pro 128 Гбайт (стоит дороже многих моделей на 256 Гбайт, но зато и уделывает многие из них по скорости – 550/470 Мбайт/с. Любители маленьких, но шустрых оценят).

Теперь вы знаете об SSD все. Больше ничего читать не надо..

Скоро еще напишу о памяти и HDD.

Просмотры: 54 463

В наши дни все большей популярности набирают SSD диски. Они работают намного быстрее чем привычные традиционные HDD, а их надежность и цена становятся оптимальными для обычных пользователей. SSD используются для хранения данных в персональных компьютерах, ноутбуках и даже планшетах.

Но на рынке существуют различные производители и различные устройства. Начинающему пользователю может быть сложно выбрать нужное устройство. В этой статье мы собрали несколько советов касательно того какой SSD диск выбрать в 2018, а также обзор лучших устройств.

Флеш память вытесняет хрупкий и громоздкий традиционный диск везде. Намного проще использовать бесшумный SSD, который выглядит как обычная микросхема, вместо делающего 100 оборотов в секунду жесткого диска. Второй причиной для замены является большая скорость работы SSD. Данные будут прочитаны или записаны со скоростью в сотни раз большей, чем на магнитном жестком диске.

SSD накопители хранят данные в ячейках энергонезависимой флеш памяти. Можно сказать, что это оперативная память, которая сохраняет свое содержимое после перезагрузки. Благодаря высокой скорости компьютер будет реагировать на клики намного быстрее.

Как покупать SSD?

Что касается цены, то сейчас SSD диски стали намного доступнее. Но при выборе нужно обращать внимание не только на цену, но и на скорость и надежность. Для производства SSD используются три технологии флеш памяти: SLC, MLC и TLC. Диски SLT более дорогие, но самые надежные, в одну ячейку памяти записывается один бит информации, технология MLC позволяет записывать уже два бита, это дешевле, но работает не так долго.

Следующая технология, TLC еще дешевле и позволяет записывать три бита информации в одну ячейку, но имеет еще меньший срок службы и еще меньшую производительность. Идеальным решением будет MLC. Нужно найти компромисс между ценой, надежностью и скоростью.

Также существует несколько вариантов подключения SSD дисков. Флеш память имеет очень высокую скорость работы, и все чаще узким местом становится не скорость работы с памятью, а скорость интерфейса подключения. Сейчас популярность набирают диски типа M.2 PCIe, они дают максимальную скорость, но стоят все еще очень дорого, поэтому для большинства пользователей лучшим решением будет подключение SSD через SATA III интерфейс, который способен выдавать скорость до 6 Гбит/с (или 750 Мбайт/сек).

В этой статье мы рассмотрим лучшие SSD диски 2018 типа SATA, поскольку PCIe будут еще очень дорогими для большинства пользователей. Если вы пользователь ноутбука, то вам также необходимо будет обратить внимание на размеры твердотельного накопителя. Все рассмотренные SSD имеют форм фактор 2,5 дюйма и размер 69,9x100,1x7мм. А теперь перейдем к списку лучшие SSD накопители 2018.

Лучшие SSD диски 2018

1. Samsung 850 Evo

Это SSD накопитель распространяется объемом 120, 250, 500 Гб. Это не новое решение на рынке, но он может конкурировать со многими бюджетными накопителями. Версию на 500 Гб можно найти по цене $150.

Здесь используется самая дешевая технология хранения данных - TLC, три бита на ячейку. Но в дополнение к ней применяется оригинальная технология Samsung-V, которая обеспечивает большую надежность и скорость. Носитель отлично показывает себя в тестах и обходит многих конкурентов.

2. Toshiba Q300 480GB

Новый SSD Toshiba Q300 дешевле, чем другие конкуренты, но обеспечивает отличную скорость работы с данными. Здесь тоже используется собственная технология Toshiba, которая объединяет TLC ячейки для хранения и SLC кэш для повышения производительности.

Вы можете выбрать объем 120, 240, 480 и 960 Гб. Вы можете найти версию 480 Гб за $100. Другие накопители, предлагающие такую же скорость стоят немного дороже. Производитель дает три года гарантии нормальной работы. Скорость чтения/записи в тестах: 563.9 Мб/сек.

3. Samsung 960 Pro

Samsung 960 Pro M.2 дает максимальную производительность, но стоит достаточно дорого. Для его подключения вам понадобиться современная материнская плата с поддержкой PCIe. Вы можете приобрести SAMSUNG 960 PRO 512 Гб в версии M2 за $329 и $149 за SATA версию.

Для хранения данных используется технология Samsung"s V-NAND вместе с технологией упаковки ячеек MLC что обеспечивает высокую надежность и производительность. В тестах этот носитель способен выдавать до 1984.1 MB/сек.

4. Samsung 960 Evo

Это диск форм фактора M2 обеспечивает очень высокую скорость чтения и записи, даже высшую чем у версии Pro и он более доступный, чем его аналог. Для хранения информации используется та же технология, Samsung-V-NAND и ячейки MLC.

Из дополнительных возможностей здесь поддерживается шифрование AES 256 и TCG-Opal 2.0. Вы можете приобрести Samsung 960 Evo 1 Гб за $400. Скорость чтения/записи достигает 2457.4 Мб/сек. Это лучший ssd 2018.

5. SanDisk Extreme Pro 480 GB

Это один из самых надежных SSD. SanDisk Extreme Pro поставляется с гарантией работы на 10 лет и дает отличную производительность.

Память устройства разделена на две части, одна из них это высокопроизводительный динамический кэш на основе ячеек типа SLC и постоянное хранилище типа MLC. Это обеспечивает максимальную скорость. Доступны диски трех объемов: 120, 240 и 960 Гб, все в традиционном форм-факторе SATA. Цена SanDisk Extreme Pro 480 GB составляет около $200, а скорость работы 525 Мб/сек.

6. Kingston KC400 SSDNow

Это отличный SSD позволяющий получить максимальную скорость. Он доступен в вариантах на 128, 256, 512 Гб и 1 Тб. Вы можете найти SSD размером 512 Гб за $153.

Здесь используется контроллер Phison 3110 с защитой от ошибок чтения/записи, а также дополнительные технологии для продления срока службы. Диск способен выдавать скорость чтения/записи до 557 Мб/сек.

7. WD Blue SSD 1TB

Очень быстрый, но дорогой SSD. Доступны варианты емкости 250, 500 Гб и 1 Тб. Диск размером 1 Тб стоит $320. Также можно выбрать форм-фактор SATA III или M2.

Для хранения данных используется тип ячеек TLC с записью трех бит в одну ячейку. Но кроме TLC здесь применяется высокоскоростной кэш SLC ячеек. Такое сочетание дает высокую надежность и скорость. Скорость чтения/записи для диска колеблется в рамках 508.3 Мбит/сек.

8. PNY CS2211 240GB

PNY CS2211 - это более доступный SSD для тех, кто хочет заменить старый жесткий диск. Устройство объемом 240 Гб можно приобрести за $69. Производитель дает гарантию работы на протяжении четырех лет.

Для хранения данных используется технология MLC, позволяющая записывать два бита в одну ячейку. Это идеальное решение для дисков SSD. Скорость чтения/записи этого диска 526.7 Мб/сек.

9. OCZ ARC 100 240 GB

SSD диск от компании OCZ доступен в объемах 100, 120, 240 и 480 Гб. Вы можете приобрести версию 240 Гб за $80. Изначально компания делала очень плохие SSD диски, но потом она была приобретена Thoshiba и все стало намного лучше. На носитель дается гарантия трех лет работы.

Здесь используется контроллер Indilinx Barefoot 3, который имеет 512 Мб DDR3 памяти для быстрого кэша и дает отличную скорость работы. Устройство может выдавать скорость чтения 489 МБ/с и записи до 447 Мбайт/с.

10. Kingston HyperX Savage 480 GB

SSD диски от Kingston способны давать отличную производительность при относительно доступной цене. Здесь используется контроллер Savage, в котором применен четырехъядерный процессор с восемью каналами передачи данных. Техпроцесс изготовления одной ячейки памяти составляет 19 нм. Скорость чтения составляет 358 МБ/с, а скорость записи 370 МБ/c.

Выводы

В этой статье мы рассмотрели лучшие ssd диски 2018. Здесь есть и более дешевые, бюджетные варианты, так и дорогие, но высокопроизводительные. Теперь вы знаете какой ssd лучше выбрать 2018 и если вы собирались обновить свое оборудование, то теперь знаете что делать.

Бытует мнение, что одним из самых существенных недостатков твердотельных накопителей выступает их конечная и притом относительно невысокая надёжность. И действительно, в силу ограниченности ресурса флеш-памяти, которая обуславливается постепенной деградацией её полупроводниковой структуры, любой SSD рано или поздно теряет свою способность к хранению информации. Вопрос о том, когда это может произойти, для многих пользователей остаётся ключевым, поэтому многие покупатели при выборе накопителей руководствуются не столько их быстродействием, сколько показателями надёжности. Масла в огонь сомнений подливают и сами производители, которые из маркетинговых соображений в условиях гарантии на свои потребительские продукты оговаривают сравнительно невысокие объёмы разрешённой записи.

Тем не менее, на практике массовые твердотельные накопители демонстрируют более чем достаточную надёжность для того, чтобы им можно было доверять хранение пользовательских данных. Эксперимент, показавший отсутствие реальных причин для переживаний за конечность их ресурса, некоторое время тому назад проводил сайт TechReport . Им был выполнен тест, показавший, что, несмотря на все сомнения, выносливость SSD уже выросла настолько, что о ней можно вообще не задумываться. В рамках эксперимента было практически подтверждено, что большинство моделей потребительских накопителей до своего отказа способны перенести запись порядка 1 Пбайт информации, а особенно удачные модели, вроде Samsung 840 Pro, остаются в живых, переварив и 2 Пбайт данных. Такие объёмы записи практически недостижимы в условиях обычного персонального компьютера, поэтому срок жизни твердотельного накопителя попросту не может подойти к концу до того, как он полностью морально устареет и будет заменён новой моделью.

Однако убедить скептиков данное тестирование не смогло. Дело в том, что проводилось оно в 2013-2014 годах, когда в ходу были твердотельные накопители, построенные на базе планарной MLC NAND, которая изготавливается с применением 25-нм техпроцесса. Такая память до своей деградации способна переносить порядка 3000-5000 циклов программирования-стирания, а сейчас в ходу уже совсем другие технологии. Сегодня в массовые модели SSD пришла флеш-память с трёхбитовой ячейкой, а современные планарные техпроцессы используют разрешение 15-16 нм. Параллельно распространение приобретает флеш-память с принципиально новой трёхмерной структурой. Любой из этих факторов способен в корне изменить ситуацию с надёжностью, и в сумме современная флеш-память обещает лишь ресурс в 500-1500 циклов перезаписи. Неужели вместе с памятью ухудшаются и накопители и за их надёжность нужно снова начинать переживать?

Скорее всего - нет. Дело в том, что наряду с изменением полупроводниковых технологий происходит непрерывное совершенствование контроллеров, управляющих флеш-памятью. В них внедряются более совершенные алгоритмы, которые должны компенсировать происходящие в NAND изменения. И, как обещают производители, актуальные модели SSD как минимум не менее надёжны, чем их предшественники. Но объективная почва для сомнений всё-таки остаётся. Действительно, на психологическом уровне накопители на базе старой 25-нм MLC NAND с 3000 циклов перезаписи выглядят куда основательнее современных моделей SSD с 15/16-нм TLC NAND, которая при прочих равных может гарантировать лишь 500 циклов перезаписи. Не слишком обнадёживает и набирающая популярность TLC 3D NAND, которая хоть и производится по более крупным технологическим нормам, но при этом подвержена более сильному взаимному влиянию ячеек.

Учитывая всё это, мы решили провести собственный эксперимент, который позволил бы определить, какую выносливость могут гарантировать актуальные сегодня модели накопителей, основанные на наиболее ходовых в настоящее время типах флеш-памяти.

Контроллеры решают

Конечность жизни накопителей, построенных на флеш-памяти, уже давно ни у кого не вызывает удивления. Все давно привыкли к тому, что одной из характеристик NAND-памяти выступает гарантированное количество циклов перезаписи, после превышения которого ячейки могут начинать искажать информацию или просто отказывать. Объясняется это самим принципом работы такой памяти, который основывается на захвате электронов и хранении заряда внутри плавающего затвора. Изменение состояний ячеек происходит за счёт приложения к плавающему затвору сравнительно высоких напряжений, благодаря чему электроны преодолевают тонкий слой диэлектрика в одну или другую сторону и задерживаются в ячейке.

Полупроводниковая структура ячейки NAND

Однако такое перемещение электронов сродни пробою - оно постепенно изнашивает изолирующий материал, и в конечном итоге это приводит к нарушению всей полупроводниковой структуры. К тому же существует и вторая проблема, влекущая за собой постепенное ухудшение характеристик ячеек, - при возникновении туннелирования электроны могут застревать в слое диэлектрика, препятствуя правильному распознаванию заряда, хранящегося в плавающем затворе. Всё это значит, что момент, когда ячейки флеш-памяти перестают нормально работать, неизбежен. Новые же технологические процессы лишь усугубляют проблему: слой диэлектрика с уменьшением производственных норм становится только тоньше, что снижает его устойчивость к негативным влияниям.

Однако говорить о том, что между ресурсом ячеек флеш-памяти и продолжительностью жизни современных SSD существует прямая зависимость, было бы не совсем верно. Работа твердотельного накопителя - это не прямолинейная запись и чтение в ячейках флеш-памяти. Дело в том, что NAND-память имеет достаточно сложную организацию и для взаимодействия с ней требуются специальные подходы. Ячейки объединены в страницы, а страницы - в блоки. Запись данных возможна лишь в чистые страницы, но для того, чтобы очистить страницу, необходимо сбросить весь блок целиком. Это значит, что запись, а ещё хуже - изменение данных, превращается в непростой многоступенчатый процесс, включающий чтение страницы, её изменение и повторную перезапись в свободное место, которое должно быть предварительно расчищено. Причём подготовка свободного места - это отдельная головная боль, требующая «сборки мусора» - формирования и очистки блоков из уже побывавших в использовании, но ставших неактуальными страниц.

Схема работы флеш-памяти твердотельного накопителя

В результате реальные объёмы записи в флеш-память могут существенно отличаться от того объёма операций, который инициируется пользователем. Например, изменение даже одного байта может повлечь за собой не только запись целой страницы, но и даже необходимость перезаписи сразу нескольких страниц для предварительного высвобождения чистого блока.

Соотношение между объёмом записи, совершаемой пользователем, и фактической нагрузкой на флеш-память называется коэффициентом усиления записи. Этот коэффициент почти всегда выше единицы, причём в некоторых случаях - намного. Однако современные контроллеры за счёт буферизации операций и других интеллектуальных подходов научились эффективно снижать усиление записи. Распространение получили такие полезные для продления жизни ячеек технологии, как SLC-кеширование и выравнивание износа. С одной стороны, они переводят небольшую часть памяти в щадящий SLC-режим и используют её для консолидации мелких разрозненных операций. С другой - делают нагрузку на массив памяти более равномерной, предотвращая излишние многократные перезаписи одной и той же области. В результате сохранение на два разных накопителя одного и того же количества пользовательских данных с точки зрения массива флеш-памяти может вызывать совершенно различную нагрузку - всё зависит от алгоритмов, применяемых контроллером и микропрограммой в каждом конкретном случае.

Есть и ещё одна сторона: технологии сборки мусора и TRIM, которые в целях повышения производительности предварительно готовят чистые блоки страниц флеш-памяти и потому могут переносить данные с места на место без какого-либо участия пользователя, вносят в износ массива NAND дополнительный и немалый вклад. Но конкретная реализация этих технологий также во многом зависит от контроллера, поэтому различия в том, как SSD распоряжаются ресурсом собственной флеш-памяти, могут быть значительными и здесь.

В итоге всё это означает, что практическая надёжность двух разных накопителей с одинаковой флеш-памятью может очень заметно различаться лишь за счет различных внутренних алгоритмов и оптимизаций. Поэтому, говоря о ресурсе современного SSD, нужно понимать, что этот параметр определяется не только и не столько выносливостью ячеек памяти, сколько тем, насколько бережно с ними обращается контроллер.

Алгоритмы работы контроллеров SSD постоянно совершенствуются. Разработчики не только стараются оптимизировать объём операций записи в флеш-память, но и занимаются внедрением более эффективных методов цифровой обработки сигналов и коррекции ошибок чтения. К тому же некоторые из них прибегают к выделению на SSD обширной резервной области, за счёт чего нагрузка на ячейки NAND дополнительно снижается. Всё это тоже сказывается на ресурсе. Таким образом, в руках у производителей SSD оказывается масса рычагов для влияния на то, какую итоговую выносливость будет демонстрировать их продукт, и ресурс флеш-памяти - лишь один из параметров в этом уравнении. Именно поэтому проведение тестов выносливости современных SSD и вызывает такой интерес: несмотря на повсеместное внедрение NAND-памяти с относительно невысокой выносливостью, актуальные модели совершенно необязательно должны иметь меньшую надёжность по сравнению со своими предшественниками. Прогресс в контроллерах и используемых ими методах работы вполне способен компенсировать хлипкость современной флеш-памяти. И именно этим исследование актуальных потребительских SSD и интересно. По сравнению с SSD прошлых поколений неизменным остаётся лишь только одно: ресурс твердотельных накопителей в любом случае конечен. Но как он поменялся за последние годы - как раз и должно показать наше тестирование.

Методика тестирования

Суть тестирования выносливости SSD очень проста: нужно непрерывно перезаписывать данные в накопителях, пытаясь на практике установить предел их выносливости. Однако простая линейная запись не совсем отвечает целям тестирования. В предыдущем разделе мы говорили о том, что современные накопители имеют целый букет технологий, направленных на снижение коэффициента усиления записи, а кроме того, они по-разному выполняют процедуры сборки мусора и выравнивания износа, а также по-разному реагируют на команду операционной системы TRIM. Именно поэтому наиболее правильным подходом является взаимодействие с SSD через файловую систему с примерным повторением профиля реальных операций. Только в этом случае мы сможем получить результат, который обычные пользователи могут рассматривать в качестве ориентира.

Поэтому в нашем тесте выносливости мы используем отформатированные с файловой системой NTFS накопители, на которых непрерывно и попеременно создаются файлы двух типов: мелкие - со случайным размером от 1 до 128 Кбайт и крупные - со случайным размером от 128 Кбайт до 10 Мбайт. В процессе теста эти файлы со случайным заполнением множатся, пока на накопителе остаётся более 12 Гбайт свободного места, по достижении же этого порога все созданные файлы удаляются, делается небольшая пауза и процесс повторяется вновь. Помимо этого, на испытуемых накопителях одновременно присутствует и третий тип файлов - постоянный. Такие файлы общим объёмом 16 Гбайт в процессе стирания-перезаписи не участвуют, но используются для проверки правильной работоспособности накопителей и стабильной читаемости хранимой информации: каждый цикл заполнения SSD мы проверяем контрольную сумму этих файлов и сверяем её с эталонным, заранее рассчитанным значением.

Описанный тестовый сценарий воспроизводится специальной программой Anvil’s Storage Utilities версии 1.1.0, мониторинг состояния накопителей проводится при помощи утилиты CrystalDiskInfo версии 7.0.2. Тестовая система представляет собой компьютер с материнской платой ASUS B150M Pro Gaming, процессором Core i5-6600 со встроенным графическим ядром Intel HD Graphics 530 и 8 Гбайт DDR4-2133 SDRAM. Приводы с SATA-интерфейсом подключаются к контроллеру SATA 6 Гбит/с, встроенному в чипсет материнской платы, и работают в режиме AHCI. Используется драйвер Intel Rapid Storage Technology (RST) 14.8.0.1042.

Список моделей SSD, принимающих участие в нашем эксперименте, к настоящему моменту включает уже более пяти десятков наименований:

  1. (AGAMMIXS11-240GT-C, прошивка SVN139B);
  2. ADATA XPG SX950 (ASX950SS-240GM-C, прошивка Q0125A);
  3. ADATA Ultimate SU700 256 Гбайт (ASU700SS-256GT-C, прошивка B170428a);
  4. (ASU800SS-256GT-C, прошивка P0801A);
  5. (ASU900SS-512GM-C, прошивка P1026A);
  6. Crucial BX500 240 Гбайт (CT240BX500SSD1, прошивка M6CR013);
  7. Crucial MX300 275 Гбайт (CT275MX300SSD1, прошивка M0CR021);
  8. (CT250MX500SSD1, прошивка M3CR010);
  9. GOODRAM CX300 240 Гбайт (SSDPR-CX300-240, прошивка SBFM71.0 );
  10. (SSDPR-IRIDPRO-240 , прошивка SAFM22.3);
  11. (SSDPED1D280GAX1, прошивка E2010325);
  12. (SSDSC2KW256G8, прошивка LHF002C);

Надёжность SSD: находятся ли ваши данные в безопасности?

Подсистема хранения данных в наши дни является основным «узким местом» компьютера. Именно поэтому столько надежд сегодня связано с SSD, которые могут эффективно умножить производительность накопителей. Если вы установите твёрдотельный накопитель даже в дешёвый нетбук, то его отзывчивость увеличится намного сильнее, чем если бы вы удвоили его оперативную память.

IMFP: переход флэш-памяти NAND.

С учётом сказанного, производительность – это далеко ещё не всё. Именно по этой причине мир SSD фокусируется сегодня не столько на том, насколько быстрыми могут быть эти накопители, сколько на их надёжности. Тема надёжности в последнее время стала ещё более важной, в свете перехода с 3x-нм флэш-памяти NAND на флэш-память, производимую по 25-нм техпроцессу. Мы уже не раз общались со специалистами Intel в области SSD, и тема надёжности всплывала постоянно: 25-нм техпроцесс привёл к появлению вызовов, достойно ответить на которые оказалось намного сложнее, чем в случае 34-нм техпроцесса. Но все трудности удалось обойти, так что Intel по-прежнему предлагает лучшую производительность и надёжность по сравнению с продуктами предыдущего поколения. В общем, на меньшем количестве циклов программирования/стирания, которые неразрывно связаны с памятью NAND, производимой по меньшему техпроцессу, сегодня явно акцентируют слишком много внимания.

Честно говоря, вопрос количества циклов программирования/стирания (PE), которые может выдержать SSD, не так должен вас беспокоить. Предыдущие поколения SSD потребительского уровня, которые использовали 3x-нм MLC NAND, обычно были заявлены с 5000 циклов. Это означает, что вы можете записать и стереть данные 5000 раз, прежде чем ячейки NAND начнут терять возможность хранить данные. В случае 80-Гбайт накопителя вам придётся записать 114 Тбайт, прежде чем вы столкнётесь с эффектами износа ячеек. Учитывая, что средний пользователь настольного ПК записывает в день, максимум, 10 Гбайт информации, то ему придётся работать с накопителем примерно 31 год, прежде чем ячейки будут изношены. В случае 25-нм флэш-памяти NAND этот срок уменьшается до 18 лет. Конечно, мы упрощаем сложные расчёты износостойкости накопителей. Нужно учитывать такие проблемы, как усиление записи (WA), сжатие данных и сборку «мусора», которые по-своему влияют на прогнозы износа. Но, в целом, вам незачем следить за количеством циклов программирования/стирания у ячеек накопителя.

Конечно, мы знаем, что SSD выходят из строя, особенно это заметно в различных форумах и отзывах на сайтах популярных производителей, но связано это не с износом ячеек. На первом месте стоят проблемы с «сырой» прошивкой. В зависимости от того, какие данные вы записываете и как вы их записываете, у SSD может «слететь крыша», и накопитель уже не сможет считать данные. Когда происходят подобные печальные события, то фоновые задачи, подобные сборке мусора, перестают выполняться, и вскоре накопитель уже не может считывать или записывать данные вообще. Другие сбои, подобные сгоревшему конденсатору, не такие «изящные», но результат будет таким же – «мёртвый» SSD. Технически любой компонент – электрический или механический – с долей вероятности может выйти из строя в любой момент, да и со временем все компоненты изнашиваются. Но приводит ли отсутствие движущихся частей к более высокой надёжности? Можно ли сказать, что хранить данные на SSD не так опасно, как на жёстком диске?

Поскольку вопрос надёжности сегодня стоит как никогда остро, то мы решили глубже его исследовать, чтобы дать расширенный ответ, прежде чем вы купите себе SSD. В нашей статье мы рассмотрим все аспекты надёжности SSD, а также отделим факты от домыслов.

Что мы знаем о накопителях?

SSD – относительно новая технология (по крайней мере, если сравнивать с жёсткими дисками, которым исполнилось почти 60 лет). Вполне понятно, что мы должны сравнивать SSD с проверенной временем технологией. Но что мы знаем о старых добрых жёстких дисках? Здесь нам хотелось бы привести данные двух важных исследований.

2. Вместе с тем доктор Бианка Шредер (Dr. Bianca Schroeder) и эксперт доктор Гарт Гибсон (Dr. Garth Gibson) рассчитали частоту замены более 100 000 накопителей, которые использовались в одной из крупнейших национальных лабораторий США. Разница в том, что в лаборатории также использовались и жёсткие диски корпоративного класса с интерфейсами SCSI, SATA и FC.

Если вы не читали указанных документов раньше, то мы настоятельно рекомендуем с ними ознакомиться, ниже приведены краткие заключения по ним.

Уровень наработки на отказ (MTTF)

Помните, как рассчитывается показатель MTBF? Что подразумевается под временем безотказной работы? Возьмём в качестве примера жёсткий диск Seagate Barracuda 7200.7. Для него заявлено время наработки на отказ 600 000 часов. Таким образом, в крупном массиве подобных винчестеров, половина жёстких дисков должна выйти из строя за первые 600 000 часов работы. Если сбои будут распределены равномерно, то мы должны получить, например, один вышедший из строя жёсткий диск за час. Мы можем перевести это значение в ежегодную частоту отказов (annualized failure rate, (AFR) 1,44%. Но Google или доктор Шредер обнаружили совсем другое. Обратите внимание, что отказ не всегда соответствует замене жёсткого диска. Именно поэтому доктор Шредер измерял ежегодную частоту замены (annualized replacement rate, ARR). Она основывалась на количестве заменённых жёстких дисков в соответствие с сервисными журналами.

По спецификациям значение AFR указывалось между 0,58% и 0,88%, но полученное значение ежегодной частоты замены ARR составило от 0,5% до целых 13,5%. Таким образом, в зависимости от типа HDD и массива, значение ARR могло быть вплоть до 15 раз выше, чем значение AFR по спецификациям.

Производители жёстких дисков определяют сбои совсем по-другому, чем мы. Поэтому неудивительно, что их оценки надёжности оказываются чересчур оптимистичными. Как правило, значение MTBF высчитывается на основе ускоренных циклов тестирования, информации о возврате винчестеров или на основе результата краткосрочных тестов крупного массива накопителей. Конечно, информация о возвратах, полученная от производителя, продолжает оставаться довольно подозрительной. Как указывает Google, «мы сталкивались… с ситуациями, когда тестер накопителей постоянно давал «зелёный свет» модели, которая неизбежно отказывала на практике».

Выход из строя жёстких дисков со временем

Большинство пользователей считают, что кривая выхода из строя жёстких дисков напоминает ванную (см. первую иллюстрацию). То есть поначалу мы должны получить выход из строя значительного количества жёстких дисков из-за так называемой «детской смертности». Затем, после начального периода, уровень выхода из строя жёстких дисков должен быть низким. А в конце расчётного срока службы, по мере изнашивания накопителей, кривая выхода из строя должна резко поползти вверх. Но данное предположение не подтвердилось в обоих исследованиях. В целом, как обнаружили исследователи, частота сбоя жёстких дисков стабильно увеличивается со временем (см. вторую иллюстрацию).

Надёжность накопителей корпоративного класса

Если сравнивать два исследования, то 1 000 000 часов MTBF у накопителя Cheetah оказывается намного ближе к MTBF 300 000 часов. То есть у «корпоративных» и «потребительских» жёстких дисков мы получаем примерно одинаковый ежегодный выход из строя AFR, особенно если сравнивать схожие ёмкости. По информации, директора по технической стратегии NetApp (самый быстро растущий производитель систем хранения), «…то, как массивы накопителей справляются с соответствующими сбоями жёстких дисков, извечно продолжает убеждать потребителей, что более дорогие жёсткие диски работают более надёжно. Один из тщательно оберегаемых «грязных» секретов индустрии заключается в том, что большинство корпоративных и потребительских жёстких дисков состоят, по большей части, из одинаковых компонентов. Но их внешние интерфейсы (FC, SCSI, SAS и SATA) и, что более важно, приоритеты и цели при разработке дизайна прошивки, играют наиболее важную роль в определении поведения корпоративных или потребительских жёстких дисков в реальных условиях».

Безопасность данных и RAID

Исследование доктора Шредера охватывает использование корпоративных жёстких дисков в крупных массивах RAID в одной из крупнейших лабораторий по высокопроизводительным вычислениям. Как правило, мы ожидаем, что данные будут безопасность храниться в правильно подобранных режимах RAID, но результаты исследования оказались удивительными.

Распределение времени между заменами дисков показывает снижение интенсивности отказов, то есть предполагаемое время до замены следующего диска увеличивается вместе со временем, которое прошло с момента последней замены диска.

Это означает, что сбой одного накопителя в массиве повышает вероятность сбоя другого накопителя. Чем больше времени пройдёт с момента последнего сбоя, тем больше времени должно пройти до следующего. Конечно, всё это приводит к последствиям по реконструкции массива RAID. После первого сбоя вероятность того, что ещё один жёсткий диск выйдет из строя в пределах часа увеличивается в четыре раза. В течение же 10 часов вероятность последующего сбоя увеличивается только в два раза.

Температура

Из документа Google мы получили весьма странное заключение. Исследователи брали измерения температуры SMART, технологии мониторинга, которая встроена в большинство жёстких дисков, и обнаружили, что более высокая температура не коррелирует с более высокой частотой отказов. Температура оказывает определённое влияние на старые накопители, но оно не такое значительное.

Насколько умна SMART?

Если дать краткий ответ, то SMART не умна. Технология SMART была предназначена для сообщения об ошибках на раннем этапе, чтобы пользователь мог заблаговременно зарезервировать свои данные, но, по информации Google, более трети сбойных жёстких дисков не включали тревогу SMART. В принципе, это неудивительно, поскольку многие специалисты говорили об этом многие годы. Технология SMART оптимизирована на обнаружение механических сбоев, но большую часть жёсткого диска составляет электроника. Именно поэтому проблемы с поведением HDD и различные ситуации, подобные сбою электропитания, остаются незамеченными, пока не возникают проблемы с целостностью данных. Если вы надеетесь, что SMART предскажет вам сбой, то вам всё равно необходимо добавить ещё один уровень избыточности для гарантии защиты данных.

Теперь давайте перейдём к тому, как SSD показывают себя по сравнению с жёсткими дисками.

Взгляд на надёжность SSD

К сожалению, ни один производитель жёстких дисков не публикует данных о возврате, то же самое касается и производителей SSD. Но в декабре 2010 сайт Hardware.fr представил информацию о частоте сбоев SSD, полученную от своей родительской компании LDLC, являющейся одной из ведущих розничных сетей во Франции. На сайте были даны следующие пояснения по поводу расчёта представленных показателей.

Частота возврата касается продуктов, проданных между 1 октября 2009 и первым апрелем 2010, возвраты были осуществлены до октября 2010, то есть после периода эксплуатации от 6 месяцев до года. Статистика по производителям бралась при условии минимальных продаж в 500 экземпляров, а по моделям – при минимальной продаже ста экземпляров.

Обратим внимание, что представлена статистика частоты возврата, а не частоты сбоев.

Продажа между 1 октября 2009 и 1 апрелем 2010, возвраты осуществлены до 1 октября 2010
Жёсткие диски 1 Тбайт Частота возврата Жёсткие диски 2 Тбайт Частота возврата SSD Частота возврата
Hitachi Deskstar 7K1000.B 5,76% WD Caviar Black WD2001FASS 9,71% Intel 0,59%
Hitachi Deskstar 7K1000.C 5,20% Hitachi Deskstar 7K2000 6,87% Corsair 2,17%
Seagate Barracuda 7200.11 3,68% WD Caviar Green WD20EARS 4,83% Crucial 2,25%
Samsung SpinPoint F1 3,37% Seagate Barracuda LP 4,35% Kingston 2,39%
Seagate Barracuda 7200.12 2,51% Samsung EcoGreen F3 4,17% OCZ 2,93%
WD Caviar Green WD10EARS 2,37% WD Caviar Green WD20EADS 2.90% - -
Seagate Barracuda LP 2,10% - - - -
Samsung SpinPoint F3 1,57% - - - -
WD Caviar Green WD10EADS 1,55% - - - -
WD Caviar Black WD1001FALS 1,35% - - - -
Maxtor DiamondMax 23 1,24% - - - -
Жёсткие диски 1 Тбайт Частота возврата Жёсткие диски 2 Тбайт Частота возврата SSD Частота возврата
Samsung SpinPoint F1 5,2% Hitachi Deskstar 7K2000 5,7% Intel 0,3%
WD Caviar Green (WD10EADS) 4,8% WD Caviar Green WD20EADS 3,7% Kingston 1,2%
Hitachi Deskstar 7K1000.C 4,4% Seagate Barracuda LP 3,7% Crucial 1,9%
Seagate Barracuda LP 4,1% WD Caviar Black WD2001FALS 3,0% Corsair 2,7%
WD Caviar RE3 WD1002FBYS 2,9% WD Caviar Green WD20EARS 2,6% OCZ 3,5%
Seagate Barracuda 7200.12 2,2% WD Caviar RE4-GP WD2002FYPS 1,6% - -
WD Caviar Black WD1002FAEX 1,5% Samsung EcoGreen F3 1,4% - -
Samsung SpinPoint F3 1,4% - - - -
WD Caviar Black WD1001FALS 1,3% - - - -
WD Caviar Blue WD10EALS 1,3% - - - -
WD Caviar Green WD10EARS 1,2% - - - -

Ещё раз отметим, что сбой накопителя означает выход из строя. Но возврат потребитель может выполнять по различным причинам. И с этим возникают проблемы, поскольку у нас нет дополнительной информации по возвращенным накопителям – получил ли потребитель их уже «мёртвыми», или они вышли из строя со временем, либо возврат был произведён по причине несовместимости продукта.

Продажа между 1 октября 2009 и 1 апреля 2010, возвраты осуществлены до 1 октября 2010
Три ведущие позиции SSD Частота возврата Три ведущие позиции HDD Частота возврата
OCZ Vertex 2 90 Гбайт 2,8% 8,62%
OCZ Agility 2 120 Гбайт 2,66% Samsung SpinPoint F1 1 Тбайт 4,48%
OCZ Agility 2 90 Гбайт 1,83% Hitachi Deskstar 7K2000 3,41%
Продажа между 1 апреля 2010 и 1 октября 2010, возвраты осуществлены до 1 апреля 2011
Три ведущие позиции SSD Частота возврата Три ведущие позиции HDD Частота возврата
OCZ Agility 2 120 Гбайт 6,7% Seagate Barracuda 7200.11 160 Гбайт 16,0%
OCZ Agility 2 60 Гбайт 3,7% Hitachi Deskstar 7K2000 2 Тбайт 4,2%
OCZ Agility 2 40 Гбайт 3,6% WD Caviar Black WD2001FASS 4,0%

Приобретались ли SSD Intel оптом? Представленная информация приводит к новым вопросам. Если большую часть продаж жёстких дисков составляет Интернет, то плохая упаковка и порча во время доставки могут заметно сказаться на частоте возврата. Более того, не мешает провести нормализацию по сценариям, в которых потребители используют жёсткие диски. И существенный разброс возвратов жёстких дисков только подчёркивает эту проблему. Например, частота возврата Seagate Barracuda LP увеличилась с 2,1% до 4,1%, а для Western Digital Caviar Green WD10EARS она упала с 2,4% до 1,2%.

Вместе с тем, приведённые данные не позволяют судить о надёжности. Какие же выводы можно по ним сделать? О том, что во Франции больше клиентов оказались удовлетворены покупкой SSD Intel, чем приобретением накопителя другого производителя. Удовлетворение потребителя – тема интересная, но она имеет мало отношения к частоте сбоев. Поэтому идём дальше.

Статистика дата-центров: меньше 100 SSD

Цены за гигабайт продолжают оставаться основным барьером, не позволяющим даже крупным организациям использовать тысячи SSD одновременно. Но даже то, что у нас не было доступа к массивным инфраструктурам, отнюдь не означает, что мы не сможем сделать выводов по поводу надёжности SSD в реальных условиях на основе менее крупных структур. Мы попытались связаться со всеми нашими знакомыми в сфере ИТ и смогли получить интересную информацию от некоторых дата-центров.

NoSupportLinuxHosting.com

Загрузочный том на «зеркале» из двух X25-V.

Компания «No Support Linux Hosting» не сообщила нам о количестве установленных накопителей, но представитель компании сказал, что она «использует немалое количество» SSD. Мы знаем, что компания использует меньше 100 SSD, и они распределены по следующим сценариям:

  • 40-Гбайт X25-V используются в «зеркале» в качестве загрузочных томов для blade-серверов и серверов ZFS.
  • 160-Гбайт X25-M используются в качестве накопителей для кэширования (L2ARC) в серверах ZFS.
  • 32-Гбайт X25-E используются в «зеркале» в качестве томов ZIL в серверах ZFS.

Все эти накопители использовались не меньше одного года, а некоторые из них отметили свой второй год рождения. И на данный момент компания не столкнулась ни с одним сбоем SSD. Когда мы спросили «Дают ли SSD преимущества, которые нельзя получить на обычных механических жёстких дисках?» компания ответила, что «с ZFS и гибридными системами хранения накопители SSD дают существенный прирост производительности по сравнению с вращающимися пластинами. Мы по-прежнему используем вращающиеся пластины для основного хранилища, поэтому мы смогли сохранить преимущество HDD по цене, и вместе с тем смогли получить преимущества SSD по скорости. Рано или поздно мы планируем перевести все наши SAN на системы хранения, использующие только SSD. Но для 2011 года мы будем придерживаться гибридного хранилища с помощью ZFS.»

InterServer.net

Компания InterServer использует в своих серверах баз данных только SSD. В частности, компания оснащает свои серверы Xeon накопителями Intel X25-E (SSDSA2SH032G1GN), чтобы в полной мере задействовать преимущества по высокой пропускной способности данных. Но какой прирост производительности это даёт? InterServer сообщила нам о получении в среднем 4514,405 запросов MySQL в секунду. На старой системе Xeon, оснащённой накопителями IDE, можно было получить примерно 200-300 запросов MySQL в секунду. Мы знаем, что эти накопители используются компанией с 2009 года, и пока что сбоев не было зафиксировано.

InterServer сообщила нам следующую информацию по поводу использования SSD.

«Intel SSD как небо и земля отличаются по частоте сбоев от некоторых других накопителей. Например, у SSD SuperTalent мы получили очень высокую частоту сбоев, включая модели FTM32GL25H, FTM32G225H и FTM32GX25H. По нашим подсчётам, 2/3 этих накопителей вышли из строя после начала эксплуатации. Причём они выходили из строя так, что информацию считать уже не получалось. То есть накопитель просто полностью исчезал и больше не появлялся. Вращающиеся пластины умирают более «благородно», восстановить с них информацию намного легче. Я не могу сравнить данную статистику с накопителями Intel, поскольку мы пока не сталкивались с их сбоями».

Steadfast Networks: более 100 SSD

Steadfast Networks использует около 150 SSD Intel, то есть опирается на более крупную базу накопителей, чем две предыдущие компании. В Steadfast Networks используются модели X25-E (32 Гбайт и 64 Гбайт) и X25-M (80 Гбайт и 160 Гбайт). В меньшей степени компания задействует 40-Гбайт X25-V, да и некоторые клиенты использовали/запросили накопители OCZ Vertex 2, SuperTalent и MTron Pro. Независимо от марки, все SSD используются только в серверах баз данных или в качестве кэша.

На протяжении двух лет компания столкнулась только с двумя случаями, потребовавшими замены накопителей. Восстановление данных с вышедшего из строя SSD зависит от взаимодействия между контроллером и прошивкой. Опыт InterServer с накопителями SuperTalent является сценарием худшего случая, когда данные восстановить не получилось. Но специалисты Steadfast Networks сообщили нам, что смогли восстановить все данные с SSD Intel.

С более крупным массивом SSD мы, наконец, столкнулись с выходом накопителей из строя. Но по сравнению с жёсткими дисками частота выхода из строя намного ниже. Но президент Steadfast Networks Карл Зиммерман (Karl Zimmerman) считает, что это всё равно преуменьшает преимущества SSD. Он дал следующее объяснение.

«Мы просто получаем существенно более высокую производительность ввода/вывода [с SSD] по меньшей цене, чем мы можем достичь со стандартными жёсткими дисками. Многим нашим клиентам требуется большая производительность ввода/вывода, чем могут дать 4x накопителя SAS на 15 000 об/мин в массиве RAID 10, и данный апгрейд приводит к переходу на сервер с большим шасси, поддерживающим более 4 накопителей, крупной карте RAID и так далее. Другим конфигурациям требуется больше 16 жёстких дисков на 15 000 об/мин, чтобы получить требуемый уровень операций ввода/вывода. Переход на один SSD (или на пару SSD в RAID) значительно упрощает конфигурацию, да и удешевляет в целом.

Всё это дополняется тем, что вам, как правило, нужно использовать 1 SSD для замены 4+ стандартных жёстких дисков в среднем, при этом вы получите частоту сбоя AFR у жёстких дисков 20% и выше, а у SSD она составляет 1,6%.

Softlayer: около 5000 SSD!

В Softlayer у нас работает много друзей, при этом они организовали самую крупную компанию по web-хостингу в мире. Поэтому о накопителях они знают немало. В компании используется почти 5000 SSD, так что мы получили более впечатляющий массив данных для анализа. Вот, что сообщила нам Softlayer.

Компания получила схожую частоту выхода из строя накопителей SAS и SATA, что и в исследовании Google. Если не вдаваться в детали, то частота выхода из строя увеличивается пропорционально возрасту накопителя, и на практике она довольно близка к результатам двух исследований, которые мы привели раньше. В первый год частота выхода из строя AFR составляет 0,5-1%, она увеличивается до 5-7% в пятый год.

Частота сбоя жёстких дисков нас не удивила, но частота AFR для SSD шокировала. Если судить по числам, то частота сбоя SSD близка к жёстким дискам. Конечно, накопители эксплуатируются всего два года. Нам нужно подождать, пока SSD не завершат третий и четвёртый год своей эксплуатации, после чего мы посмотрим, будет ли разница.

Softlayer почти полностью использует SSD на основе SLC-памяти из-за опасений с износом при выполнении операций записи. Если верить сценариям использования компании, то ни один из сбоев не был связан с износом ячеек памяти при записи, но многие SSD вышли из строя без раннего предупреждения SMART. Мы уже неоднократно слышали об этом от разных дата-центров. Как указали специалисты InterServer, жёсткие диски «умирают» более «благородно». SSD часто «умирают» внезапно, возможно из-за некорректной работы прошивки. Опыт Softlayer более разнообразный, некоторые накопители восстановить удалось, другие нет. Ни один из 11 накопителей X25-M у компании не вышел из строя, но количество образцов мизерное. Да и в работе они находятся с июня 2010.

Так ли важна надёжность?

Несмотря на то, что SLC-накопители составляют всего часть рынка NAND, мы собрали намного больше данных по SLC-накопителям SSD, чем по моделям с MLC-технологией. Конечно, наш набор исследуемых накопителей составляет 1/20 от набора предыдущих исследований жёстких дисков, но по имеющейся информации SLC-накопители SSD нельзя назвать более надёжными, чем жёсткие диски SATA и SAS. Если флэш-память SLC является самой лучшей из NAND, тогда SSD с MLC-памятью должны демонстрировать более высокую частоту выхода из строя.

Если вы являетесь потребителем, то подобный факт наверняка вызовет замешательство. Производители SSD пытаются подчеркнуть, что они предоставляют два существенных преимущества: производительность и надёжность. Но если данные на SSD хранить не безопаснее, чем на жёстком диске, то основной причиной выбора твёрдотельных накопителей является производительность.

Мы не утверждаем, что производительность не важна (или не впечатляет), но большинство SSD находятся в узком разбросе по производительности. Например, если вы отобразите на графике скорость жёстких дисков по сравнению с SSD, то low-end SSD работают примерно на 85% быстрее, чем жёсткие диски. А high-end SSD дают только 88% преимущество по производительности в среднем.

Именно поэтому Intel пытается всех убедить, что предлагает самые надёжные SSD. Недавно на пресс-конференции по поводу выхода SSD 320 компания попыталась акцентировать эту точку зрения. Конечно, репутация Intel повлияла на то, что мы получили столь много информации по поводу SSD этой компании, но результаты эксплуатации, похоже, не соответствуют тому, что мы слышим от Intel.

Производительность SSD будет продолжать увеличиваться, а цены будут одновременно с этим снижаться. Такова природа новой технологии. Однако это также означает, что производителям SSD потребуется найти другие способы дифференциации своих продуктов. Сегодня мы как раз начинаем это видеть. По мере того, как относительный зазор по производительности между SSD начинает сужаться, надёжность становится всё более важной.

Заключение

Конечно, получилось так, что наш опрос дата-центров охватывает только частоту выхода из строя SSD Intel, поскольку накопители именно этого производителя используются сегодня в большинстве крупных компаний. Маркетинг Intel работает на самом деле, поскольку компанию считают одной из самых надёжных марок. Мы не подразумеваем этим, что другие марки более или менее надёжны. Исследователи Google по поводу жёстких дисков написали следующее: «частоту сбоев тесно связывают с моделями накопителей, производителями и возрастом. Наши исследования этому не противоречат. Но большинство результатов, связанных с возрастом накопителя, связаны именно с возрастом».

По информации, представленной нам дата-центрами, то же самое верно и для SSD. Один из управляющих крупной компании сообщил, что OCZ даёт замечательные цены, но по его информации у накопителя Vertex 2 ужасная надёжность. Примерно два месяца назад компания заказала новое оборудование, но после вскрытия коробки оказалось, что из 200 накопителей Vertex 2 Pro примерно 20 были уже «мёртвыми». Да и один из дата-центров сообщил нам, что регулярно сбрасывает клиентские серверы с накопителями Vertex 2.

Что это значит для SSD?

Но позвольте оценить всё с перспективы. Вот, что мы узнали о жёстких дисках из двух приведённых исследований.

  • Заявленное время наработки на отказ MTBF ничего не говорит о надёжности.
  • Ежегодная частота выхода из строя (AFR) в несколько раз выше, чем заявляют производители.
  • Для накопителей не характерна заметная тенденция выходить из строя после года использования. Частота выхода из строя стабильно повышается вместе с возрастом жёстких дисков.
  • SMART не является надёжной системой оповещения о грядущих сбоях жёсткого диска.
  • Частота выхода из строя «корпоративных» и «потребительских» жёстких дисков примерно одинаковая.
  • Выход из строя одного накопителя в массиве повышает вероятность выхода из строя другого накопителя.
  • Температура оказывает пренебрежимо малое или незначительное влияние на частоту сбоев.

Благодаря Softlayer мы знаем, что первые четыре пункта также относятся и к SSD. Помните, что разница между корпоративными и потребительскими жёсткими дисками, влияющая на частоту сбоев, кроется в контроллере, прошивке и интерфейсе (SAS против SATA). Что касается SSD, то разница сужается до контроллера и прошивки. Если качество производства MLC-памяти NAND такое же, как и SLC-памяти, то корпоративные SSD не надёжнее потребительских SSD (помните, что износ при записи/программировании не имеет ничего общего со случайными сбоями накопителей).

Конечно, корпоративный рынок интересует не только надёжность. Свою роль играет и производительность. Чтобы получить высокую производительность ввода/вывода с жёсткими дисками, нужно использовать не меньше четырёх накопителей SAS на 15 000 об/мин в RAID 10. Если такого уровня всё равно мало, то придётся выполнить апгрейд на более крупный сервер с большим количеством накопителей и более ёмкой картой RAID. Если производительность вас интересует больше, чем ёмкость, то выбор нескольких SSD в RAID упрощает конфигурацию, её развёртывание и поддержка обходятся дешевле. Поскольку вы используете один SSD для замены нескольких жёстких дисков, то частота сбоя каждого жёсткого диска влияет на эффективную частоту сбоя. И с этой точки зрения намного лучше использовать четыре SSD для замены шестнадцати жёстких дисков. Конечно, конфигурация из одного SSD не даёт избыточности хранения данных. Но, как указано в исследовании доктора Шредера, сбой жёсткого диска в массиве RAID увеличивает вероятность ещё одного сбоя. Для профессионалов ИТ, внедряющих SSD, наши новости прольются как бальзам на душу. Как написал Робин Харрис (Robin Harris) на StorageMojo , «Забудьте о RAID, просто копируйте данные три раза». Избыточность хранения данных c SSD не приводит к дополнительным расходам. Скажем, в ИТ-инфраструктуре информация с одного SSD будет постоянно копироваться на несколько жёстких дисков. А идея траты меньшего количества денег на получение существенного прироста производительности должна быть очень привлекательной. Собственно, в этом нет ничего нового. Google уже многие годы использует подобный подход (дешёвой избыточности) со своими серверами на жёстких дисках, но перенос данной концепции на SSD приводит к очень высокой пропускной способности ввода/вывода, высокой надёжности и избыточности данных – всё это при дешёвом и простом способе дублирования файлов подобно кластеру.

К сожалению, всё это касается профессионалов в области ИТ. Что касается потребителей, то не стоит доверять SSD больше, чем вы доверяете жёсткому диску. В конце концов, электрическая деталь остаётся электрической, независимо от того, движется она или нет. (Конечно, мы не имеем в виду, что вы будете трясти жёсткий диск во время работы.) Данные от Softlayer подтверждают нашу точку зрения, поскольку у более ёмкой модели X25-E частота выхода из строя выше (у неё используется больше чипов памяти). Возможно, именно по этой причине мы не были шокированы тем, что SSD имеют схожую частоту выхода из строя, что и накопители с вращающимися пластинами. Конечно, у нас нет полных данных для SSD старше двух лет, поэтому, возможно, в будущем ситуация изменится, но пока мы эти данные не получим, лучше следовать давно известной пословице «бережёного Бог бережёт».

Самое обидное во всём этом исследовании заключается в том, что мы не должны сами собирать все эти данные. Производители знают об истинной надёжности своих продуктов, поскольку они выпускают миллионы SSD в год (IDC: 11 млн. SSD в 2009) и отслеживают возвраты. Если SSD Intel на MLC-памяти являются «золотым стандартом», то лучшие SSD кажутся не более надёжными, чем лучшие жёсткие диски. Получается, что худшие SSD такие же надёжные, что и худшие жёсткие диски?

В заключении мы оставляем открытым приглашение Intel, OCZ, Micron, Crucial, Kingston, Corsair, Mushkin, SandForce и Marvell, чтобы предоставить нам информацию о частоте выхода из строя своих продуктов, либо опубликовать список крупных клиентов, у которых можно будет получить дополнительную информацию.

Примечание. Мы выражаем благодарность компании Softlayer и всем дата-центрам, предоставившим нам данные. Всё это позволило оценить надёжность SSD.



Рекомендуем почитать

Наверх