Система защиты от утечки информации. Технический канал утечки информации

Инструмент 20.04.2019
Инструмент

В наше время промышленный и государственный шпионаж процветает. Благодаря развитию информационных технологий ежедневно появляются новые методы слежки и незаконного получения информации о деятельности своих конкурентов. Технические каналы утечки конфиденциальной информации возникают из-за физических преобразователей. Совершенно любой электронный прибор в помещении может стать источником утечки, в свою очередь он может быть обнаружен и обезврежен. Причем обезвредить его чаще проще, чем найти.

Общие сведения

Передать информацию можно через поле или вещество. Украсть можно звуковую волну, перехватить электромагнитное излучение или воспользоваться старыми методами и забрать бумаги, вариантов очень много. Но все они являются лишь носителями. Утечка сама по себе - это неконтролируемый выход скрытой информации за пределы предприятия или круга людей, которые ей обладали.

А вот под термином "технический канал утечки информации" подразумевается физический путь от источника к злоумышленнику. Именно через него происходит открытие доступа к скрытым данным. На данный момент существует четыре типа переноса сведений, а именно звуковые и электромагнитные волны, световые лучи и материалы.

Классификация

Классификация технических каналов утечки информации основывается на разделении их на подгруппы. Существуют естественные и специально созданные каналы. Первые могут появляться вследствие побочных электромагнитных излучений во время переработки сведений или при посторонних проводниках. Во втором случае в систему специально внедряются устройства, направленные на перехват. Для этого используются приемные устройства и широкополосные направленные антенны. Рассматривая технические каналы утечки информации, стоит также учитывать и источники помех.

Защита от акустического шпионажа

Микрофонный эффект может возникнуть в любом устройстве, где есть катушки индуктивности, пьезооптические преобразователи или Любой разговор вызывает колебания поля, которое эти устройства могут уловить. Чтобы обезопасить организацию от подобного рода утечки, используются организационные и технические меры. Первые - это выключение или смена устройства. Вторые - подключение специальных защитных устройств к телефонным линиям.

Современные устройства изготавливаются в виде телефонных розеток, так что определить их наличие визуально конкуренты не смогут. Прежде чем обезопасить технический канал утечки информации, следует проверить, а действительно ли он обладает микрофонным эффектом. Для этого применяется специальная аппаратура, выявляющая помехи, шумы и прочее.

Защита от электромагнитного шпионажа

Средства электросвязи и другие радиоэлектронные приборы имеют электромагнитное излучение. Оно необходимо, чтобы передавать данные, но есть также и нежелательные волны в виде внеполосных, электромагнитных и шумовых. Именно через них может возникнуть утечка сведений. Характер этого излучения напрямую зависит от дальности действия оборудования.

При сборе информации с устройств ближнего действия используют магнитную составляющую, дальнего - электромагнитное излучение. Таким образом технический канал утечки информации будет создавать поле помех. Оно будет зависеть от размеров помещений, мест расположений считывающего оборудования и от материалов, из которого оно создано. Чтобы определить утечку, нужно проверять оба поля, и ближнее, и дальнее.

Основные методы защиты

На данный момент современные технологии позволяют определять напряжение электромагнитного поля очень точно. Для этого используются специальные инструменты и аналитика. А вот определить, насколько напряжено суммарное поле, пока что точно невозможно. Лучше всего рационально размещать приборы в помещении, чтобы не создавать наложения их излучения друг на друга. Это значительно упростит проверку и выявление технических каналов утечки информации.

Самым важным в защите от таких утечек является ограничение сигналов, то есть они не должны выходить за пределы компании. Существуют нормы и допустимые значения волн, которые необходимо установить на оборудовании, чтобы не допустить возможности получения доступа к линиям связи конкурентов. Чтобы обеспечить защиту данных от побочных излучений, следует провести ряд мероприятий, а именно:

  • Установить все устройства, потенциально приводящие к утечке, в местах, максимально удаленных от границы территории, которая охраняется.
  • Обеспечить экранирование помещений, зданий и коммуникаций в фирме.
  • Лучше всего использовать локальные системы, которые не имеют выхода за границы территории.
  • Все развязки в сетях питания и заземления делать исключительно на охраняемой территории.
  • Также можно установить подавляющие фильтры.

Если же есть подозрения, что защита информации от утечки по техническим каналам уже не помогает и есть утечка, то для ее обнаружения можно использовать селективные вольтметры, измерительные приемники, анализаторы сектора и другое специфическое оборудование.

Защита от шпионажа по цепям питания

Утечка из контролируемой зоны может произойти и через электросеть, к которой подключены технические средства. Чаще всего для таких подключений и кражи информации подобным образом используют блоки питания, излучающие высокие частоты. Чтобы провести защитные меры, в основном используются методы разводки цепей.

Для этого устанавливают специализированные сетевые фильтры, преобразователи и подобное оборудование, защищающее помещение от лишних скачков волн в электросетях. При более серьезном подходе на защищенной и охраняемой территории устанавливают отдельные трансформаторы, через которые происходит передача электричества в здание. Таким способом происходит самая надежная защита информации от утечки по техническим каналам через электросеть.

Заземление

Важно также обратить внимание на заземление. Очень важно правильно установить все оборудование и защитить его от злоумышленников. Установка заземления вне помещений проводится на глубине более чем полтора метра. В здании же их нужно устанавливать таким образом, чтобы регулярно можно было проверять на целостность и наличие дополнительных подключений.

Взаимные влияния в линиях связи

Известно, что линии передачи информации могут оказывать воздействие друг на друга. Влияющей цепью называют ту цепь, которая создает первичное влияние на электромагнитное поле. Далее идут уже цепи, на которые это поле воздействует. Кроме прямого влияния цепей друг на друга есть еще и косвенное воздействие, которое может возникнуть из-за отражения сигналов. Воздействие может быть систематическим и случайным.

В основном они возникают из-за проводов одинаковой величины, расположенных в надземном пространстве. Случайные же влияния появляются вследствие стечения обстоятельств, которые нельзя оценить или предугадать. Для создания условий воздействия один кабель должен быть экранирован, другой нет. Из этого следует, что технические наводки не безопасны, и через них может проводиться техническая разведка каналов утечки информации. При повреждении или коррозии кабелей, что очень часто случается на практике, они начинают излучать сильные сигналы в электромагнитное поле.

Защита от воздействия

Оборудование можно защитить от взаимного воздействия. Для этого следует применить необходимые меры, а именно:

  • Использовать системы передачи и линии связи, у которых показатели взаимного воздействия минимальны. Можно почти полностью решить вопрос, если устанавливать исключительно волоконно-оптические линии и коаксиальные кабели.
  • Выбирать кабели для различных систем рационально, то есть стараться компенсировать все наводки между симметричными линиями.
  • Проводить экранирование цепей гибкими и жесткими экранами, это обеспечит снижение взаимовоздействия благодаря ослаблению интенсивности электромагнитного поля посредством экрана.

Защита от шпионажа в волоконно-оптических линиях и системах связи

Именно волоконно-оптические связи становятся техническими каналами утечки акустической информации. Существует ряд причин, по которым эти каналы могут стать причинами пропажи и передачи злоумышленникам конфиденциальной, важной информации:

  • Стыкуемые волокна радиально несогласованные.
  • Оси световодов несогласованные по угловому типу.
  • Между торцами световодов образовался зазор.
  • Поверхности торцов волокон имеют взаимную не параллельность.
  • Появилось различие в диаметре сердечников волокон, которые стыкуются между собой.

Вышеперечисленные причины могут стать источником излучения световых сигналов в электромагнитное поле в помещении. Из-за этого может возникнуть акусто-оптический эффект. На волновод будет возникать акустическое давление, из-за чего его величина может измениться. Чтобы защитить технические каналы утечки речевой информации, в первую очередь нужно определить, почему возникает и распространяется свет на физическом уровне. Потом нужно обезопасить волновод, исключив любое акустическое воздействие на него.

Стоит учитывать, что оптическое волокно, покрывающее кабель, может влиять на чувствительность световодов в зависимости от материала, из которого оно изготовлено, и толщины провода. Для обеспечения снижения чувствительности можно покрыть волокно перед его установкой специальными веществами, у которых высокие значения объемных модулей упругости. Чаще всего для этого используют алюминий, никель или стекло.

Заключение

На данный момент существуют различные средства от утечки информации по техническим каналам. С учетом развития информационных технологий и повышенного количества возможностей промышленного шпионажа, любое предприятие, обладающее конфиденциальной информацией должно обезопасить себя от подобных утечек. Если правильно подойти к вопросу и использовать всевозможные защитные методики, можно значительно снизить риск утечки важных сведений для компании. Если же все эти методики не были проведены, то с определенной периодичностью стоит проверять все средства связи и возможные технические каналы, чтобы обнаружить и обезвредить устройства, считывающие и передающие информацию.

В наше время совершенно невозможно предугадать, каким образом злоумышленники попадут в охраняемое помещение и установят специальное оборудование для считывания. Но постоянный мониторинг и защитные средства могут обезопасить от этого. Кроме того, появление экранированных и отражающих антенн значительно увеличило возможности кражи информации. Поэтому очень важно проводить мониторинг электромагнитного поля в помещении и вокруг него. Любое средство технического шпионажа можно обнаружить и обезвредить, главное, заниматься этим вопросом и использовать доступные технические приспособления, предназначенные для этого.

Защита информации от утечки через ПЭМИН осуществляется с применением пассивных и активных методов и средств.

Пассивные методы защиты информации направлены на:

  • ослабление побочных электромагнитных излучений (информационных сигналов) ОТСС на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • ослабление наводок побочных электромагнитных излучений в посторонних проводниках и соединительных линиях, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • исключение или ослабление просачивания информационных сигналов в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.

Активные методы защиты информации направлены на:

  • создание маскирующих пространственных электромагнитных помех с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала;
  • создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях с целью уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала.

Рассмотрим более подробно наиболее распространенные методы пассивной и активной защиты от ПЭМИН.

Экранирование технических средств

Как известно из предыдущих лекций, при функционировании технических средств обработки, приема, хранения и передачи информации (ТСПИ) создаются побочные токи и поля, которые могут быть использованы злоумышленником для съема информации. Подводя итог, можно сделать вывод, что между двумя токопроводящими элементами могут возникнуть следующие виды связи:

  • через электрическое поле;
  • через магнитное поле;
  • через электромагнитное поле;
  • через соединительные провода.

Основной характеристикой поля является его напряженность. Для электрического и магнитного полей в свободном пространстве она обратно пропорциональна квадрату расстояния от источника сигнала. Напряженность электромагнитного поля обратно пропорциональна первой степени расстояния. Напряжение на конце проводной или волновой линии с расстоянием падает медленно. Следовательно, на малом расстоянии от источника сигнала имеют место все четыре вида связи. По мере увеличения расстояния сначала исчезают электрическое и магнитное поля, затем - электромагнитное поле и на очень большом расстоянии влияет только связь по проводам и волноводам.

Одним из наиболее эффективных пассивных методов защиты от ПЭМИ является экранирование . Экранирование - локализация электромагнитной энергии в определенном пространстве за счет ограничения распространения ее всеми возможными способами.

Различают три вида экранирования :

  • электростатическое;
  • магнитостатическое;
  • электромагнитное.

Электростатическое экранирование заключается в замыкании электростатического поля на поверхность металлического экрана и отводе электрических зарядов на землю (на корпус прибора) с помощью контура заземления. Последний должен иметь сопротивление не больше 4 Ом. Применение металлических экранов весьма эффективно и позволяет полностью устранить влияние электростатического поля. При правильном использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника сигнала в ε раз, где ε - относительная диэлектрическая проницаемость материала экрана.

Эффективность применения экрана во многом зависит от качества соединения корпуса ТСПИ с экраном. Здесь особое значение имеет отсутствие соединительных проводов между частями экрана и корпусом ТСПИ.

Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом :

  • конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;
  • в области низких частот (при глубине проникновения (δ) больше толщины (d), т.е. при δ > d) эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;
  • в области высоких частот (при d < δ) эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.

При экранировании магнитных полей различают низкочастотные магнитные поля и высокочастотные. используется для наводок низкой частоты в диапазоне от 0 до 3…10 кГц. Низкочастотные магнитные поля шунтируются экраном за счет направленности силовых линий вдоль стенок экрана.

Рассмотрим более подробно принцип магнитостатического экранирования .

Вокруг элемента (пусть это будет виток) с постоянным током существует магнитное поле напряженностью H 0 , которое необходимо экранировать. Для этого окружим виток замкнутым экраном, магнитная проницаемость µ которого больше единицы. Экран намагнитится, в результате чего создастся вторичное поле, которое ослабит первичное поле вне экрана. То есть силовые линии поля витка, встречая экран, обладающий меньшим магнитным сопротивлением, чем воздух, стремятся пройти по стенкам экрана и в меньшем количестве доходят до пространства вне экрана. Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана (Рисунок 16.1) .


Рис. 16.1.

Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим :

  • магнитная проницаемость µ материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например, пермаллой);
  • увеличение толщины стенок экрана приводит к повышению эффективности экранирования , однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;
  • стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля. Их число должно быть минимальным;
  • заземление экрана не влияет на эффективность магнитостатического экранирования .

Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Электромагнитное экранирование применяется на высоких частотах. Действие такого экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданными вихревыми токами обратного напряжения. Этот способ экранирования может ослаблять как магнитные, так и электрические поля, поэтому называется электромагнитным.

Упрощенная физическая сущность электромагнитного экранирования сводится к тому, что под действием источника электромагнитной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках – токи, поля которых во внешнем пространстве противоположны полям источника и примерно равны ему по интенсивности. Два поля компенсируют друг друга.

С точки зрения волновых представлений эффект экранирования проявляется из-за многократного отражения электромагнитных волн от поверхности экрана и затухания энергии волн в его металлической толще. Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в котором расположен экран и материала экрана. Чем больше это несоответствие, чем больше отличаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования определяемый отражением электромагнитных волн .

Выбор материала для экрана зависит от многих условий. Металлические материалы выбирают по следующим критериям и условиям:

  • необходимость достижения определенной величины ослабления электромагнитного поля при наличии ограничения размеров экрана и его влияния на объект защиты;
  • устойчивость и прочность металла как материала.

Среди наиболее распространенных металлов для изготовления экранов можно назвать сталь, медь, алюминий, латунь. Популярность этих материалов в первую очередь обусловлена достаточно высокой эффективностью экранирования . Сталь популярна также вследствие возможности использования сварки при монтаже экрана.

К недостаткам листовых металлических экранов можно отнести высокую стоимость, большой вес, крупные габариты и сложность монтажа. Этих недостатков лишены металлические сетки . Они легче, проще в изготовлении и размещении, дешевле. Основными параметрами сетки является ее шаг, равный расстоянию между соседними центрами проволоки, радиус проволоки и удельная проводимость материала сетки. К недостаткам металлических сеток относят, прежде всего, высокий износ по сравнению с листовыми экранами.

Для экранирования также применяются фольговые материалы . К ним относятся электрически тонкие материалы толщиной 0,01…0,05 мм. Фольговые материалы в основном производятся из диамагнитных материалов – алюминий, латунь, цинк.

Перспективным направлением в области экранирования является применение токопроводящих красок , так как они дешевые, не требуют работ по монтажу, просты в применении. Токопроводящие краски создаются на основе диэлектрического пленкообразующего материала с добавлением в него проводящих составляющих, пластификатора и отвердителя. В качестве токопроводящих пигментов используют коллоидное серебро, графит, сажу, оксиды металлов, порошковую медь, алюминий.

Токопроводящие краски лишены недостатков листовых экранов и механических решеток, так как достаточно устойчивы в условиях резких климатических изменений и просты в эксплуатации.

Следует отметить, что экранироваться могут не только отдельные ТСПИ, но и помещения в целом. В неэкранированных помещениях функции экрана частично выполняют железобетонные составляющие в стенах. В окнах и дверях их нет, поэтому они более уязвимы.

При экранировании помещений используются: листовая сталь толщиной до 2 мм, стальная (медная, латунная) сетка с ячейкой до 2,5 мм. В защищенных помещениях экранируются двери и окна. Окна экранируются сеткой, металлизированными шторами, металлизацией стекол и оклеиванием их токопроводящими пленками. Двери выполняются из стали или покрываются токопроводящими материалами (стальной лист, металлическая сетка). Особое внимание обращается на наличие электрического контакта токопроводящих слоев двери и стен по всему периметру дверного проема. При экранировании полей недопустимо наличие зазоров, щелей в экране. Размер ячейки сетки должен быть не более 0,1 длины волны излучения.

В защищенной ПЭВМ, например, экранируются блоки управления электронно-лучевой трубкой, корпус выполняется из стали или металлизируется изнутри, экран монитора покрывается токопроводящей заземленной пленкой и (или) защищается металлической сеткой.

Следует отметить, что помимо функции защиты от утечки информации через ПЭМИН, экранирование может снизить вредное воздействие электромагнитного излучения на людей и уровень шумов при работе ТСПИ.

РАЗДЕЛ 4. Вопрос 35 (Радаев). Защищаемое помещение, информативный сигнал (определения). Защита от утечки речевой информации (подробно: организационные и технические (пассивные и активные) методы по всем (8-ми каналам) утечки)

Защищаемое помещение, информативный сигнал (определения)

Защищаемые помещения (ЗП) - помещения (служебные кабинеты, актовые, конференц-залы и т.д.), специально предназначенные для проведения конфиденциальных мероприятий (совещаний, обсуждений, конференций, переговоров и т.п.). (СТР-К).

Информативный сигнал - электрические сигналы, акустические, электромагнитные и другие физические поля, по параметрам которых может быть раскрыта конфиденциальная информация, передаваемая, хранимая или обрабатываемая в основных технических средствах и системах и обсуждаемая в ЗП. (СТР-К).

Информативный сигнал - электрические сигналы, акустические, электромагнитные и другие физические поля, по параметрам которых может быть раскрыта конфиденциальная информация (персональные данные), обрабатываемая в ИСПДн. (Базовая модель угроз безопасности).

Защита от утечки речевой информации (подробно: организационные и технические (пассивные и активные) методы по всем (8-ми каналам) утечки)

Существуют пассивные и активные способы защиты речи от несанкционированного прослушивания. Пассивные предполагают ослабление непосредственно акустических сигналов, циркулирующих в помещении, а также продуктов электроакустических преобразований в соединительных линиях ВТСС, возникающих как естественным путем, так и в результате ВЧ навязывания. Активные предусматривают создание маскирующих помех, подавление аппаратов звукозаписи и подслушивающих устройств, а также уничтожение последних.

Ослабление акустических сигналов осуществляется путем звукоизоляции помещений. Прохождению информационных электрических сигналов и сигналов высокочастотного навязывания препятствуют фильтры. Активная защита реализуется различного рода генераторами помех, устройствами подавления и уничтожения.

Пассивные средства защиты выделенных помещений

Пассивные архитектурно-строительные средства защиты выделенных помещений

Основная идея пассивных средств защиты информации - это снижение соотношения сигнал/шум в возможных точках перехвата информации за счет снижения информативного сигнала.

При выборе ограждающих конструкций выделенных помещений в процессе проектирования необходимо руководствоваться следующими правилами:

§ в качестве перекрытий рекомендуется использовать акустически неоднородные конструкции;

§ в качестве полов целесообразно использовать конструкции на упругом основании или конструкции, установленные на виброизоляторы;

§ потолки целесообразно выполнять подвесными, звукопоглощающими со звукоизолирующим слоем;

§ в качестве стен и перегородок предпочтительно использование многослойных акустически неоднородных конструкций с упругими прокладками (резина, пробка, ДВП, МВП и т.п.).

Если стены и перегородки выполнены однослойными, акустически однородными, то их целесообразно усиливать конструкцией типа «плита на относе», устанавливаемой со стороны помещения.

Оконные стекла желательно виброизолировать от рам с помощью резиновых прокладок. Целесообразно применение тройного остекления окон на двух рамах, закрепленных на отдельных коробках. При этом на внешней раме устанавливаются сближенные стекла, а между коробками укладывается звукопоглощающий материал.

В качестве дверей целесообразно использовать двойные двери с тамбуром, при этом дверные коробки должны иметь вибрационную развязку друг от друга.

Звукоизоляция помещений

Выделение акустического сигнала на фоне естественных шумов происходит при определенных соотношениях сигнал/шум. Производя звукоизоляцию, добиваются его снижения до предела, затрудняющего (исключающего) возможность выделения речевых сигналов, проникающих за пределы контролируемой зоны по акустическому или виброакустическому (ограждающие конструкции, трубопроводы) каналам.

Аппаратура и способы активной защиты помещений от утечки речевой информации

Виброакустический канал утечки образуют: источники конфиденциальной информации (люди, технические устройства), среда распространения (воздух, ограждающие конструкции помещений, трубопроводы), средства съема (микрофоны, стетоскопы).

Для защиты помещений применяют генераторы белого или розового шума и системы вибрационного зашумления, укомплектованные, как правило, электромагнитными и пьезоэлектрическими вибропреобразователями.

Известно, что наилучшие результаты дает применение маскирующих колебаний, близких по спектральному составу информационному сигналу. Шум таковым сигналом не является, кроме того, развитие методов шумоочистки в некоторых случаях позволяет восстанавливать разборчивость речи до приемлемого уровня при значительном (20 дБ и выше) превышении шумовой помехи над сигналом. Следовательно, для эффективного маскирования помеха должна иметь структуру речевого сообщения. Следует также отметить, что из-за психофизиологических особенностей восприятия звуковых колебаний человеком наблюдается асимметричное влияние маскирующих колебаний. Оно проявляется в том, что помеха оказывает относительно небольшое влияние на маскируемые звуки, частота которых ниже ее собственной частоты, но сильно затрудняет разборчивость более высоких по тону звуков. Поэтому для маскировки наиболее эффективны низкочастотные шумовые сигналы.

Эффективность систем и устройств виброакустического зашумления определяется свойствами применяемых электроакустических преобразователей (вибродатчиков), трансформирующих электрические колебания в упругие колебания (вибрации) твердых сред. Качество преобразования зависит от реализуемого физического принципа, конструктивно-технологического решения и условий согласования вибродатчика со средой.

Как было отмечено, источники маскирующих воздействий должны иметь частотный диапазон, соответствующий ширине спектра речевого сигнала (200...5000 Гц), поэтому особую важность приобретает выполнение условий согласования преобразователя в широкой полосе частот. Условия широкополосного согласования с ограждающими конструкциями, имеющими высокое акустическое сопротивление (кирпичная стена, бетонное перекрытие) наилучшим образом выполняются при использовании вибродатчиков с высоким механическим импендансом подвижной части, каковыми на сегодняшний день являются пьезокерамические преобразователи.

Оптимальные параметры помех

При применении активных средств необходимая для обеспечения защиты информации величина соотношения сигнал/шум достигается за счет увеличения уровня шумов в возможных точках перехвата информации при помощи генерации искусственных акустических и вибрационных помех. Частотный диапазон помехи должен соответствовать среднестатистическому спектру речи в соответствии с требованиями руководящих документов.

В связи с тем, что речь - шумоподобный процесс со сложной (в общем случае случайной) амплитудной и частотной модуляцией, наилучшей формой маскирующего помехового сигнала является также шумовой процесс с нормальным законом распределения плотности вероятности мгновенных значений (т.е. белый или розовый шум).

Особенности постановки акустических помех

Основную опасность, с точки зрения возможности утечки информации по акустическому каналу, представляют различные строительные тоннели и короба, предназначенные для осуществления вентиляции и размещения различных коммуникаций, так как они представляют собой акустические волноводы. Контрольные точки при оценке защищенности таких объектов выбираются непосредственно на границе их выхода в выделенное помещение. Акустические излучатели системы постановки помех размещаются в объеме короба на расстоянии от выходного отверстия, равном диагонали сечения короба.

Дверные проемы, в том числе и оборудованные тамбурами, также являются источниками повышенной опасности и в случае недостаточной звукоизоляции также нуждаются в применении активных методов защиты. Акустические излучатели систем зашумления в этом случае желательно располагать в двух углах, расположенных по диагонали объема тамбура. Контроль выполнения норм защиты информации в этом случае, проводится на внешней поверхности внешней двери тамбура.

Подавление диктофонов

Для подавления портативных диктофонов используют устройства представляющие собой генераторы мощных шумовых сигналов дециметрового диапазона частот. Импульсные помеховые сигналы воздействуют на микрофонные цепи и усилительные устройства диктофонов, в результате чего оказываются записанными вместе с полезными сигналами, вызывая сильные искажения информации. Зона подавления, определяемая мощностью излучения, направленными свойствами антенны, а также типом зашумляющего сигнала обычно представляет собой сектор шириной от 30 до 80 градусов и радиусом до 5 м.

По типу применения подавители диктофонов подразделяются на портативные и стационарные. Портативные подавители («Шумо-трон-3», «Шторм», «Штурм»), как правило, изготавливаются в виде кейсов, имеют устройство дистанционного управления, а некоторые («Шумотрон-3») и устройства дистанционного контроля. Стационарные («Буран-4, «Рамзес-Дубль») чаще всего, выполняются в виде отдельных модулей: модуль генератора, модуль блока питания, антенный модуль.

При попадании диктофона в зону действия подавителя в его слаботочных цепях (микрофон, кабель выносного микрофона, микрофонный усилитель) наводится шумовой сигнал, которым модулируется несущая частота подавителя диктофона. Величина этих наводок находится в прямой зависимости от геометрических размеров этих цепей. Чем меньше габариты диктофона, тем меньше эффективность подавления.

В настоящее время появились устройства подавления диктофонов, представляющие собой генераторы ВЧ сигнала со специальным видом модуляции. Воздействуя на цепи записывающего устройства, сигнал, после навязывания, обрабатывается в цепях АРУ совместно с полезным сигналом, значительно превосходя его по уровню и, соответственно, искажает его. Одним из таких устройств является подавитель диктофонов «Сапфир».

Нейтрализация радиомикрофонов

Нейтрализация радиомикрофонов как средств съема речевой информации целесообразна при их обнаружении в момент проведения поисковых мероприятий и отсутствия возможностей их изъятия или по тактической необходимости.

Нейтрализация радиозакладки может быть осуществлена постановкой прицельной помехи на частоте работы нелегального передатчика. Подобный комплекс содержит широкополосную антенну и передатчик помех.

Аппаратура функционирует под управлением ПЭВМ и позволяет создать помехи одновременно или поочередно на четырех частотах в диапазоне от 65"до 1000 МГц. Помеха представляет собой высокочастотный сигнал, модулированный тональным сигналом или фразой.

Для воздействия на радиомикрофоны с мощностью излучения менее 5 мВт могут использоваться генераторы пространственного электромагнитного зашумления типа SP-21/B1, до 20 мВт - SP-21/B2 «Спектр».

Защита электросети

Акустические закладки, транслирующие информацию по электросети, нейтрализуются фильтрованием и маскированием. Для фильтрации применяются разделительные трансформаторы и помехоподавляющие фильтры.

Разделительные трансформаторы предотвращают проникновение сигналов, появляющихся в первичной обмотке, во вторичную. Нежелательные резистивные и емкостные связи между обмотками устраняют с помощью внутренних экранов и элементов, имеющих высокое сопротивление изоляции. Степень снижения уровня наводок достигает 40 дБ.

Основное назначение помехоподавляющих фильтров - пропускать без ослабления сигналы, частоты которых находятся в пределах рабочего диапазона, и подавлять сигналы, частоты которых находятся вне этих пределов.

Фильтры нижних частот пропускают сигналы с частотами ниже его граничной частоты. Рабочее напряжение конденсаторов фильтра не должно превышать максимальных значений допускаемых скачков напряжения цепи питания, а ток через фильтр вызывать насыщения катушек индуктивности.

За счет микрофонного эффекта или ВЧ-навязывания практически все оконечные устройства телефонии, систем пожарно-охранной сигнализации, трансляционного вещания и оповещения, содержащие акустопреобразующие элементы, создают в подводящих линиях электрические сигналы, уровень которых сможет составлять от единиц нановольт до десятков милливольт. Так элементы звонковой цепи телефонного аппарата ASCER под действием акустических колебаний амплитудой 65 дБ подают в линию преобразованный сигнал напряжением 10 мВ. При тех же условиях подобный сигнал электродинамического громкоговорителя имеет уровень до 3 мВ. Трансформированный он может возрасти до 50 мВ и стать доступным для перехвата на расстоянии до 100 м. Облучающий сигнал навязывания благодаря высокой частоте проникает в гальванически отключенную микрофонную цепь положенной телефонной трубки и модулируется информационным сигналом.

Пассивная защита от микрофонного эффекта и ВЧ-навязывания осуществляется путем ограничения и фильтрации или отключением источников опасных сигналов.

В схемах ограничителей используют встречно включенные полупроводниковые диоды, сопротивление которых для малых (преобразованных) сигналов, составляющее сотни килоом, препятствует их прохождению в слаботочную линию. Для токов большой амплитуды, соответствующих полезным сигналам, сопротивление оказывается равным сотням ом и они свободно проходят в линию.

Фильтрация является средством борьбы с ВЧ-навязыванием. Роль простейших фильтров выполняют конденсаторы, включаемые в микрофонную и звонковую цепи. Шунтируя высокочастотные сигналы навязывания, они не воздействуют на полезные сигналы.

Защита абонентского участка телефонной линии

Телефонная линия может использоваться в качестве источника питания или канала передачи информации акустической закладки (A3), установленной в помещении.

Пассивная защита абонентской линии (АЛ) предполагает блокирование акустических закладок, питающихся от линии, при положенной телефонной трубке. Активная защита производится путем зашумления абонентской линии и уничтожения акустических закладок или их блоков питания высоковольтными разрядами.

К числу основных способов защиты абонентской линии относятся:

Подача в линию во время разговора маскирующих низкочастотных сигналов звукового диапазона, или ультразвуковых колебаний;

Поднятие напряжения в линии во время разговора или компенсация постоянной составляющей телефонного сигнала постоянным напряжением обратной полярности;

Подача в линию маскирующего низкочастотного сигнала при положенной телефонной трубке;

Генерация в линию с последующей компенсацией на определенном участке абонентской линии сигнала речевого диапазона с известным спектром;

Подача в линию импульсов напряжением до 1500 В для выжигания электронных устройств и блоков их питания.

Подробное описание устройств активной защиты абонентской линии дано в специальном пособии.

Защита информации, обрабатываемой техническими средствами

Электрические токи различных частот, протекающие по элементам функционирующего средства обработки информации, создают побочные магнитные и электрические поля, являющиеся причиной возникновения электромагнитных и параметрических каналов утечки, а также наводок информационных сигналов в посторонних токоведущих линиях и конструкциях.

Ослабление побочных электромагнитных излучений ТСПИ и их наводок осуществляется экранированием и заземлением средств и их соединительных линий, просачивание в цепи электропитания предотвращается фильтрацией информационных сигналов, а для маскирования ПЭМИН используются системы зашумления, подробно рассмотренные в специальном пособии.

Экранирование

Различают электростатическое, магнитостатическое и электромагнитное экранирования.

Основная задача электростатического экранирования состоит в уменьшении емкостных связей между защищаемыми элементами и сводится к обеспечению накопления статического электричества на экране с последующим отводом зарядов на землю. Применение металлических экранов позволяет полностью устранить влияние электростатического поля.

Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Начиная со средневолнового диапазона эффективен экран из любого металла толщиной от 0,5 до 1,5 мм, для частот свыше 10 МГц подобный же результат дает металлическая пленка толщиной около 0,1 мм. Заземление экрана не влияет на эффективность экранирования.

Высокочастотное электромагнитное поле ослабляется полем обратного направления, создаваемым вихревыми токами, наведенными в металлическом сплошном или сетчатом экране. Экран из медной сетки 2 х 2 мм ослабляет сигнал на 30...35 дБ, двойной экран на 50...60 дБ.

Наряду с узлами приборов экранируются монтажные провода и соединительные линии. Длина экранированного монтажного провода не должна превышать четверти длины самой короткой волны в составе спектра сигнала, передаваемого по проводу. Высокую степень защиты обеспечивают витая пара в экранированной оболочке и высокочастотные коаксиальные кабели. Наилучшую защиту как от электрического, так и от магнитного полей гарантируют линии типа бифиляра, трифиляра, изолированного коаксиального кабеля в электрическом экране, металлизированного плоского многопроводного кабеля.

В помещении экранируют стены, двери, окна. Двери оборудуют пружинной гребенкой, обеспечивающей надежный электрический контакт со стенами помещения. Окна затягивают медной сеткой с ячейкой 2x2 мм, обеспечивая надежный электрический контакт съемной рамки со стенами помещения.

Заземление

Экранирование эффективно только при правильном заземлении аппаратуры ТСПИ и соединительных линий. Система заземления должна состоять из общего заземления, заземляющего кабеля, шин и проводов, соединяющих заземлитель с объектами. Качество электрических соединений должно обеспечивать минимальное сопротивление контактов, их надежность и механическую прочность в условиях вибраций и жестких климатических условиях. В качестве заземляющих устройств запрещается использовать «нулевые» провода электросетей, металлоконструкции зданий, оболочки подземных кабелей, трубы систем отопления, водоснабжения, сигнализации.

Сопротивление заземления ТСПИ не должно превышать 4 Ом, и для достижения этой величины применяют многоэлементное заземление из ряда одиночных, симметрично расположенных заземлителей, соединенных между собой шинами при помощи сварки. Магистрали заземления вне здания прокладывают на глубине 1,5 м, а внутри здания таким образом, чтобы их можно было проверять внешним осмотром. Устройства ТСПИ подключают к магистрали болтовым соединением в одной точке.

Стабильность поступления сведений, неявная, скрытая от владельца, форма съема информации, обрабатываемой техническими средствами, обусловили неослабевающий интерес к каналу утечки, возникающему за счет побочных электромагнитных излучений и наводок (ПЭМИН), сопровождающих работу этой аппаратуры.

Ниже дается характеристика каналов утечки, описываются методология и способы защиты информации от утечки за счет ПЭМИН. Рассматриваются пути реализации и характеристики со временных активных средств защиты - генераторов шума, приводятся рекомендации по их применению.

Характеристика канала утечки информации за счет ПЭМИН

Частотный диапазон побочных электромагнитных излучений, сопровождающих информативные сигналы, простирается от единиц килогерц до гигагерц и выше и определяется тактовой частотой используемого средства обработки информации (СОИ). Так, для стандартного компьютерного монитора перехват информации возможен на частотах вплоть до 50 гармоники тактовой частоты, а уровень излучения, составляющий в ближней зоне величину до десятков дБ, позволяет принимать сигналы на удалении до нескольких сотен метров.

Кроме электромагнитных излучений вокруг средств обработки информации присутствуют квазистатические информационные электрические и магнитные поля, вызывающие наводки на близко расположенные кабели, телефонные провода, линии охранно-пожарной сигнализации, электросеть и т.п. Интенсивность полей в диапазоне частот от единиц килогерц до десятков мегагерц такова, что прием сигналов может вестись за пределами контролируемой зоны (КЗ) при непосредственном подключении к этим линиям передачи.

Методология защиты информации от утечки за счет ПЭМИН

В зависимости от среды распространения информативных сигналов рассматривают два возможных канала утечки: собственно за счет ПЭМИН и коммуникационный.

По способу образования классифицируют четыре типа каналов утечки:

Канал электромагнитного излучения (ЭМИ), образуемый полями, возникающими при прохождении информации по цепям СОИ;

Канал случайных антенн (СА), возникающий за счет наведенных ЭДС в токопроводящих коммуникациях, гальванически не связанных с СОИ и имеющих выход за пределы контролируемой зоны (КЗ);

Канал отходящих коммуникаций, гальванически связанных с СОИ;

Канал неравномерного потребления тока (НПТ), образующийся за счет амплитудной модуляции тока срабатыванием элементов СОИ при обработке информации.

Канал ЭМИ характеризуется размером зоны ЭМИ - расстоянием между СОИ и антенной аппаратуры перехвата, за пределами которой невозможен эффективный прием вследствие естественного снижения уровня излучаемого сигнала.

Канал случайных антенн характеризуется размерами их зоны для сосредоточенных случайных антенн (ССА) и распределенных случайных антенн (РСА). К сосредоточенным случайным антеннам относятся любые технические средства, имеющие выход за пределы контролируемой зоны. К распределенным случайным антеннам относят провода, кабели, элементы конструкций здания и т.п. Расстояние между СОИ и С А, на котором невозможен эффективный перехват, определяет размер зоны СА.

Канал отходящих коммуникаций характеризуется предельно допустимым значением отношения мощностей информативного сигнала и нормированной помехи, при котором невозможен эффективный прием.

Канал НПТ характеризуется предельно допустимым значением отношения величины изменения тока, поступающего от источника при обработке информации, к средней величине тока потребления. Если указанное отношение не превышает предельного значения, эффективный прием по каналу НПТ невозможен. В настоящее время, с учетом практического отсутствия в составе СВТ низкоскоростных устройств (диапазон частот этого канала принимается от 0 до 30 Гц), этот канал малоактуален.

С учетом изложенного можно сформулировать критерий защищенности СОИ от утечки через ПЭМИ и наводки: СОИ считается защищенным, если:

Радиус зоны электромагнитных излучений не превышает минимально допустимого расстояния от СОИ до границы КЗ;

Отношение мощностей информативного сигнала нормированной помехи во всех СА не превышает на границе КЗ предельно допустимую величину;

Отношение мощностей информативного сигнала нормированной помехи во всех отходящих коммуникациях на границе КЗ не превышает предельно допустимую величину;

Отношение величины изменения тока «обработки» к средней величине тока потребления от электросети на границе КЗ не превышает предельно допустимое значение.

Основные задачи и принципы защиты СВТ

Для защиты информационных сигналов СВТ от возможной утечки информации применяются следующие способы и мероприятия:

Организационные;

Технические.

К техническим мероприятиям защиты информации в СВТ относятся меры и средства, воздействующие либо на уровень ПЭМИН, либо на уровень электромагнитных шумов. Например электромагнитное экранирование - эффективный способ защиты информации, однако требует значительных экономических затрат и регулярного контроля эффективности экранирования. Кроме того, полное электромагнитное экранирование вносит дискомфорт в работу обслуживающего персонала.

Доработка СВТ позволяет существенно уменьшить уровень информационных излучений, однако полностью устранить их нельзя. В современных условиях доработка техники СВТ сводится к подбору комплектующих СВТ, так как собственные разработки средств ЭВТ в РФ отсутствуют и сборка ПЭВМ происходит из зарубежных комплектующих. При подборе комплектующих на сборочных фирмах (красная сборка) обращается внимание на материнскую плату, конструктивное выполнение корпуса системного блока (кейс), видеокарту (видеоконтроллер), тип дисплея и т.д.

Активная радиомаскировка, зашумление - применение широкополосных генераторов шума.

Генераторы шума могут быть аппаратными и объектовыми. Основная задача зашумления эфира - это поднять уровень электромагнитного шума и тем самым препятствовать радиоперехвату информационных сигналов СВТ. Показатели интенсивности заградительной шумовой помехи (шум с нормальным законом распределения мгновенных значений амплитуд) является зона зашумления Я ш. Техническое средство СВТ будет защищено, если Я ш > Я 2 .

Методика проведения специальных исследований технических средств ЭВТ

Основные требования к условиям проведения измерений.

Выявление опасных сигналов из общей совокупности сигналов и измерение их уровня проводится при специально организованных тестовых режимах технических средств (ТС), при которых длительность и амплитуда информационных импульсов остается теми же, что и в рабочем режиме, но используется периодическая импульсная последовательность в виде пачек. Данное требование связано с тем, что в принятой методике расчета результатов СИ значения полосы суммирования частотных составляющих и тактовая частота информационных импульсов должны быть константами. В противном случае расчет результатов становиться невозможным.

Кроме того, циклическое повторение одних и тех же «пакетов» информации позволяет за счет накопления энергии ПЭМИН во входных цепях узкополосных средств измерения (приемники, анализаторы спектра и т.д.) значительно проще выявлять и измерять значения «опасных» сигналов на фоне шумов и помех.

Обнаружение сигнала осуществляется со всех сторон технического средства. Измерение сигнала проводится в пиковом (квазипи-ковом) режиме с направления максимального излучения, где обнаружен опасный сигнал. Для обнаружения тест-сигналов и выявления их из общей совокупности принимаемых сигналов используются такие признаки, как совпадение частот обнаруженных гармоник и интервалов между ними с расчетными значениями, период и длительность пачек, изменение формы сигнала на выходе приемника при изменении параметров тест-сигнала и т.п.

При проведении измерений необходимо:

Изучить техническое описание и принципиальные схемы ТС;

Изучить возможные режимы работы ТС;

Подготовить измерительную аппаратуру к работе.

Измерение параметров побочных электромагнитных излучений и наводок ТС производится во всех режимах его работы. Заземление и электропитание ТС должны выполняться в соответствии с правилами эксплуатации данного ТС. Перед началом измерений ТС проверяются на работоспособность в соответствии с инструкцией по эксплуатации.

Помещение, в котором проводятся измерения параметров поля опасного сигнала, должно иметь размеры комнаты не менее 6x6м (36 м 2);

Вблизи измеряемого технического средства (ближе 2,5 м), которое устанавливается в середине комнаты, не должно быть громоздких металлических предметов (сейфов, шкафов и т.п.), которые могут искажать картину ПЭМ И;

Настил пола помещения может быть как деревянным (паркет), так и металлическим;

Законы убывания поля в аттестуемом помещении должны соответствовать стандартной функции ослабления поля в пределах 2...2,5 м от ТС в направлении установки измерительной антенны.

Техническое средство устанавливается на поворотной тумбе, высотой 0.8...1,0 м, питание на ТС подается через помехозащитный фипьтр типа ФП либо иного типа, затуханием не менее 40.. .60 дБ.

Данное уравнение зоны решается графоаналитическим методом или на ПЭВМ.

Организация защиты ПЭВМ от несанкционированного доступа

В настоящее время в связи с бурным развитием средств вычислительной техники и появлением новых информационных технологий появилось новое направление добывания категорированной информации, тесно связанное с компьютерной преступностью и несанкционированным доступом (НСД) к информации ограниченного пользования. Развитие локальных и глобальных компьютерных сетей привело к необходимости закрытия несанкционированного доступа к информации, хранящейся в автоматизированных системах.

Целями защиты информации являются: предотвращение ущерба, возникновение которого возможно в результате утери (хищения, утраты, искажения, подделки) информации в любом ее проявлении.

Любое современное предприятие не может сегодня успешно функционировать без создания надежной системы защиты своей информации, включающей не только организационно-нормативные меры, но и технические программно-аппаратные средства, организации контроля безопасности информации при ее обработке, хранении и передаче в автоматизированных системах (АС).

Практика организации защиты информации от несанкционированного доступа при ее обработке и хранении в автоматизированных системах должна учитывать следующие принципы и правила обеспечения безопасности информации:

1. Соответствие уровня безопасности информации законодательным положениям и нормативным требованиям по охране сведений, подлежащих защите по действующему законодательству, в т.ч. выбор класса защищенности АС в соответствии с особенностями обработки информации (технология обработки, конкретные условия эксплуатации АС) и уровнем ее конфиденциальности.

2. Выявление конфиденциальной (защищаемой) информации и ее документальное оформление в виде перечня сведений, подлежащих защите, его своевременная корректировка.

3. Наиболее важные решения по защите информации должны приниматься руководством предприятия или владельцем АС.

4. Определение порядка установления уровня полномочий пользователей, а также круга лиц, которым это право предоставлено (администраторы информационной безопасности).

5. Установление и оформление правил разграничения доступа

(ПРД), т.е. совокупности правил, регламентирующих права доступа субъектов доступа к объектам доступа.

6. Установление личной ответственности пользователей за поддержание уровня защищенности АС при обработке сведений, подлежащих защите.

7. Обеспечение физической охраны объекта, на котором расположена защищаемая АС (территория, здания, помещения, хранилища информационных носителей), путем установления соответствующих постов, технических средств охраны или любыми другими способами, предотвращающими или существенно затрудняющими хищение средств вычислительной техники (СВТ), информационных носителей, а также НСД к СВТ и линиям связи.

8. Организация службы безопасности информации (ответственные лица, администратор ИБ), осуществляющей учет, хранение и выдачу информационных носителей, паролей, ключей, ведение служебной информации СЗИ НСД (генерацию паролей, ключей, сопровождение правил разграничения доступа), приемку включаемых в АС новых программных средств, а также контроль за ходом технологического процесса обработки конфиденциальной информации и т.д.

9. Планомерный и оперативный контроль уровня безопасности защищаемой информации согласно применяемых руководящих документов по безопасности информации, в т.ч. проверка защитных функций средств защиты информации.

Средства защиты информации должны иметь сертификат, удостоверяющий их соответствие требованиям по безопасности информации.

Анализ опыта работ, связанных с обработкой и хранением информации с использованием средств вычислительной техники, позволил сделать выводы и обобщить перечень возможных угроз информации. Условно их можно разделить на три вида:

Нарушение конфиденциальности информации;

Нарушение целостности информации;

Нарушение доступности информации.

Исходя из этого и строится система защиты автоматизированных систем и ПЭВМ от несанкционированного доступа.

Построение системы защиты

Построение системы защиты на базе программно-аппаратного комплекса средств защиты информации от НСД и ее взаимодействие с программно-аппаратным обеспечением ПЭВМ в общем виде приведены на рис. 4.13.

Рис. 4.13. Построение системы защиты на базе программно-аппаратного комплекса

Защита информации с использованием аппаратных и программных средств комплекса защиты от НСД основана на обработке событий, возникающих при обращении прикладных программ или системного программного обеспечения (ПО) к ресурсам ПЭВМ. При этом средства комплекса перехватывают соответствующие программные и/или аппаратные прерывания (запросы на выполнение операций к аппаратным и/или программным ресурсам ПЭВМ). В случае возникновения контролируемого события (запрос прерывания), производится анализ запроса, и в зависимости от соответствия полномочий субъекта доступа (его прикладной задачи), установленных администратором безопасности ПРД, либо разрешают, либо запрещают обработку этих прерываний.

В общем случае система защиты состоит из собственно средств защиты от несанкционированной загрузки ОС и средств разграничения доступа к информационным ресурсам, которые условно можно представить в виде четырех взаимодействующих между собой подсистем защиты информации (рис. 4.14).

Подсистема управления доступом

Подсистема управления доступом предназначена для защиты. ПЭВМ от посторонних пользователей, управления доступом к объектам доступа и организации совместного их использования зарегистрированными пользователями в соответствии с установленными правилами разграничения доступа.

Под посторонними пользователями понимаются все лица, не зарегистрированные в системе (не имеющие зарегистрированного в конкретной ПЭВМ персонального идентификатора). Защита от посто-


Рис. 4.14. Подсистемы защиты информации ронних пользователей обеспечивается процедурами идентификации (сравнение предъявленного идентификатора с перечнем зарегистрированных на ПЭВМ) и аутентификации (подтверждение подлинности), которая обычно осуществляется путем ввода пароля определенной длины. Для идентификации пользователей в комплексах защиты от НСД наиболее часто используются персональные идентификаторы типа Touch Memory (Ibutton) DS 199X, отличающиеся высокой надежностью, уникальностью, наличием быстродействующей памяти, удобством пользования, приемлемыми массогабаритными характеристиками и низкой ценой.

В комплексах защиты от НСД могут быть реализованы два принципа управления доступом к защищаемым ресурсам: дискреционный и мандатный.

Дискреционный принцип управления доступом. Каждому зарегистрированному пользователю устанавливаются права доступа по принципу присвоения заданных характеристик доступа каждой паре «субъект-объект», которые прописываются в ПРД. При запросе пользователя на доступ обеспечивается однозначное трактование установленных ПРД и в зависимости от уровня полномочий пользователя разрешается или запрещается запрошенный тип доступа.

Данный вариант управления доступом позволяет для любого пользователя системы создать изолированную программную среду (ИПС), т.е. ограничить его возможности по запуску программ, указав в качестве разрешенных к запуску только те программы, которые действительно необходимы для выполнения пользователем своих служебных обязанностей. Таким образом, программы, не входящие в этот список, пользователь запустить не сможет.

Мандатный принцип управления доступом. Принцип управления доступом к ресурсам ПЭВМ (аппаратным и программным),

основанный на сопоставлении уровня конфиденциальности, присваиваемого каждому ресурсу, и полномочиях конкретного зареги* стрированного пользователя по доступу к ресурсам ПЭВМ с заданным уровнем конфиденциальности.

Для организации мандатного управления доступом, для каждого пользователя системы устанавливается некоторый уровень допуска к конфиденциальной информации, а каждому ресурсу (каталоги, файлы, аппаратные средства) присваивается так называемая метка конфиденциальности.

При этом разграничение доступа к конфиденциальным каталогам и файлам осуществляется путем сравнения уровня допуска пользователя и метки конфиденциальности ресурса и принятии решения о предоставлении или не предоставлении доступа к ресурсу.

Подсистема регистрации и учета

Подсистема регистрации и учета предназначена для регистрации в системном журнале, представляющем собой специальный файл, размещаемый на жестком диске ПЭВМ, различных событий, происходящих при работе ПЭВМ. При регистрации событий в системном журнале регистрируются:

Дата и время события;

Имя и идентификатор пользователя, осуществляющего регистрируемое действие;

Действия пользователя (сведения о входе/выходе пользователя в/из системы, запусках программ, событиях НСД, изменении полномочий и др.). Доступ к системному журналу возможен только администратору ИБ (супервизору). События, регистрируемые в системном журнале, определяются администратором СЗИ.

Эта подсистема также реализует механизм обнуления освобождаемых областей памяти.

Подсистема обеспечения целостности

Подсистема обеспечения целостности предназначена для исключения несанкционированных модификаций (как случайных, так и злоумышленных) программной и аппаратной среды ПЭВМ, в том числе программных средств комплекса и обрабатываемой информации, обеспечивая при этом защиту ПЭВМ от внедрения программных закладок и вирусов. В программно-аппаратных комплексах систем защиты информации (ПАКСЗИ) от НСД это обычно реализуется:

Проверкой уникальных идентификаторов аппаратных частей ПЭВМ;

Проверкой целостности назначенных для контроля системных файлов, в том числе файлов ПАКСЗИ НСД, пользовательских программ и данных;

Контролем обращения к операционной системе напрямую, в обход прерываний DOS;

Исключением возможности использования ПЭВМ без аппаратного контроллера комплекса;

Механизмом создания замкнутой программной среды, запрещающей запуск привнесенных программ, исключающих несанкционированный выход в ОС.

При проверке целостности программной среды ПЭВМ вычисляется контрольная сумма файлов и сравнивается с эталонным (контрольным) значением, хранящимся в специальной области данных. Эти данные заносятся при регистрации пользователя и могут изменяться в процессе эксплуатации ПЭВМ. В комплексах защиты от НСД используется сложный алгоритм расчета контрольных сумм -вычисление значения их хэш-функций, исключающий факт необна-ружения модификации файла.

Подсистема криптографической защиты

Подсистема криптографической защиты предназначена для усиления защиты пользовательской информации, хранящейся на жестком диске ПЭВМ или сменных носителях. Подсистема криптографической защиты информации позволяет пользователю зашифровать/расшифровать свои данные с использованием индивидуальных ключей, как правило, хранящихся в персональном ТМ-идентификаторе.

Состав типового комплекса защиты от несанкционированного доступа

В состав типового комплекса защиты ПЭВМ от НСД входят аппаратные и программные средства. К аппаратным средствам относятся аппаратный контроллер, съемник информации и персональные идентификаторы пользователей.

Аппаратный контроллер (рис. 4.15) представляет собой плату (ISA/PCI), устанавливаемую в один из слотов расширения материнской платы ПЭВМ. Аппаратный контроллер содержит ПЗУ с программным обеспечением, разъем для подключения считывателя информации и дополнительные устройства.


Рис. 4.15. Аппаратный контроллер «Соболь»

В качестве дополнительных устройств на аппаратном контроллере могут быть установлены реле блокировки загрузки внешних устройств (FDD, CD-ROM, SCSI, ZIP и т.п.); аппаратный датчик случайных чисел; энергонезависимая память.

Считыватель информации представляет собой устройство, предназначенное для считывания информации с предъявляемого пользователем персонального идентификатора. Наиболее часто в комплексах защиты от НСД применяются считыватели информации с персональных идентификаторов типа Touch Memory (Ibutton) DS199X, представляющие собой контактные устройства.

В качестве считывателей информации могут использоваться считыватели смарт-карт (Smart Card Reader) контактные и бесконтактные, а также биометрические считыватели информации, позволяющие идентифицировать пользователя по его биометрическим характеристикам (отпечаток пальца, личная подпись и т.п.).

Персональный идентификатор пользователя представляет собой аппаратное устройство, обладающее уникальными некопируе-мыми характеристиками. Наиболее часто в системах защиты от НСД используются идентификаторы типа Touch-Memory (Ibutton), представляющие собой электронную схему, снабженную элементом питания и обладающую уникальным идентификационным номером длиной 64 бита, который формируется технологически. Срок эксплуатации электронного идентификатора, декларируемый фир-мой-производителем, составляет около 10 лет.

Помимо TM-идентификаторов, в системах защиты от НСД используются идентификаторы типа Smart Card («Смарт-карта»).

Смарт-карта представляет собой пластиковую карточку (рис. 4.16.), со встроенной в нее микросхемой, содержащей энергонезависимую перезаписываемую память.

Некоторые системы защиты от НСД допускают использование в качестве идентификатора биометрические признаки пользователя (личная подпись, отпечаток пальца и т.п.). Состав программных средств типовой системы защиты информации (СЗИ) от НСД приведен на рис. 4.17.

Все программное обеспечение комплекса защиты от НСД может быть условно разделено на три группы.

Системные программы защиты - программы, выполняющие функции по защите и разграничению доступа к информации. Также с использованием данной группы программ выполняется настройка и управление системой защиты в процессе работы.

Спецзагрузчик - программа, обеспечивающая доверенную загрузку базовой ОС.

Драйвер защиты («монитор безопасности») - резидентная программа, осуществляющая контроль полномочий и разграничение доступа к информационным и аппаратным ресурсам в процессе работы пользователя на АС (ПЭВМ).

Программы установки - доступный только администратору СЗИ набор программ для управления работой системы защиты информации. Данный набор программ позволяет осуществлять штатный процесс установки и удаления системы защиты информации.

Программы системы идентификации/аутентификации представляют собой набор программ для формирования и анализа индивидуальных признаков пользователя, используемых при проведении идентификации/аутентификации. В состав данной группы также входят программы создания и управления базой данных пользователей системы.

Программа обучения - в общем случае представляет собой программу для накопления и анализа индивидуальных признаков поль зователя (буквенно-цифровая комбинация персонального пароля, личная подпись, отпечатки пальцев) и выработки индивидуальной характеристики, которая записывается в базу данных.

Рис. 4.17. Состав программных средств типовой системы защиты информации

База пользователей содержит уникальные номера идентификаторов пользователей, зарегистрированных в системе, а также служебную информацию (права пользователей, временные ограничения, метки конфиденциальности и т.д.).

Программа идентификации управляет процессом проведения идентификации пользователя: выдает запрос предъявления идентификатора, производит считывание информации из персонального идентификатора, производит поиск пользователя в базе данных пользователей. В случае если пользователь зарегистрирован в системе, формирует запрос к базе данных индивидуальных характеристик пользователей.

База данных индивидуальных характеристик содержит индивидуальные характеристики всех пользователей, зарегистрированных в системе, и производит выборку необходимой характеристики по запросу программы идентификации.

Технологические программы представляют собой вспомогательные средства для обеспечения безопасного функционирования системы защиты, доступные только администратору системы защиты.

Программы восстановления станции предназначены для восстановления работоспособности станции в случае аппаратных или программных сбоев. Данная группа программ позволяет восстанавливать первоначальную рабочую среду пользователя (существовавшую до установки системы защиты), а также производить восстановление работоспособности аппаратной и программной части системы защиты.

Важной особенностью программ восстановления станции является возможность снять систему защиты нештатным образом, т.е. без использования программы установки, вследствие чего хранение и учет данной группы программ должен производиться особо тщательно.

Программа ведения системного журнала предназначена для регистрации в системном журнале (специальном файле) всех событий, возникающих в системе защиты в момент работы пользователя. Программа позволяет формировать выборки из системного журнала по различным критериям (все события НСД, все события входа пользователя в систему и т.п.) для дальнейшего анализа.

Динамика работы комплекса защиты от НСД

Для реализации функций комплекса защиты от НСД применяются следующие механизмы:

1. Механизм защиты от несанкционированной загрузки ОС, включающий идентификацию пользователя по уникальному иден тификатору и аутентификацию подлинности владельца предъявленного идентификатора.

2. Механизм блокировки экрана и клавиатуры в тех случаях, когда могут быть реализованы те или иные угрозы информационной безопасности.

3. Механизм контроля целостности критичных, с точки зрения информационной безопасности, программ и данных (механизм защиты от несанкционированных модификаций).

4. Механизм создания функционально замкнутых информационных систем путем создания изолированной программной среды;

5. Механизм разграничения доступа к ресурсам АС, определяемый атрибутами доступа, которые устанавливаются администратором системы в соответствии каждой паре «субъект доступ а-объект доступа» при регистрации пользователей.

6. Механизм регистрации управляющих событий и событий НСД, возникающих при работе пользователей.

7. Дополнительные механизмы защиты.

На этапе установки комплекса защиты от НСД производится установка аппаратного контроллера в свободный слот материнской платы ПЭВМ и инсталляция программного обеспечения на жесткий диск.

Настройка комплекса заключается в установлении прав разграничения доступа и регистрации пользователей. При регистрации пользователя администратором системы защиты определяются его права доступа: списки исполняемых программ и модулей, разрешенных к запуску данному пользователю.

На этапе установки также формируются списки файлов, целостность которых будет проверяться при запуске ПЭВМ данным пользователем. Вычисленные значения хэш-функций (контрольных сумм) этих файлов сохраняются в специальных областях памяти (в некоторых системах заносятся в память персонального ТМ-идентификатора).

Механизм защиты от несанкционированной загрузки ОС реализуется путем проведения процедур идентификации, аутентификации и контроля целостности защищаемых файлов до загрузки операционной системы. Это обеспечивается при помощи ПЗУ, установленного на плате аппаратного контроллера, которое получает управление во время так называемой процедуры ROM-SCAN. Суть данной процедуры в следующем: в процессе начального старта после проверки основного оборудования BIOS компьютера начина ет поиск внешних ПЗУ в диапазоне от С800:0000 до ЕООО".ОООО с шагом в 2К. Признаком наличия ПЗУ является наличие слова АА55Н в первом слове проверяемого интервала. Если данный признак обнаружен, то в следующем байте содержится длина ПЗУ в страницах по 512 байт. Затем вычисляется контрольная сумма всего ПЗУ, и если она корректна - будет произведен вызов процедуры, расположенной в ПЗУ со смещением. Такая процедура обычно используется при инициализации аппаратных устройств.

В большинстве комплексов защиты от НСД эта процедура предназначена для реализации процесса идентификации и аутентификации пользователя. При ошибке (отказ в доступе) возврат из процедуры не происходит, т.е. дальнейшая загрузка ПЭВМ выполняться не будет.

При установленном аппаратном контроллере и инсталлированном программном обеспечении системы защиты от НСД, загрузка ПЭВМ осуществляется в следующем порядке:

1. BIOS компьютера выполняет стандартную процедуру POST (проверку основного оборудования компьютера) и по ее завершении переходит к процедуре ROM-SCAN, во время которой управление перехватывает аппаратный контроллер системы защиты от НСД.

2. Осуществляется процесс идентификации пользователя, для чего на монитор ПЭВМ выводится приглашение предъявить свой персональный идентификатор (в некоторых системах защиты одновременно с выводом приглашения запускается обратный отсчет времени, позволяющий лимитировать по времени попытку идентификации).

3. В случае предъявления пользователем идентификатора происходит считывание информации. Если идентификатор не предъявлен, доступ в систему блокируется.

4. Если предъявленный идентификатор не зарегистрирован в системе, то выводится сообщение об отказе в доступе и происходит возврат к П.2.

5. Если предъявленный идентификатор зарегистрирован в системе, система переходит в режим аутентификации. В большинстве систем защиты от НСД для аутентификации используется ввод персонального пароля.

6. При неправильно введенном пароле происходит возврат к П.2.

7. При правильно введенном пароле аппаратный контроллер передает управление ПЭВМ и производится штатный процесс за грузки ОС.

Добавим, что многие системы позволяют ограничить количество «неверных» входов, проводя перезагрузку в случае заданного числа отказов.

Устойчивость процедуры идентификации/аутентификации сильно зависит от используемых персональных идентификаторов и алгоритмов подтверждения подлинности пользователя. В случае если в качестве идентификатора используется ТМ-идентификатор, а процедура аутентификации представляет собой ввод персонального пароля, устойчивость ее к взлому будет зависеть от длины пароля.

При осуществлении контрольных процедур {идентификации и аутентификации пользователя, проверке целостности) драйвер системы защиты от НСД блокирует клавиатуру и загрузку ОС. При касании считывателя информации осуществляется поиск предъявленного TM-идентификатора в списке зарегистрированных на ПЭВМ идентификаторов. Обычно список хранится на диске С. Если предъявленный ТМ-идентификатор обнаружен в списке, то в некоторых системах защиты от НСД производится контроль целостности файлов в соответствии со списком, составленным для данного пользователя.

В этом случае при проверке перечня файлов пользователя на целостность йычисляется хэш-функция контрольной суммы этих файлов и сравнивается с эталонным {контрольным) значением, считываемым из предъявленного персонального ТМ-идентифика-тора. Для проведения процедуры аутентификации предусмотрен режим ввода пароля в скрытом виде - в виде специальных символов (например, символ - «*»). Этим предотвращается возможность раскрытия индивидуального пароля и использования утраченного (похищенного) ТМ-идентификатора.

При положительном результате указанных выше контрольных процедур производится загрузка ОС. Если предъявленный пользователем идентификатор не зарегистрирован в списке или нарушена целостность защищаемых файлов, загрузка ОС не производится. Для продолжения работы потребуется вмешательство администратора.

Таким образом, контрольные процедуры: идентификация, аутентификация и проверка целостности, осуществляются до загрузки ОС. В любом другом случае, т.е. при отсутствии у данного пользователя прав на работу с данной ПЭВМ, загрузка ОС не выполняется.

При выполнении файлов конфигураций CONFIG.SYS и AUTOEXEC.BAT производится блокировка клавиатуры и загрузка

«монитора безопасности» системы защиты от НСД, осуществляющего контроль за использованием пользователем только разрешенных ему ресурсов.

Механизм контроля целостности реализуется процедурой сравнения двух векторов для одного массива данных: эталонного (контрольного), выработанного заранее на этапе регистрации пользователей, и текущего, т.е. выработанного непосредственно перед проверкой.

Эталонный (контрольный) вектор вырабатывается на основе хэш-функций (контрольной суммы) защищаемых файлов и хранится в специальном файле или идентификаторе. В случае санкционированной модификации защищенных файлов осуществляется процедура перезаписи нового значения хэш-функций (контрольной суммы) модифицированных файлов.

Механизм создания изолированной программной среды реализуется с использованием резидентной части «монитора безопасности» системы защиты от НСД. В процессе функционирования системы защиты от НСД резидентная часть «монитора безопасности» проверяет файлы всех загруженных из файла CONFIG.SYS драйверов и обеспечивает оперативный контроль целостности исполняемых файлов перед передачей им управления. Тем самым обеспечивается защита от программных вирусов и закладок. В случае положительного исхода проверки управление передается ОС для загрузки файла на исполнение. При отрицательном исходе проверки запуск программы не происходит.

Механизм разграничения доступа реализуется с использованием резидентной части «монитора безопасности» системы защиты от НСД, который перехватывает на себя обработку функций ОС (в основном, это прерывание int 21, а также int 25/26, и int 13). Смысл работы данного резидентного модуля в том, что при получении от пользовательской программы запроса, например, на удаление файла, начале производится проверка наличия таких полномочий у пользователя.

Если такие полномочия есть, управление передается обычному обработчику ОС для исполнения операции. Если таких полномочий нет, имитируется выход с ошибкой.

Правила разграничения доступа устанавливаются присвоением объектам доступа атрибутов доступа. Установленный атрибут означает, что определяемая атрибутом операция может выполняться над данным объектом.

Установленные атрибуты определяют важнейшую часть ПРД пользователя.

От правильности выбора и установки атрибутов во многом зависит эффективность работы системы защиты. В этой связи администратор системы защиты должен ясно представлять, от чего и как зависит выбор атрибутов, назначаемых объектам, к которым имеет доступ пользователь. Как минимум, необходимо изучить принцип разграничения доступа с помощью атрибутов, а также особенности работы программных средств, которые будут применяться пользователем при работе.

Программное обеспечение систем защиты от НСД позволяет для каждой пары субъект-объект определить (часть указанных характеристик доступа или все):

для дисков:

Доступность и видимость логического диска;

Создание и удаление файлов;

Видимость файлов;

Исполнение задач;

Наслёдование подкаталогами атрибутов корневого каталога (с распространением прав наследования только на следующий уровень либо на все следующие уровни);

для каталогов:

Доступность (переход к данному каталогу);

Видимость;

Наследование подкаталогами атрибутов каталога (с распространением прав наследования только на следующий уровень либо на все следующие уровни);

для содержимого каталога:

Создание и удаление подкаталогов;

Переименование файлов и подкаталогов;

Открытие файлов для чтения и записи;

Создание и удаление файлов;

Видимость файлов;

для задач:

Исполнение.

Механизм регистрации управляющих событий и событий НСД содержит средства выборочного ознакомления с регистрационной информацией, а также позволяет регистрировать все попытки доступа и действия выделенных пользователей при их работе на ПЭВМ с установленной системой защиты от НСД. В большинстве систем защиты от НСД администратор имеет возможность выбирать уровень детальности регистрируемых событий для каждого пользователя.

Регистрация осуществляется в следующем порядке:

Для каждого пользователя администратор системы устанавливает уровень детальности журнала.

Для любого уровня детальности в журнале отражаются параметры регистрации пользователя, доступ к устройствам, запуск задач, попытки нарушения ПРД, изменения ПРД.

Для среднего уровня детальности в журнале отражаются дополнительно все попытки доступа к защищаемым дискам, каталогам и отдельным файлам, а также попытки изменения некоторых системных параметров.

Для высокого уровня детальности в журнале отражаются дополнительно все попытки доступа к содержимому защищаемых каталогов.

Для выделенных пользователей в журнале отражаются все изменения ПРД.

Кроме этого, предусмотрен механизм принудительной регистрации доступа к некоторым объектам.

В общем случае системный журнал содержит следующую информацию:

1. Дата и точное время регистрации события.

2. Субъект доступа.

3. Тип операции.

4. Объект доступа. Объектом доступа может быть файл, каталог, диск. Если событием является изменение прав доступа, то отображаются обновленные ПРД.

5. Результат события.

6. Текущая задача - программа, функционирующая на станции в момент регистрации события.

Дополнительные механизмы защиты от несанкционированного доступа к ПЭВМ

Дополнительные механизмы защиты от НСД к ПЭВМ (АС) позволяют повысить уровень защиты информационных ресурсов, относительно базового уровня, достигаемого при использовании штатных функций системы защиты. Для повышения уровня защиты информационных ресурсов целесообразно использовать следующие механизмы защиты:

Ограничение времени «жизни» пароля и его минимальной длины, исключая возможность быстрого его подбора в случае утери пользователем персонального идентификатора;

Использование «временных ограничений» для входа пользователей в систему путем установки для каждого пользователя интервала времени по дням недели, в котором разрешена работа;

Установка параметров управления хранителя экрана - гашение экрана через заранее определенный интервал времени (в случае если в течение указанного интервала действия оператором не выполнялись). Возможность продолжения работы предоставляется только после проведения повторной идентификации по предъявлению персонального идентификатора пользователя (или пароля);

Установка для каждого пользователя ограничений по выводу защищаемой информации на отчумздаемые носители (внешние магнитные носители, порты принтеров и коммуникационных устройств и т.п.);

Периодическое осуществление проверки целостности системных файлов, в том числе файлов программной части системы защиты, а также пользовательских программ и данных;

Контроль обращения к операционной системе напрямую, в обход прерываний ОС, для исключения возможности функционирования программ отладки и разработки, а также программ «вирусов»;

Исключение возможности использования ПЭВМ при отсутствии аппаратного контроллера системы защиты, для исключения возможности загрузки операционной системы пользователями со снятой системой защиты;

Использование механизмов создания изолированной программной среды, запрещающей запуск исполняемых файлов с внешних носителей либо внедренных в ОС, а также исключающей несанкционированный вход незарегистрированных пользователей в ОС;

Индикация попыток несанкционированного доступа к ПЭВМ и защищаемым ресурсам в реальном времени путем подачи звуковых, визуальных или иных сигналов.

Контрольные вопросы для самостоятельной работы 1. Назовите организационные меры, которые нужно принять для защиты объекта.

2. Какую цель преследуют поисковые мероприятия?

3. Назовите пассивные и активные методы технической защиты.

4. Перечислите методы защиты речевой информации.

5. Какая разница между звукоизоляцией и виброакустической защитой помещения?

6. Каким образом нейтрализуются звукозаписывающие устройства и радиомикрофоны?

7. Дайте характеристики устройств защиты оконечного оборудования слаботочных линий.

8. Перечислите способы защиты абонентских телефонных линий.

^ 9. Какова основная цель экранирования?

ч 10. Перечислите основные требования, предъявляемые к устройствам заземления.

11. Сравните защитные свойства сетевых помехоподавляющих фильтров и генераторов зашумления сети питания. Укажите области применения данных изделий.

12. Назовите технические мероприятия защиты информации в СВТ.

13. Перечислите основные критерии защищенности СВТ.

14. Порядок и особенности проведения специальных исследований технических средств ЭВТ.

15. В чем сущность графического метода расчета радиуса зоны И (Я 2)?

16. Основное назначение комплексов защиты от несанкционированного доступа.

17. Что такое персональный идентификатор? Какие виды идентификаторов применяются в системах защиты от НСД, назовите основные свойства идентификатора.

18. Какие процедуры выполняются системой защиты от НСД до момента загрузки ОС?

19. Что выполняется в процессе аутентификации. Какие виды процессов аутентификации применяются в системах защиты от НСД?

20. Чем определяется стойкость процесса идентификации/аутентификации?

21. Что понимается под определением права разграничения доступа?

22. Что понимается под объектом доступа?

23. Как реализуется мандатный принцип разграничения доступа?

24. Какие подсистемы входят в состав средств разграничения доступа?

25. Какие аппаратные ресурсы входят в типовой состав системы защиты от НСД?

26. Какие параметры регистрируются в системном журнале в процессе работы пользователя. Для чего ведется системный журнал?

27. Какие системы защиты от НСД могут применяться в АС, обрабатывающих информацию, составляющую государственную тайну?

Вопросы:

1. Методы и средства защиты от утечки конфиденциальной информации по техническим каналам.

2. Особенности программно-математического воздействия в сетях общего пользования.

3. Защита информации в локальных вычислительных сетях.

Литература:

1. Будников С.А., Паршин Н.В. Информационная безопасность автоматизированных систем: Учебн. пособие – Воронеж, ЦПКС ТЗИ, 2009.

2. Белов Е.Б. и др. Основы информационной безопасности: Учебное пособие. – М.: Горячая линия – Телеком, 2005.

3. Запечников С.В. и др. Информационная безопасность открытых систем. Часть 1: Учебник для вузов. – М.: Горячая линия – Телеком, 2006.

4. Малюк А.А. Информационная безопасность: концептуальные и методологические основы защиты информации: Учебное пособие для ВУЗов. – М.: Горячая линия – Телеком, 2004.

5. Малюк А.А., Пазизин С.В., Погожин Н.С. Введение в защиту информации в автоматизированных системах: Учебное пособие для ВУЗов. – М.: Горячая линия – Телеком, 2004.

6. Хорев А.А. Защита информации от утечки по техническим каналам. – Учебн. пособие. – М.: МО РФ, 2006.

7. Закон Российской Федерации от 28.12.2010 № 390 «О безопасности».

8. Федеральный закон от 27.07.2006 № 149-ФЗ «Об информации, информационных технологиях и о защите информации».

9. Указ Президента Российской Федерации от 6 марта 1997 г. № 188 «Об утверждении Перечня сведений конфиденциального характера».

Интернет-ресурсы:

1. http://ict.edu.ru

1. Методы и средства защиты от утечки конфиденциальной информации по техническим каналам

Защита информации от утечки по техническим каналам – это комплекс организационных, организационно-технических и технических мероприятий, исключающих или ослабляющих бесконтрольный выход конфиденциальной информации за пределы контролируемой зоны.

1.1. Защита информации от утечки по визуально-оптическим каналам

С целью защиты информации от утечки по визуально-оптическому каналу рекомендуется:

· располагать объекты защиты так, чтобы исключить отражение света в сторону возможного расположения злоумышленника (пространственные отражения);

· уменьшить отражающие свойства объекта защиты;

· уменьшить освещенность объекта защиты (энергетические ограничения);

· использовать средства преграждения или значительного ослабления отраженного света: ширмы, экраны, шторы, ставни, темные стекла и другие преграждающие среды, преграды;

· применять средства маскирования, имитации и другие с целью защиты и введения в заблуждение злоумышленника;

· использовать средства пассивной и активной защиты источника от неконтролируемого распространения отраженного или излученного света и других излучений;

· осуществлять маскировку объектов защиты, варьируя отражательными свойствами и контрастом фона;

· применять маскирующие средства сокрытия объектов можно в виде аэрозольных завес и маскирующих сеток, красок, укрытий.

1.2. Защита информации от утечки по акустическим каналам

Основными мероприятиями в этом виде защиты выступают организационные и организационно-технические меры.

Организационные меры предполагают проведение архитектурно-планировочных, пространственных и режимных мероприятий. Архитектурно-планировочные меры предусматривают предъявление определенных требований на этапе проектирования зданий и помещений или их реконструкцию и приспособление с целью исключения или ослабления неконтролируемого распространения звуковых полей непосредственно в воздушном пространстве или в строительных конструкциях в виде 1/10 структурного звука.

Пространственные требования могут предусматривать как выбор расположения помещений в пространственном плане, так и их оборудование необходимыми для для акустической безопасности элементами, исключающими прямое или отраженное в сторону возможного расположения злоумышленника распространение звука. В этих целях двери оборудуются тамбурами, окна ориентируются в сторону охраняемой (контролируемой) от присутствия посторонних лиц территории и пр.

Режимные меры предусматривают строгий контроль пребывания в контролируемой зоне сотрудников и посетителей.

Организационно-технические меры предполагают пассивные (звукоизоляция, звукопоглощение) и активные (звукоподавление) мероприятия.

Не исключается применение и технических мер за счет применения специальных защищенных средств ведения конфиденциальных переговоров (защищенные акустические системы).

Для определения эффективности защиты при использовании звукоизоляции применяются шумомеры – измерительные приборы, преобразующие колебания звукового давления в показания, соответствующие уровню звукового давления.

В тех случаях, когда пассивные меры не обеспечивают необходимого уровня безопасности, используются активные средства. К активным средствам относятся генераторы шума – технические устройства, вырабатывающие шумоподобные электронные сигналы. Эти сигналы подаются на соответствующие датчики акустического или вибрационного преобразования. Акустические датчики предназначены для создания акустического шума в помещениях или вне их, а вибрационные – для маскирующего шума в ограждающих конструкциях.

Таким образом, защита от утечки по акустическим каналам реализуется:

· применением звукопоглощающих облицовок, специальных дополнительных тамбуров дверных проемов, двойных оконных переплетов;

· использованием средств акустического зашумления объемов и поверхностей;

· закрытием вентиляционных каналов, систем ввода в помещения отопления, электропитания, телефонных и радиокоммуникаций;

· использованием специальных аттестованных помещений, исключающих появление каналов утечки информации.

1.3. Защита информации от утечки по электромагнитным каналам

Для защиты информации от утечки по электромагнитным каналам применяются как общие методы защиты от утечки, так и специфические, ориентированные на известные электромагнитные каналы утечки информации. Кроме того, защитные действия можно классифицировать на конструкторско-технологические решения, ориентированные на исключение возможности возникновения таких каналов, и эксплуатационные, связанные с обеспечением условий использования тех или иных технических средств в условиях производственной и трудовой деятельности.

Конструкторско-технологические мероприятия по локализации возможности образования условий возникновения каналов утечки информации за счет побочных электромагнитных излучений и наводок (ПЭМИН) в технических средствах обработки и передачи информации сводятся к рациональным конструкторско-технологическим решениям, к числу которых относятся:

· экранирование элементов и узлов аппаратуры;

· ослабление электромагнитной, емкостной, индуктивной связи между элементами и токонесущими проводами;

· фильтрация сигналов в цепях питания и заземления и др. меры, связанные с использование ограничителей, развязывающих цепей, систем взаимной компенсации, ослабителей по ослаблению или уничтожению ПЭМИН.

Схемно-конструкторские способы защиты информации:

· экранирование;

· заземление;

· фильтрация;

· развязка.

Фильтры различного назначения служат для подавления или ослабления сигналов при их возникновении или распространении, а также для защиты систем питания аппаратуры обработки информации.

Эксплуатационные меры ориентированы на выбор мест установки технических средств с учетом особенностей их электромагнитных полей с таким расчетом, чтобы исключить их выход за пределы контролируемой зоны. В этих целях возможно осуществлять экранирование помещений, в которых находятся средства с большим уровнем ПЭМИ.

Организационные меры защиты информации от утечки за счет электромагнитного излучения:

1. Воспрещение

1.1. Исключение излучения

1.2. Использование экранированных помещений

2. Уменьшение доступности

2.1. Расширение контролируемой зоны

2.2. Уменьшение дальности распространения:

Уменьшение мощности

Снижение высоты

2.3. Использование пространственной ориентации:

Выбор безопасных районов расположения

Безопасная ориентация основного лепестка ДН

Использование остронаправленных антенн

Подавление боковых и заднего лепестков ДН

2.4. Выбор режимов работы:

Сокращение времени работы

Использование известных режимов работы

Использование расчетных методов.

1.4. Защита информации от утечки по материально-вещественным каналам

Меры защиты этого канала в особых комментариях не нуждаются.

В заключении следует отметить, что при защите информации от утечки по любому из рассмотренных целесообразно придерживаться следующего порядка действий:

1. Выявление возможных каналов утечки.

2. Обнаружение реальных каналов.

3. Оценка опасности реальных каналов.

4. Локализация опасных каналов утечки информации.

5. Систематический контроль за наличием каналов и качеством их защиты.

2. Особенности программно-математического воздействия в сетях общего пользования

Программно-математическое воздействие – это воздействие на защищаемую информацию с помощью вредоносных программ.

Вредоносная программа - программа, предназначенная для осуществления несанкционированного доступа к информации и (или) воздействия на информацию или ресурсы информационной системы. Иными словами вредоносной программой называют некоторый самостоятельный набор инструкций, который способен выполнять следующее:

· скрывать свое присутствие в компьютере;

· обладать способностью к самоуничтожению, маскировкой под легальные программы и копирования себя в другие области оперативной или внешней памяти;

· модифицировать (разрушать, искажать) код других программ;

· самостоятельно выполнять деструктивные функции – копирование, модификацию, уничтожение, блокирование и т.п.

· искажать, блокировать или подменять выводимую во внешний канал связи или на внешний носитель информацию.

Основными путями проникновения вредоносных программ в ИС, в частности, на компьютер, являются сетевое взаимодействие и съемные носители информации (флешки, диски и т.п.). При этом внедрение в систему может носить случайный характер.

Основными видами вредоносных программ являются:

  • программные закладки;
  • программные вирусы;
  • сетевые черви;
  • другие вредоносные программы, предназначенные для осуществления НСД.

К программным закладкам относятся программы и фрагменты программного кода, предназначенные для формирования недекларированных возможностей легального программного обеспечения.

Недекларированные возможности программного обеспечения функциональные возможности программного обеспечения, не описанные в документации. Программная закладка часто служит проводником для других вирусов и, как правило, не обнаруживаются стандартными средствами антивирусного контроля.

Программные закладки различают в зависимости от метода их внедрения в систему:

  • программно-аппаратные. Это закладки, интегрированные в программно-аппаратные средства ПК (BIOS , прошивки периферийного оборудования);
  • загрузочные. Это закладки, интегрированные в программы начальной загрузки (программы-загрузчики), располагающиеся в загрузочных секторах;
  • драйверные. Это закладки, интегрированные в драйверы (файлы, необходимые операционной системе для управления подключенными к компьютеру периферийными устройствами);
  • прикладные. Это закладки, интегрированные в прикладное программное обеспечение (текстовые редакторы, графические редакторы, различные утилиты и т.п.);
  • исполняемые. Это закладки, интегрированные в исполняемые программные модули. Программные модули чаще всего представляют собой пакетные файлы;
  • закладки-имитаторы. Это закладки, которые с помощью похожего интерфейса имитируют программы, в ходе работы которых требуется вводить конфиденциальную информацию;

Для выявления программных закладок часто используется качественный подход, заключающийся в наблюдении за функционированием системы, а именно:

  • снижение быстродействия;
  • изменение состава и длины файлов;
  • частичное или полное блокирование работы системы и ее компонентов;
  • имитация физических (аппаратных) сбоев работы вычислительных средств и периферийных устройств;
  • переадресация сообщений;
  • обход программно-аппаратных средств криптографического преобразования информации;
  • обеспечение доступа в систему с несанкционированных устройств.

Существуют также диагностические методы обнаружения закладок. Так, например, антивирусы успешно находят загрузочные закладки. С инициированием статической ошибки на дисках хорошо справляется Disk Doctor, входящий в распространенный комплекс утилит Norton Utilities. К наиболее распространенным программным закладкам относится "троянский конь".

Троянским конем называется:

  • программа, которая, являясь частью другой программы с известными пользователю функциями, способна втайне от него выполнять некоторые дополнительные действия с целью причинения ему определенного ущерба;
  • программа с известными ее пользователю функциями, в которую были внесены изменения, чтобы, помимо этих функций, она могла втайне от него выполнять некоторые другие (разрушительные) действия.

Основные виды троянских программ и их возможности:

  • Trojan-Notifier – Оповещение об успешной атаке. Троянцы данного типа предназначены для сообщения своему "хозяину" о зараженном компьютере. При этом на адрес "хозяина" отправляется информация о компьютере, например, IP-адрес компьютера, номер открытого порта, адрес электронной почты и т. п.
  • Trojan-PSW – Воровство паролей. Они похищают конфиденциальные данные с компьютера и передают их хозяину по электронной почте.
  • Trojan-Clicker - интернет-кликеры – Семейство троянских программ, основная функция которых - организация несанкционированных обращений к интернет-ресурсам (обычно к веб-страницам). Методы для этого используются разные, например установка злонамеренной страницы в качестве домашней в браузере.
  • Trojan-DDoS Trojan -DDoS превращают зараженный компьютер в так называемый бот, который используется для организации атак отказа в доступе на определенный сайт. Далее от владельца сайта требуют заплатить деньги за прекращение атаки.
  • Trojan-Proxy – Троянские прокси-сервера . Семейство троянских программ, скрытно осуществляющих анонимный доступ к различным Интернет-ресурсам. Обычно используются для рассылки спама.
  • Trojan-Spy Шпионские программы. Они способны отслеживать все ваши действия на зараженном компьютере и передавать данные своему хозяину. В число этих данных могут попасть пароли, аудио и видео файлы с микрофона и видеокамеры, подключенных к компьютеру.
  • Backdoor – Способны выполнять удаленное управление зараженным компьютером. Его возможности безграничны, весь ваш компьютер будет в распоряжении хозяина программы. Он сможет рассылать от вашего имени сообщения, знакомиться со всей информацией на компьютере, или просто разрушить систему и данные без вашего ведома.
  • Trojan-Dropper – Инсталляторы прочих вредоносных программ. Очень похожи на Trojan -Downloader, но они устанавливают злонамеренные программы, которые содержатся в них самих.
  • Rootkit – способны прятаться в системе путем подмены собой различных объектов. Такие трояны весьма неприятны, поскольку способны заменить своим программным кодом исходный код операционной системы, что не дает антивирусу возможности выявить наличие вируса.

Абсолютно все программные закладки, независимо от метода их внедрения в компьютерную систему, срока их пребывания в оперативной памяти и назначения, имеют одну общую черту: обязательное выполнение операции записи в оперативную или внешнюю память системы. При отсутствии данной операции никакого негативного влияния программная закладка оказать не может.

Вирус (компьютерный, программный) – исполняемый программный код или интерпретируемый набор инструкций, обладающий свойствами несанкционированного распространения и самовоспроизведения. Созданные дубликаты компьютерного вируса не всегда совпадают с оригиналом, но сохраняют способность к дальнейшему распространению и самовоспроизведению. Таким образом, обязательным свойством программного вируса является способность создавать свои копии и внедрять их в вычислительные сети и/или файлы, системные области компьютера и прочие выполняемые объекты. При этом дубликаты сохраняют способность к дальнейшему распространению.

Жизненный цикл вируса состоит из следующих этапов:

  • проникновение на компьютер
  • активация вируса
  • поиск объектов для заражения
  • подготовка вирусных копий
  • внедрение вирусных копий

Классификация вирусов и сетевых червей представлена на рисунке 1.

Рис.1. Классификация вирусов и сетевых червей

Вирусный код загрузочного типа позволяет взять управление компьютером на этапе инициализации, еще до запуска самой системы. Загрузочные вирусы записывают себя либо в в boot-сектор, либо в сектор, содержащий системный загрузчик винчестера, либо меняют указатель на активный boot-сектор. Принцип действия загрузочных вирусов основан на алгоритмах запуска ОС при включении или перезагрузке компьютера: после необходимых тестов установленного оборудования (памяти, дисков и т. д.) программа системной загрузки считывает первый физический сектор загрузочного диска и передает управление на А:, С: или CD-ROM, в зависимости от параметров, установленных в BIOS Setup .

В случае дискеты или CD-диска управление получает boot-сектор диска, который анализирует таблицу параметров диска (ВРВ - BIOS Parameter Block ), высчитывает адреса системных файлов ОС, считывает их в память и запускает на выполнение. Системными файлами обычно являются MSDOS.SYS и IO.SYS, либо IBMDOS.COM и IBMBIO.COM, либо другие в зависимости от установленной версии DOS, и/или Windows, или других ОС. Если же на загрузочном диске отсутствуют файлы операционной системы, программа, расположенная в boot-секторе диска, выдает сообщение об ошибке и предлагает заменить загрузочный диск.

В случае винчестера управление получает программа, расположенная в MBR винчестера. Она анализирует таблицу разбиения диска (Disk Partition Table), вычисляет адрес активного boot-сектора (обычно этим сектором является boot-сектор диска С:), загружает его в память и передает на него управление. Получив управление, активный boot-сектор винчестера проделывает те же действия, что и boot-сектор дискеты.

При заражении дисков загрузочные вирусы подставляют свой код вместо какой-либо программы, получающей управление при загрузке системы. Принцип заражения, таким образом, одинаков во всех описанных выше способах: вирус "заставляет" систему при ее перезапуске считать в память и отдать управление не оригинальному коду загрузчика, а коду вируса.

Пример: Вредоносная программа Virus.Boot.Snow.a записывает свой код в MBR жесткого диска или в загрузочные сектора дискет. При этом оригинальные загрузочные сектора шифруются вирусом. После получения управления вирус остается в памяти компьютера (резидентность) и перехватывает прерывания. Иногда вирус проявляет себя визуальным эффектом – на экране компьютера начинает падать снег.

Файловые вирусы – вирусы, которые заражают непосредственно файлы. Файловые вирусы можно разделить на три группы в зависимости от среды, в которой распространяется вирус:

1. Файловые вирусы – работают непосредственно с ресурсами операционной системы. Пример: один из самых известных вирусов получил название "Чернобыль". Благодаря своему небольшому размеру (1 Кб) вирус заражал PE-файлы таким образом, что их размер не менялся. Для достижения этого эффекта вирус ищет в файлах "пустые" участки, возникающие из-за выравнивания начала каждой секции файла под кратные значения байт. После получения управления вирус перехватывает IFS API, отслеживая вызовы функции обращения к файлам и заражая исполняемые файлы. 26 апреля срабатывает деструктивная функция вируса, которая заключается в стирании Flash BIOS и начальных секторов жестких дисков. Результатом является неспособность компьютера загружаться вообще (в случае успешной попытки стереть Flash BIOS) либо потеря данных на всех жестких дисках компьютера.

2. Макровирусы – вирусы, написанные на макроязыках, встроенных в некоторые системы обработки данных (текстовые редакторы, электронные таблицы и т.п.). Самыми распространенными являются вирусы для программ Microsoft Office. Для своего размножения такие вирусы используют возможности макроязыков и при их помощи переносят себя (свои копии) из одного документа в другой.

Для существования макровирсуов в конкретном редакторе встроенный в него макроязык должен обладать следующими возможностями:

  • привязка программы на макроязыке к конкретному файлу;
  • копирование макропрограмм из одного файла в другой;
  • получение управления макропрограммой без вмешательства пользователя (автоматические или стандартные макросы).

Данным условиям удовлетворяют прикладные программы Microsoft Word, Excel и Microsoft Access. Они содержат в себе макроязыки: Word Basic, Visual Basic for Applications. Современные макроязыки обладают вышеперечисленными особенностями с целью предоставления возможности автоматической обработки данных.

Большинство макровирусов активны не только в момент открытия (закрытия) файла, но до тех пор, пока активен сам редактор. Они содержат все свои функции в виде стандартных макросов Word/Excel/Office. Существуют, однако, вирусы, использующие приемы скрытия своего кода и хранящие свой код в виде не макросов. Известно три подобных приема, все они используют возможность макросов создавать, редактировать и исполнять другие макросы. Как правило, подобные вирусы имеют небольшой макрос-загрузчик вируса, который вызывает встроенный редактор макросов, создает новый макрос, заполняет его основным кодом вируса, выполняет и затем, как правило, уничтожает (чтобы скрыть следы присутствия вируса). Основной код таких вирусов присутствует либо в самом макросе вируса в виде текстовых строк (иногда – зашифрованных), либо хранится в области переменных документа.

3. Сетевые вирусы – вирусы, которые для своего распространения используют протоколы и возможности локальных и глобальных сетей. Основным свойством сетевого вируса является возможность самостоятельно тиражировать себя по сети. При этом существуют сетевые вирусы, способные запустить себя на удаленной станции или сервере.

Основные деструктивные действия, выполняемые вирусами и червями:

  • атаки "отказ в обслуживании"
  • потеря данных
  • хищение информации.
  • Помимо всего вышеописанного, существуют вирусы комбинированного типа, которые объединяют в себе свойства разных типов вирусов, например, файлового и загрузочного. В виде примера приведем популярный в минувшие годы файловый загрузочный вирус под названием "OneHalf". Этот вирусный код, оказавшись в компьютерной среде операционной системы "MS-DOS" заражал основную запись загрузки. В процессе инициализации компьютера он шифровал секторы основного диска, начиная с конечных. Когда вирус оказывается в памяти, он начинает контролировать любые обращения к шифровальным секторам и может расшифровать их таким образом, что все программы будут работать в штатном режиме. Если вирус "OneHalf" просто стереть из памяти и сектора загрузки, то информация, записанная в шифровальном секторе диска, станет недоступной. Когда вирус зашифровывает часть диска, он предупреждает об этом следующей надписью: "Dis is one half, Press any key to continue…". После этих действий он ждет, когда вы нажмете на любую кнопку и продолжите работать. В вирусе "OneHalf" использованы разные маскировочные механизмы. Он считается невидимым вирусом и выполняет полиморфные алгоритмические функции. Обнаружить и удалить вирусный код "OneHalf" весьма проблематично, потому что, его могут увидеть не все антивирусные программы.

    На этапе подготовки вирусных копий современные вирусы часто используют методы маскировки копий с целью затруднения их нахождения антивирусными средствами:

    • Шифрование - вирус состоит из двух функциональных кусков: собственно вирус и шифратор. Каждая копия вируса состоит из шифратора, случайного ключа и собственно вируса, зашифрованного этим ключом.
    • Метаморфизм - создание различных копий вируса путем замены блоков команд на эквивалентные, перестановки местами кусков кода, вставки между значащими кусками кода "мусорных" команд, которые практически ничего не делают.

    Сочетание этих двух технологий приводит к появлению следующих типов вирусов:

    • Шифрованный вирус - вирус, использующий простое шифрование со случайным ключом и неизменный шифратор. Такие вирусы легко обнаруживаются по сигнатуре шифратора.
    • Метаморфный вирус - вирус, применяющий метаморфизм ко всему своему телу для создания новых копий.
    • Полиморфный вирус - вирус, использующий метаморфный шифратор для шифрования основного тела вируса со случайным ключом. При этом часть информации, используемой для получения новых копий шифратора также может быть зашифрована. Например, вирус может реализовывать несколько алгоритмов шифрования и при создании новой копии менять не только команды шифратора, но и сам алгоритм.

    Червь - тип вредоносных программ, распространяющихся по сетевым каналам, способных к автономному преодолению систем защиты автоматизированных и компьютерных сетей, а также к созданию и дальнейшему распространению своих копий, не всегда совпадающих с оригиналом, и осуществлению иного вредоносного воздействия. Самым знаменитым червем является червь Moriss, механизмы работы которого подробно описаны в литературе. Червь появился в 1988 году и в течение короткого промежутка времени парализовал работу многих компьютеров в Интернете. Данный червь является "классикой" вредоносных программ, а механизмы нападения, разработанные автором при его написании, до сих пор используются злоумышленниками. Moriss являлся самораспространяющейся программой, которая распространяла свои копии по сети, получая привилегированные права доступа на хостах сети за счет использования уязвимостей в операционной системе. Одной из уязвимостей, использованных червем, была уязвимая версия программы sendmail (функция "debug" программы sendmail, которая устанавливала отладочный режим для текущего сеанса связи), а другой – программа fingerd (в ней содержалась ошибка переполнения буфера). Для поражения систем червь использовал также уязвимость команд rexec и rsh, а также неверно выбранные пользовательские пароли.

    На этапе проникновения в систему черви делятся преимущественно по типам используемых протоколов:

    • Сетевые черви - черви, использующие для распространения протоколы Интернет и локальных сетей. Обычно этот тип червей распространяется с использованием неправильной обработки некоторыми приложениями базовых пакетов стека протоколов TCP/IP.
    • Почтовые черви - черви, распространяющиеся в формате сообщений электронной почты. Как правило, в письме содержится тело кода или ссылка на зараженный ресурс. Когда вы запускаете прикрепленный файл, червь активизируется; когда вы щелкаете на ссылке, загружаете, а затем открываете файл, червь также начинает выполнять свое вредоносное действие. После этого он продолжает распространять свои копии, разыскивая другие электронные адреса и отправляя по ним зараженные сообщения. Для отправки сообщений червями используются следующие способы: прямое подключение к SMTP-серверу, используя встроенную в код червя почтовую библиотеку; использование сервисов MS Outlook; использование функций Windows MAPI. Для поиска адресов жертв чаще всего используется адресная книга MS Outlook, но может использоваться также адресная база WAB. Червь может просканировать файлы, хранящиеся на дисках, и выделить из них строки, относящиеся к адресам электронной почты. Черви могут отсылать свои копии по всем адресам, обнаруженным в почтовом ящике (некоторые обладают способностью отвечать на письма в ящике). Встречаются экземпляры, которые могут комбинировать способы.
    • IRC-черви - черви, распространяющиеся по каналам IRC (Internet Relay Chat). Черви этого класса используют два вида распространения: пересылка пользователю URL-ссылки на файл-тело; отсылка пользователю файла (при этом пользователь должен подтвердить прием).
    • P2P-черви - черви, распространяющиеся при помощи пиринговых (peer-to-peer) файлообменных сетей. Механизм работы большинства подобных червей достаточно прост: для внедрения в P2P-сеть червю достаточно скопировать себя в каталог обмена файлами, который обычно расположен на локальной машине. Всю остальную работу по его распространению P2P-сеть берет на себя – при поиске файлов в сети она сообщит удаленным пользователям о данном файле и предоставит весь необходимый сервис для его скачивания с зараженного компьютера. Существуют более сложные P2P-черви, которые имитируют сетевой протокол конкретной файлообменной системы и положительно отвечают на поисковые запросы (при этом червь предлагает для скачивания свою копию).
    • IM-черви - черви, использующие для распространения системы мгновенного обмена сообщениями (IM, Instant Messenger – ICQ, MSN Messenger, AIM и др.). Известные компьютерные черви данного типа используют единственный способ распространения – рассылку на обнаруженные контакты (из контакт-листа) сообщений, содержащих URL на файл, расположенный на каком-либо веб – сервере. Данный прием практически полностью повторяет аналогичный способ рассылки, использующийся почтовыми червями.

    В настоящее время всё большую "популярность" приобретают мобильные черви и черви, распространяющие свои копии через общие сетевые ресурсы. Последние используют функции операционной системы, в частности, перебирают доступные сетевые папки, подключаются к компьютерам в глобальной сети и пытаются открыть их диски на полный доступ. Отличаются от стандартных сетевых червей тем, что пользователю нужно открыть файл с копией червя, чтобы активизировать его.

    По деструктивным возможностям вирусы и сетевые черви различают:

    • безвредные, т. е. никак не влияющие на работу компьютера (кроме уменьшения свободной памяти на диске в результате своего распространения);
    • неопасные, влияние которых ограничивается уменьшением свободной памяти на диске и графическими, звуковыми и прочими эффектами;
    • опасные вирусы, которые могут привести к серьезным сбоям в работе компьютера;
    • очень опасные - в алгоритм их работы заведомо заложены процедуры, которые могут вызвать потерю программ, уничтожить данные, стереть необходимую для работы компьютера информацию, записанную в системных областях памяти.

    Но даже если в алгоритме вируса не найдено ветвей, наносящих ущерб системе, этот вирус нельзя с полной уверенностью назвать безвредным, так как проникновение его в компьютер может вызвать непредсказуемые и порой катастрофические последствия. Ведь вирус, как и всякая программа, имеет ошибки, в результате которых могут быть испорчены как файлы, так и сектора дисков (например, вполне безобидный на первый взгляд вирус DenZuk довольно корректно работает с 360-килобайтовыми дискетами, но может уничтожить информацию на дискетах большего объема ). До сих пор попадаются вирусы, определяющие СОМ или ЕХЕ не по внутреннему формату файла, а по его расширению. Естественно, что при несовпадении формата и расширения имени файл после заражения оказывается неработоспособным. Возможно также "заклинивание" резидентного вируса и системы при использовании новых версий DOS, при работе в Windows или с другими мощными программными системами.

    Если проанализировать всё вышесказанное, то можно заметить схожесть сетевых червей и компьютерных вирусов, в частности, полное совпадение жизненного цикла и самотиражирование. Основным отличием червей от программных вирусов является способность к распространению по сети без участия человека. Иногда сетевых червей относят к подклассу компьютерных вирусов.

    В связи с бурным развитием Интернета и информационных технологий количество вредоносных программ и вариантов их внедрения в информационную систему неустанно растет. Наибольшую опасность представляют новые формы вирусов и сетевых червей, сигнатуры которых не известны производителям средств защиты информации. В настоящее время всё большую популярность получают такие методы борьбы, как анализ аномального поведения системы и искусственные иммунные системы, позволяющие обнаруживать новые формы вирусов.

    Согласно аналитическому отчету о вирусной активности компании Panda Security за 3 квартал 2011 года соотношение созданных вредоносных программ имело вид, представленный на рисунке 2.

    Рис. 2. Соотношение вредоносного программного обеспечения, созданного в 3 квартале 2011 года

    То есть три из четырех новых образцов программного обеспечения оказались троянами, на втором месте – вирусы. Если раньше вредоносное программное обеспечение создавалось чаще всего в экспериментальных или "шуточных" целях и являлось скорее актом кибервандализма, то теперь это мощное оружие для получения материальной или иной выгоды, приобретающее скорее характер киберпреступности.

    В любом случае вредоносные программы способны наносить значительный ущерб, реализуя угрозы целостности, конфиденциальности и доступности информации. Наиболее популярным методом борьбы с ними является установка средств антивирусной защиты.

    3. Защита информации в локальных вычислительных сетях

    3.1. Антивирусы

    Антивирусные программы на сегодняшний день смело можно назвать самым популярным средством защиты информации. Антивирусные программы – программы, предназначенные для борьбы с вредоносным программным обеспечением (вирусами).

    Для обнаружения вирусов антивирусные программы используют два метода – сигнатурный и эвристический.

    Сигнатурный метод основан на сравнении подозрительного файла с сигнатурами известных вирусов. Сигнатура – это некий образец известного вируса, то есть набор характеристик, позволяющих идентифицировать данный вирус или наличие вируса в файле. Каждый антивирус хранит антивирусную базу, содержащую сигнатуры вирусов. Естественно, каждый день появляются новые вирусы, поэтому антивирусная база нуждается в регулярном обновлении. В противном случае антивирус не будет находить новые вирусы. Раньше все антивирусные программы использовали только сигнатурный метод для обнаружения вирусов ввиду его простоты реализации и точности обнаружения известных вирусов. Тем не менее, данный метод обладает очевидными минусами – если вирус новый и сигнатура его неизвестна, антивирус "пропустит" его. Поэтому современные антивирусы используют также эвристические методы.

    Эвристический метод представляет собой совокупность приблизительных методов обнаружения вирусов, основанных на тех или иных предположениях. Как правило, выделяют следующие эвристические методы:

    • поиск вирусов, похожих на известные (часто именно этот метод называют эвристическим). В принципе метод похож на сигнатурный, только в данном случае он более гибкий. Сигнатурный метод требует точного совпадения, здесь же файл исследуется на наличие модификаций известных сигнатур, то есть не обязательно полное совпадение. Это помогает обнаруживать гибриды вирусов и модификации уже известных вирусов;
    • аномальный метод – метод основан на отслеживании аномальных событий в системе и выделении основных вредоносных действий: удаления, запись в определенные области реестра, рассылка писем и пр. Понятно, что выполнение каждого такого действия по отдельности не является поводом считать программу вредоносной. Но если программа последовательно выполняет несколько таких действий, например, записывает себя в ключ автозапуска системного реестра, перехватывает данные вводимые с клавиатуры и с определенной частотой пересылает эти данные на какой-то адрес в Интернет, значит эта программа, по меньшей мере, подозрительна. Поведенческие анализаторы не используют для работы дополнительных объектов, подобных вирусным базам и, как следствие, неспособны различать известные и неизвестные вирусы – все подозрительные программы априори считаются неизвестными вирусами. Аналогично, особенности работы средств, реализующих технологии поведенческого анализа, не предполагают лечения;
    • анализ контрольных сумм – это способ отслеживания изменений в объектах компьютерной системы. На основании анализа характера изменений – одновременность, массовость, идентичные изменения длин файлов – можно делать вывод о заражении системы. Анализаторы контрольных сумм, как и анализаторы аномального поведения, не используют в работе антивирусные базы и принимают решение о наличии вируса в системе исключительно методом экспертной оценки. Большая популярность анализа контрольных сумм связана с воспоминаниями об однозадачных операционных системах, когда количество вирусов было относительно небольшим, файлов было немного и менялись они редко. Сегодня ревизоры изменений утратили свои позиции и используются в антивирусах достаточно редко. Чаще подобные технологии применяются в сканерах при доступе – при первой проверке с файла снимается контрольная сумма и помещается в кэше, перед следующей проверкой того же файла сумма снимается еще раз, сравнивается, и в случае отсутствия изменений файл считается незараженным.

    Эвристические методы также обладают недостатками и достоинствами. К достоинствам можно отнести способность обнаруживать новые вирусы. То есть если вирус новый и его сигнатура неизвестна, антивирус с сигнатурным обнаружением "пропустит" его при проверке, а с эвристическим – возможно найдет. Из последнего предложения вытекает и основной недостаток эвристического метода – его вероятностный характер. То есть такой антивирус может найти вирус, не найти его или принять легитимный файл за вирус.

    В современных антивирусных комплексах производители стараются совмещать сигнатурный метод и эвристические. Перспективным направлением в данной области является разработка антивирусов с искусственной иммунной системой – аналогом иммунной системы человека, которая может обнаруживать "инородные" тела.

    В составе антивируса обязательно должны присутствовать следующие модули:

    • модуль обновления – доставляет обновленные базы сигнатур пользователю антивируса. Модуль обновления обращается к серверам производителя и скачивает обновленные антивирусные базы.
    • модуль планирования – предназначен для планирования действий, которые регулярно должен выполнять антивирус. Например, проверять компьютер на наличие вирусов и обновлять антивирусные базы. Пользователь может выбрать расписание выполнения данных действий.
    • модуль управления – предназначен для администраторов крупных сетей. Данные модули содержат интерфейс, позволяющий удаленно настраивать антивирусы на узлах сети, а также способы ограничения доступа локальных пользователей к настройкам антивируса.
    • модуль карантина – предназначен для изолирования подозрительных файлов в специальное место – карантин. Лечение или удаление подозрительного файла не всегда является возможным, особенно если учесть ложные срабатывания эвристического метода. В этих случаях файл помещается в карантин и не может выполнять какие-либо действия оттуда.

    В больших организациях с разветвленной внутренней сетью и выходом в Интернет для защиты информации применяются антивирусные комплексы.

    Антивирусное ядро – реализация механизма сигнатурного сканирования на основе имеющихся сигнатур вирусов и эвристического анализа.

    Антивирусный комплекс – набор антивирусов, использующих одинаковое антивирусное ядро или ядра, предназначенный для решения практических проблем по обеспечению антивирусной безопасности компьютерных систем.

    Выделяют следующие типы антивирусных комплексов в зависимости от того, где они применяются:

    • антивирусный комплекс для защиты рабочих станций
    • антивирусный комплекс для защиты файловых серверов
    • антивирусный комплекс для защиты почтовых систем
    • антивирусный комплекс для защиты шлюзов

    Антивирусный комплекс для защиты рабочих станций , как правило, состоит из следующих компонентов:

    • антивирусный сканер при доступе – проверяет файлы, к которым обращается ОС;
    • антивирусный сканер локальной почты – для проверки входящих и исходящих писем;
    • антивирусный сканер по требованию – проверяет указанные области дисков или файлы по запросу либо пользователя, либо в соответствии с установленным в модуле планирования расписанием.

    Антивирусный комплекс для защиты почтовых систем предназначен для защиты почтового сервера и включает:

    • фильтр почтового потока – осуществляет проверку на наличие вирусов входящего и исходящего трафика сервера, на котором установлен комплекс;
    • сканер общих папок (баз данных) – осуществляет проверку на наличие вирусов баз данных и общих папок пользователей в режиме реального времени (в момент обращения к этим папкам или базам). Может составлять единое целое с фильтром почтового потока в зависимости от реализации технологии перехвата сообщений/обращений к папкам и передачи на проверку.
    • антивирусный сканер по требованию – осуществляет проверку на наличие вирусов почтовых ящиков пользователей и общих папок в случае использования таковых на почтовом сервере. Проверка осуществляется по требованию администратора антивирусной безопасности либо в фоновом режиме.

    Антивирусный комплекс для защиты файловых серверов – предназначен для защиты сервера, на котором установлен. Обычно состоит из двух ярко выраженных компонентов:

    • антивирусного сканера при доступе – аналогичен сканеру при доступе для рабочей станции;
    • антивирусного сканера по требованию – аналогичен сканеру по требованию для рабочей станции.

    Антивирусный комплекс для защиты шлюзов, как следует из названия, предназначен для проверки на вирусы данных, передаваемых через шлюз. Так как данные через шлюз передаются практически постоянно, на нем устанавливаются компоненты, работающие в непрерывном режиме:

    • сканер HTTP-потока - проверяет данные, передаваемые по протоколу HTTP;
    • сканер FTP-потока - проверяет данные, передаваемые по протоколу FTP;
    • сканер SMTP-потока - проверяет данные, передаваемые через шлюз по SMTP.

    Обязательным компонентом всех рассмотренных комплексов является модуль обновления антивирусных баз.

    Антивирусные средства широко представлены на рынке сегодня. При этом они обладают различными возможностями, ценой и требованиям к ресурсам. Для того чтобы правильно выбрать антивирусное ПО необходимо следить за публикуемой в сети статистикой тестирования антивирусных средств. Одним из первых тестировать антивирусные продукты начал британский журнал Virus Bulletin еще в далеком 1998 году. Основу теста составляет коллекция вредоносных программ WildList, которую можно при желании найти в Интернете. Для успешного прохождения теста антивирусной программе нужно выявить все вирусы из этого списка и продемонстрировать нулевой уровень ложных срабатываний на коллекции "чистых" файлов журнала. Тестирование проводится на различных операционных системах (Windows, Linux и т.п.), а успешно прошедшие тест продукты получают награду VB100%. Посмотреть список программ, прошедших последнюю проверку можно на странице http://www.virusbtn.com/vb100/archive/summary .

    Помимо Virus Bulletin тестирование проводят такие независимые лаборатории как AV-Comparatives и AV-Tests. Только их "коллекция" вирусов может содержать до миллиона вредоносных программ. В Интернете можно найти отчеты об этих исследованиях, правда, на английском языке. Более того, на сайте Virus Bulletin можно сравнить производителей (вендоров) антивирусов между собой на следующей страницы http://www.virusbtn.com/vb100/archive/compare?nocache .

    3.2. Межсетевой экран

    Межсетевой экран (МЭ)– это программное или программно-аппаратное средство, которое разграничивает информационные потоки на границе защищаемой системы.

    Межсетевой экран пропускает через себя весь трафик, принимая относительно каждого проходящего пакета решение: дать ему возможность пройти или нет. Для того чтобы межсетевой экран мог осуществить эту операцию, ему необходимо определить набор правил фильтрации.

    Применение МЭ позволяет:

    • повысить безопасность объектов внутри системы за счет игнорирования неавторизированных запросов из внешней среды;
    • контролировать информационные потоки во внешнюю среду;
    • обеспечить регистрацию процессов информационного обмена.

    В основе принятия решения МЭ о том, пропускать трафик или нет, лежит фильтрация по тем или иным правилам. Существует два метода настройки МЭ:

    • изначально "запретить всё", а затем определить то, что следует разрешить;
    • изначально "разрешить всё", а затем определить то, что следует запретить.

    Очевидно, что первый вариант является более безопасным, так как запрещает всё и, в отличие от второго, не может пропустить нежелательный трафик.

    В зависимости от принципов функционирования выделяют несколько классов МЭ. Основным признаком классификации является уровень модели ISO/OSI, на котором функционирует МЭ.

    1. Фильтры пакетов

    Простейший класс межсетевых экранов, работающих на сетевом и транспортном уровнях модели ISO/OSI. Фильтрация пакетов обычно осуществляется по следующим критериям:

    • IP-адрес источника;
    • IP-адрес получателя;
    • порт источника;
    • порт получателя;
    • специфические параметры заголовков сетевых пакетов.

    Фильтрация реализуется путём сравнения перечисленных параметров заголовков сетевых пакетов с базой правил фильтрации.

    2. Шлюзы сеансового уровня

    Данные межсетевые экраны работают на сеансовом уровне модели ISO/OSI. В отличие от фильтров пакетов, они могут контролировать допустимость сеанса связи, анализируя параметры протоколов сеансового уровня. К положительным качествам фильтров пакетов можно отнести следующие:

    • невысокая стоимость;
    • возможность гибко настраивать правила фильтрации;
    • небольшая задержка при прохождении пакетов.

    К недостаткам можно отнести следующее:

    • правила фильтрации пакетов трудны в описании и требуют очень хороших знаний технологий TCP и UDP. Зачастую такие МЭ требуют многочасовой ручной настройки высококвалифицированных специалистов;
    • при нарушении работоспособности межсетевого экрана с фильтрацией пакетов все компьютеры за ним становятся полностью незащищенными либо недоступными;
    • отсутствует аутентификация на пользовательском уровне.

    3. Шлюзы прикладного уровня

    Межсетевые экраны данного класса позволяют фильтровать отдельные виды команд или наборы данных в протоколах прикладного уровня. Для этого используются прокси-сервисы – программы специального назначения, управляющие трафиком через межсетевой экран для определённых высокоуровневых протоколов (http, ftp, telnet и т.д.). Если без использования прокси-сервисов сетевое соединение устанавливается между взаимодействующими сторонами A и B напрямую, то в случае использования прокси-сервиса появляется посредник – прокси-сервер, который самостоятельно взаимодействует со вторым участником информационного обмена. Такая схема позволяет контролировать допустимость использования отдельных команд протоколов высокого уровня, а также фильтровать данные, получаемые прокси-сервером извне; при этом прокси-сервер на основании установленных политик может принимать решение о возможности или невозможности передачи этих данных клиенту A.

    4. Межсетевые экраны экспертного уровня

    Наиболее сложные межсетевые экраны, сочетающие в себе элементы всех трёх приведённых выше категорий. Вместо прокси-сервисов в таких экранах используются алгоритмы распознавания и обработки данных на уровне приложений.

    Помимо функции фильтрации МЭ позволяет скрыть реальные адреса узлов в защищаемой сети с помощью трансляции сетевых адресов – NAT (Network Address Translation). При поступлении пакета в МЭ, он заменяет реальный адрес отправителя на виртуальный. При получении ответа МЭ выполняет обратную процедуру.

    Большинство используемых в настоящее время межсетевых экранов относятся к категории экспертных. Наиболее известные и распространённые МЭ – CISCO PIX и CheckPoint FireWall-1.

    3.3. Система обнаружения вторжений

    Обнаружение вторжений представляет собой процесс выявления несанкционированного доступа (или попыток несанкционированного доступа) к ресурсам информационной системы. Система обнаружения вторжений (Intrusion Detection System, IDS) в общем случае представляет собой программно-аппаратный комплекс, решающий данную задачу. Системы обнаружения вторжений (IDS) работают наподобие сигнализации здания. Структура IDS представлена на рисунке 3.

    Рис. 3. Структурная схема IDS

    Схема работы IDS представлена на рисунке 4.

    Как видно из рисунка, функционирование систем IDS во многом аналогично межсетевым экранам: сенсоры получают сетевой трафик, а ядро путём сравнения полученного трафика с записями имеющейся базы сигнатур атак пытается выявить следы попыток несанкционированного доступа. Модуль ответного реагирования представляет собой опциональный компонент, который может быть использован для оперативного блокирования угрозы: например, может быть сформировано правило для межсетевого экрана, блокирующее источник нападения.

    Существует два типа IDS – узловые (HIDS) и сетевые (NIDS). HIDS располагается на отдельном узле и отслеживает признаки атак на этот узел.

    Рис. 4. Схема работы IDS

    Узловые IDS представляют собой систему датчиков, которые отслеживают различные события в системе на предмет аномальной активности. Существуют следующие типы датчиков:

    • анализаторы журналов – чаще всего контролируются записи системного журнала и журнала безопасности;
    • датчики признаков – сопоставляют между собой признаки определенных событий, связанных либо со входящим трафиком, либо с журналами;
    • анализаторы системных вызовов – анализируют вызовы между приложениями и операционной системой на предмет соответствия атаке. Данные датчики носят превентивный характер, то есть могут предотвратить атаку в отличие от предыдущих двух типов;
    • анализаторы поведения приложений – анализируют вызовы между приложениями и операционной системой на предмет того, разрешено ли приложению то или иное действие;
    • контролеры целостности файлов – отслеживают изменения в файлах с помощью контрольных сумм или ЭЦП.

    NIDS располагается на отдельной системе и анализирует весь трафик сети на признаки атак. В данные систем встроена база данных признаков атак, на которые система анализирует сетевой трафик.

    Каждый из типов IDS имеет свои достоинства и недостатки. IDS уровня сети не снижают общую производительность системы, однако IDS уровня хоста более эффективно выявляют атаки и позволяют анализировать активность, связанную с отдельным хостом. На практике целесообразно использовать системы, совмещающие оба описанных подхода.

    Следует отметить, что перспективными направлением в области создания IDS является применение эвристических методов по аналогии с антивирусами – это системы искусственного интеллекта, искусственные иммунные системы, анализ аномального поведения и т.п.



    Рекомендуем почитать

    Наверх