Статический тиристорный компенсатор реактивной мощности. Статические тиристорные компенсаторы реактивной мощности

Электроника 22.06.2019
Электроника

На многих промышленных предприятиях для улучшения гармонического состава сети устанавливаются Они не только улучшают гармонический состав сети, но и компенсируют реактивную энергию, улучшая тем самым коэффициент мощности сети cosφ.

На предприятиях с резко-переменной нагрузкой при отключении какого-либо из потребителей могут возникать проблемы с тем, что cosφ может становиться больше единицы. Для того чтобы не отдавать реактивную мощность обратно в сеть необходимо отключить фильтр от цепи, как делается при секционном регулировании в . Но если отключить фильтр от цепи, он перестанет сглаживать гармоники, то есть теряется смысл его установки. Разбивать ФКУ на секции и вводить посекционно — дорого, требует огромных площадей и большого числа коммутационной аппаратуры. Для решения этой задачи был создан статический компенсатор реактивной мощности или декомпенсатор.

Он состоит из тиристорного регулятора напряжения (ТРН) и реактора, подключенного через вентильный ключ к цепи. Мощности реактора и ФКУ равны. При изменении cosφ>1 тиристорный регулятор увеличивает ток реактора, чем увеличивает реактивную составляющую потребляемую этими реакторами, тем самым выравнивая баланс мощности в заданном диапазоне. На рис.1 приведена схема этого устройства

Рис.1 Схема включения статического компенсатора

Главным достоинством статического компенсатора является быстрое и плавное изменение реактивной составляющей цепи. При его применении можно регулировать cosφ в заданных пределах в автоматическом режиме.

Статический тиристорный компенсатор со шкафом управления не может быть расположен на улице, они всегда располагаются в помещении. ФКУ может быть расположено как в помещении, так и снаружи. Фильтры и реакторы могут соединяться шинами или кабелями в зависимости от токов и напряжений установок. На рис.2 показан пример размещения оборудования


Как видно из рис.2 в помещении находится система управления статическим компенсатором и вентильный ключ. Через шины он соединяется с реакторами и фильтрами высших гармоник, которые находятся на улице.

Система охлаждения тиристорного регулятора, как правило воздушная. Она дешевле жидкостной, легче в эксплуатации, не требует дополнительных узлов электроники, механики, вращающихся компонентов. Также, воздух, проходящий через вентиляционные шахты, преобразователя охлаждает не только силовые модули, но и R-C цепи (служащие для защиты тиристоров от перенапряжений) и другие элементы. Если токи слишком большие, а размеры аппаратуры ограничены, применяют жидкостное охлаждение.

Статические тиристорные компенсаторы реактивной мощности автоматизированы. Управление осуществляется как в автоматическом режиме, так и в ручном с панели оператора. Данные о работе устройства могут записываться в память статического тиристорного компенсатора и таким образом вести учет компенсируемой энергии за промежуток времени, а также хранится данные о всех неисправностях, методах их устранения. Это очень удобно для анализа потребляемой энергии, статистических данных по электроснабжению, а также проводить качественный анализ сети в различных режимах работы.

Вывод: статический тиристорный компенсатор очень удобен для предприятий с наличием высших гармоник и резко-переменной нагрузкой. Он позволяет плавно регулировать реактивную энергию в цепи, а также фильтровать высшие гармоники, улучшая тем самым качество сети.

При наличии быстрых и резкопеременных нагрузок становится перспективным применение статических компенсаторов реактивной мощности, обеспечивающих возможность безынерционного регулирования реактивной мощности. При этом улучшаются условия статической устойчивости энергосистемы в целом, что обеспечивает дополнительную экономию за счет повышения технико-экономических показателей работы электроустановок.

Статические компенсаторы реактивной мощности (СКРМ) являются перспективным средством рациональной компенсации реактивной мощности в силу присущих им положительных свойств, таких, как быстродействующее регулирование, подавление колебаний напряжения, симметрирование нагрузок, отсутствие вращающихся частей, плавность регулирования реактивной мощности, выдаваемой в сеть. Кроме того, эти устройства могут осуществлять плавное и оптимальное распределение напряжений, обеспечивая тем самым снижение их потерь в распределительных электросетях.

На рисунке 11 приведены основные варианты статических компенсирующих устройств. Они содержат фильтры высших гармоник и регулируемый дроссель в различных исполнениях.

Рисунок 11 - Схемы статических компенсирующих устройств

В настоящее время известно большое количество вариантов схем, которые разделяют на три группы:

  • 1) мостовые источники реактивной мощности с индуктивным накопителем на стороне постоянного тока (рис. 11,а);
  • 2) реакторы насыщения с нелинейной вольт-амперной характеристикой (рис.11,б);
  • 3) реакторы с линейной вольт-амперной характеристикой и последовательно включенными встречно-параллельными управляемыми вентилями (рис. 11,в).

СКРМ обеспечивают одновременно компенсацию реактивной мощности основной частоты, фильтрацию высших гармонических, компенсацию изменений напряжения, а также симметрирование напряжения сети. Они состоят из управляемой части, обеспечивающей регулирование реактивной мощности, и энергетических фильтров, обеспечивающих фильтрацию высших гармоник тока нелинейной нагрузки.

Статические компенсирующие устройства обладают следующими преимуществами:

  • 1) высокое быстродействие изменения реактивной мощности;
  • 2) достаточный диапазон регулирования реактивной мощности;
  • 3) возможность регулирования и потребления реактивной мощности;
  • 4) минимальные искажения питающего напряжения.

Основными элементами статических компенсирующих устройств являются конденсатор и дроссель - накопители электромагнитной энергии - и вентили (тиристоры), обеспечивающие ее быстрое преобразование.

Принцип работы статических источников реактивной мощности состоит в том, что выпрямленным током преобразователя индуктивность (реактор или дроссель с железом) заряжается магнитной энергией, которая инвертируется в сеть переменного тока с опережающим коэффициентом мощности.

В СКРМ при полном открывании вентилей реактивная мощность установки определяется разностью между мощностью, генерируемой фильтрами, и мощностью, потребляемой реакторами. По мере закрытия вентилей мощность, потребляемая реакторами, уменьшается, и при их полном закрытии мощность, генерируемая ИРМ, становится равной мощности фильтров.

Рисунок 12 - Принципиальная схема присоединения СКРМ к системе электроснабжения (а) и расчетная схема замещения (б)

В ряде случаев помимо резонансных цепей фильтров, настраиваемых на частоты доминирующих высших гармоник тока нагрузки, в состав ТКРМ вводят параллельно присоединяемые конденсаторные батареи для фильтрации гармоник, порядок которых выше частоты настройки резонансных фильтров.

Быстрое развитие мирового производства статических тиристорных компенсаторов (СТК) определяется их преимуществами по отношению к традиционным средствам компенсации реактивной мощности в решении ряда актуальных задач электроэнергетики. К числу таких задач относится необходимость компенсации реактивной мощности в местах потребления электроэнергии и на промежуточных подстанциях длинных линий с целью повышения стабильности напряжения у потребителей, снижения потерь в линиях электропередач и сетях электроснабжения потребителей, повышения пропускной способности электропередач.

Рост протяженности, мощности и класса напряжения дальних электропередач выдвигает в число важнейших задач обеспечение средствами компенсации ограничения внутренних перенапряжений, статической и динамической устойчивости, эффективности автоматических повторных включений (АВК).

В отечественной практике для уменьшения колебаний напряжения применяются быстродействующие синхронные компенсаторы типа СК-10000-8 мощностью 7,7 Мвар на напряжение 10 кВ и мощностью 10 Мвар на напряжение 6 кВ. Максимальная скорость изменения реактивной мощности, выдаваемой в сеть, по данным завода составляет 130 Мвар/с, возможна кратковременная работа с 2-кратной перегрузкой. Компенсаторы успешно работают на некоторых металлургических заводах, в частности в системе электроснабжения станов горячего проката.

Установленная мощность синхронного компенсатора при одном и том же графике реактивной нагрузки будет меньше, чем установленная мощность статического компенсирующего устройства. Синхронные компенсаторы обладают всеми недостатками вращающихся машин и имеют меньшее быстродействие по сравнению со статическими компенсаторами. Кроме того, в статических компенсирующих устройствах возможно пофазное управление.

На зарубежных металлургических заводах для снижения влияния на питающую сеть резкопеременных нагрузок применяются синхронные компенсаторы с высокой кратностью форсировки напряжения возбуждения и быстродействующей системой регулирования.

Фирма Simens (ФРГ) выпускает синхронные компенсаторы мощностью 10MBА с ударной мощностью 30 MBА. Обмотка возбуждения компенсатора питается от нереверсивного тиристорного преобразователя с кратностью форсировки возбуждения по напряжению 13,2.

Фирма Fuji Electric Co совместно с Nisshin Electric Co (Япония) выпускает синхронные компенсаторы мощностью 8 MBА с ударной мощностью 16 MBА. Компенсатор имеет бесщеточную систему возбуждения с кратностью форсировки по напряжению, равной 2.

Фирма ASEA (Швеция) выпускает синхронные компенсаторы номинальной мощностью 7,5 Мвар с ударной мощностью 30 Мвар.

Статические компенсирующие устройства обладают рядом преимуществ по сравнению с быстродействующими синхронными компенсаторами. Основным преимуществом является их большее быстродействие. Существенна и возможность осуществления пофазного управления, что необходимо в сетях с быстроизменяющейся несимметричной нагрузкой.

В настоящее время разработано много типов статических компенсирующих устройств на базе управляемых реакторов и конденсаторов в основном с применением управляемых вентилей (тиристоров). Наибольшее распространение в зарубежной и отечественной практике получили устройства прямой и косвенной компенсации.

Статические компенсирующие устройства прямой компенсации осуществляют ступенчатое регулирование реактивной мощности с помощью включения и отключения батарей конденсаторов или фильтров высших гармоник при изменении реактивной мощности электроприемников (рис. 13 и 14).

Рисунок 13 - Принципиальная схема компенсирующего устройства прямой компенсации: На рисунке: 1 - тиристорные ключи; 2 - реактор; 3 - конденсаторная батарея; 4 - устройство для управления тиристорными ключами, 5 - нагрузка (тиристорный преобразователь).

Для обеспечения быстродействия в качестве контакторов или выключателей на каждой ступени применяются тиристорные ключи. Для исключения переходных процессов при включении, которые будут приводить только к увеличению колебаний напряжения, включение конденсаторов тиристорными ключами осуществляется в тот момент, когда напряжение сети и конденсаторов равны как по величине, так и по полярности.

Рисунок 14 - Компенсация реактивной мощности устройством прямой компенсации: а - схема устройства прямой компенсации; б - принцип работы статического компенсирующего устройства прямой компенсации; 1-5 - ступени компенсации

Быстродействие устройства прямой компенсации в основном определяется запаздыванием включения или отключения секций батарей конденсаторов на период питающего напряжения (0,02 с) при условии непрерывного изменения реактивной мощности. Одним из преимуществ устройств прямой компенсации является то, что они не генерируют в сеть высшие гармоники.

Схемы прямой компенсации разработаны в СССР в 50-х годах. За рубежом такие устройства изготовляются в Швеции и в Японии.

Фирма ASEA (Швеция) выпускает конденсаторные установки с тиристорным управлением для компенсации реактивной мощности в системах электроснабжения с вентильными преобразователями и дуговыми печами. Система регулирования обеспечивает выбор момента подачи управляющего импульса на каждый тиристор, причем импульс управления подается с упреждением перед моментом прохождения емкостного тока через нуль. Когда конденсаторы не присоединены к сети, они остаются заряженными до амплитуды положительного или отрицательного напряжения сети. На рисунке 15 показано, что коммутация осуществляется в момент, когда напряжение сети соответствует по значению и полярности напряжению на конденсаторе. Тиристор прекращает пропускать ток при переходе его через нуль после снятия импульса с управляющего электрода. Конденсатор остается заряженным до амплитудного значения напряжения и готов к следующей коммутации.

Рисунок 15 - Диаграмма работы статического компенсирующего устройства прямой компенсации: U - напряжение сети, U с - напряжение на конденсаторе, I c - ток конденсатора; t 0 - импульсы для подзарядки конденсаторов; t 1 - подключение к сети; t 2 - отключение от сети; t 3 -t 4 - интервал перезарядки

Статические компенсирующие устройства косвенной компенсации (рис. 16) состоят из двух частей: плавно регулирующего индуктивного элемента (реактора) для компенсации колебаний напряжения и нерегулируемой части - батарей конденсаторов или фильтров высших гармоник.

Принцип косвенной компенсации для уменьшения колебаний напряжения заключается в том, что управляемый реактор потребляет реактивную мощность тогда, когда ее не потребляет резкопеременная нагрузка, и наоборот (рис. 17).

Рисунок 16 - Принципиальная схема статического компенсирующего устройства косвенной компенсации: На рисунке 16: 1 - нагрузка; 2 - управляемые реакторы; 3 - тиристорные ключи; 4 - фильтры высших гармоник токов; 5 - батареи конденсаторов; 6, 7 - трансформаторы тока и напряжения; 8 - система фазоимпульсного управления тиристорами

Регуляторы реактивной мощности должны обеспечивать такое регулирование, чтобы осуществлялось слежение за фронтом наброса и сброса реактивной мощности. Следовательно, от устройства компенсации требуется большое быстродействие, соответствующее фронту наброса и сброса реактивной мощности наиболее характерных резкопеременных нагрузок.

Регулирование тока в реакторе может осуществляться различными способами. Например, некоторые зарубежные фирмы применяют управляемый насыщающийся реактор. Однако быстродействие таких устройств можно оценить временем задержки более 0,06 с (три периода питающего напряжения), что недостаточно для эффективной работы компенсатора. Поэтому в настоящее время применяется регулирование тока в реакторе с помощью встречно-параллельно включенных тиристоров. Такая схема обеспечивает плавное регулирование реактивной мощности с временем задержки 0,01 с.

Рисунок 17 - Компенсация реактивной мощности устройством косвенной компенсации: а - схема статического компенсирующего устройства; б - принцип действия устройства косвенной компенсации

На рисунке 18 приведена схема компенсирующего устройства с управляемыми реакторами с помощью встречно-параллельных тиристоров и нерегулируемой емкости фильтров высших гармоник, используемого для компенсации реактивной мощности при работе дуговых печей (Япония).

В настоящее время в распределительных сетях 6-10 кВ промышленных предприятий с резкопеременной нагрузкой широко применяются ТКРМ.

В ТКРМ к шинам 6-10 кВ нагрузки параллельно подключены компенсирующие реакторы и силовые фильтры высших гармоник.

Рисунок 18 - Принципиальная схема статического компенсирующего устройства косвенной компенсации в сети с дуговыми сталеплавильными печами: На этом рисунке обозначено: 1, 2 - трансформаторы; 3 - тиристорные ключи; 4 - управляемые реакторы; 5, 6 - фильтры высших гармоник; 7, 8 - трансформаторы напряжения и тока; 9 - устройство управления тиристорными ключами; 10 - дуговые сталеплавильные печи.

Компенсирующие реакторы соединяются в треугольник вместе со встречно-параллельно включенными тиристорами и образуют регулирующий, стабилизирующий и симметрирующий элементы. Источником реактивной мощности является конденсаторная установка силовых фильтров высших гармоник.

Тиристорные компенсаторы стабилизируют потребляемую из сети реактивную мощность с погрешностью не более 2 % номинальной мощности как в сетях с симметричными нагрузками, так и при наличии несимметричных нагрузок, обеспечивая несимметрию потребляемых из фаз сети токов не более 10%, при этом быстродействие регулирования - не более 20 мс. В состав ТКРМ, представляющих собой комплекс оборудования, компонуемого свободно и электрически соединяемого на месте монтажа, входят полупроводниковый стабилизатор мощности (ПСМ), компенсирующие реакторы, фильтры, содержащие фильтровый реактор и конденсаторную установку. Компенсирующие реакторы имеют однофазное исполнение, магнитопровод с воздушным зазором и масляное охлаждение.

Фильтровые реакторы имеют однофазную и трехфазные конструкции. Они выполняются в виде цилиндрических катушек с воздушным охлаждением и вертикальной установкой трех фаз, за исключением фильтровых реакторов третьей и пятой гармоник, предназначенных для горизонтальной установки фаз в линию или установки по вершинам равностороннего треугольника. Фильтровые реакторы имеют регулировочные отпайки для изменения номинальной индуктивности.

Конденсаторные установки выполнены трехфазными, соединенными по схеме "две звезды", нейтрали которых соединяются через трансформатор тока, являющийся датчиком сигнала при разбалансе емкостей в лучах звезды.

Конструктивно конденсаторные установки силовых фильтров выполнены в виде двухъярусных стеллажей с вертикальной установкой силовых конденсаторов типа КЭКФ напряжением 4,4; 6,6; 7,3 кВ, соединенных параллельно и защищенных предохранителями типа ПКК-411.

Управляющие сигналы в систему регулирования ПСМ поступают с трансформаторов тока ПСМ, трансформаторов тока и напряжения питающей сети. Регулирование реактивной мощности, генерируемой в сеть, производится за счет изменения угла управления тиристоров. При этом изменяется величина и длительность протекания тока через компенсирующие реакторы, т.е. потребление компенсирующими реакторами реактивной мощности при постоянстве реактивной мощности, генерируемой конденсаторными установками фильтров.

Развитие СТК идет в нескольких направлениях, определяемых их функциональными особенностями. Функции СТК зависят от места и роли в общей системе передачи и распределения электроэнергии.

Системообразующие линии электропередачи напряжением до 1150 кВ передают энергию от генерирующих станций к межрайонным и районным подстанциям. На линиях устанавливаются компенсаторы типа СТК1.

Электрические сети межрайонного значения имеют напряжение 220-500кВ. На районных подстанциях используются СТК типа II. В сетях электроснабжения потребителей, обычно выполняемых на напряжение от 6 до 110 кВ, применяются СТК третьего и четвертого типов.

Пофазное управление СТК выполняется по алгоритму, при котором компенсация колебаний реактивной мощности нагрузки типа дуговой сталеплавильной печи (ДСП) и симметрирование нагрузки выполняется одновременно. Этим обеспечивается ослабление вызванных флуктуирующей дугой ДСП колебаний напряжения в каждой фазе и в совокупности по всем трем фазам сети. Анализ требований к быстродействию автоматического управления СТК показал, что эквивалентное запаздывание в пофазных контурах компенсации колебаний реактивной мощности не должно превышать 5 мс.

Симметрирование линии электропередачи особенно актуально для длинных одноцепных линий. Оно улучшает режим электропередачи при повреждении одного из участков линий, при котором поврежденный участок работает в двухфазном режиме. Дополнительный симметрирующий эффект создается включением в треугольник обмотки трансформатора СТК.

Ограничение перенапряжений с помощью СТК (функция 5) особенно актуально в передачах сверхвысокого напряжения (1 МВ и более). В этих передачах более опасны внутренние перенапряжения, и именно они определяют уровень изоляции.

Быстродействующее регулирование СТК в режиме стабилизации напряжения само по себе является эффективным средством ограничения квазиустановившихся перенапряжений.

Для ограничения импульсных перенапряжений используются специальные элементы, обеспечивающие включение вентилей с запаздыванием порядка 10-20мкс. Эти элементы входят как в состав тиристорных ячеек высоковольтных тиристорных вентилей, так и в состав электронной системы управления СТК.

В момент включения вентиля напряжение прикладывается к реактору СТК, чем и достигается снижение перенапряжений. Однако при этом, как правило, возникает неравенство положительных и отрицательных полуволн тока через реактор, иными словами, в токе появляется квазипостоянная составляющая. Для ее устранения в состав системы управления СТК должно входить специальное устройство быстрого симметрирования полуволн тока фазы.

Реакторы и вентили СТК должны быть рассчитаны на вызванные перенапряжениями перегрузки. Реакторы со сталью должны быть рассчитаны на большие перегрузки, значения которых определяются нелинейностью вольт-амперной характеристики реакторов при напряжении выше номинального. Соответствующие токовые перегрузки должны выдерживать и тиристорные вентили СТК.

Свойство СТК ограничивать внутренние перенапряжения реализуется в полной мере при условии их подключения непосредственно к линии, минуя подстанционные трансформаторы.

Функция 6 должна быть рассмотрена применительно к двум видам АПВ - трехфазному и однофазному (ОАПВ).

Для освоения электропередач переменного тока класса 750 кВ и выше решающее значение имеет проблема обеспечения успешного АПВ. Напряжение в месте к.з. во время бестоковой паузы АПВ возрастает пропорционально номинальному напряжению линии и ее длине. Поэтому на линиях класса 1150кВ, компенсируемых обычными шунтирующими реакторами, восстановление электрической прочности канала дуги за ограниченное время бестоковой паузы может не произойти.

Увеличение бестоковой паузы АПВ для тяжелонагруженных электропередач может привести к нарушению устойчивости параллельной работы. Поэтому трехфазное АПВ должно быть быстродействующим (БАПВ) с паузой до 0,4 с. Однако при длинах участков линии 1150 кВ порядка 400-500 км вследствие относительно малых потерь в линии и шунтирующих реакторах в паузе АПВ будут возникать слабозатухающие колебательные процессы в контурах "емкость линии -- шунтирующие реакторы". Вследствие колебательных процессов в паузе АПВ возможны повторные возникновения дуги в месте к.з. В результате БАПВ будет неуспешным.

Подключение СТК к поврежденному участку линии усиливает затухание колебаний благодаря действию обмоток трансформатора СТК, включенных в треугольник. Обмотки образуют короткозамкнутый контур для синфазных волн напряжения. Специальное управление моментами включения вентилей в паузу АПВ также будет способствовать затуханию колебаний и, следовательно, сокращению времени паузы БАПВ.

Еще более важную роль должен выполнять СТК в обеспечении успешного протекания однофазного АПВ.

Уровень перенапряжений в момент ОАПВ ниже, чем при трехфазном АПВ. Учитывая, что из всех видов к.з. на ультравысоковольтных линиях однофазные к.з. составляют 80-85 %, можно сделать вывод, что обеспечение успешного протекания ОАПВ имеет исключительное значение для надежности этих линий.

Однако с ростом класса напряжений линий проблема ОАПВ усложняется в еще большей степени, чем проблема БАПВ. Причиной этого является ток подпитки дуги в паузу ОАПВ, который при длинах линии 300-500 км может достигать 150-200 А. Быстрое погасание дуги возможно при условии, что ее ток не превышает 10-20 А.

Компенсация тока подпитки дуги при ОАПВ обеспечивается тиристорно-реакторной группой (ТРГ), подключенной к обмоткам трансформатора, соединенным в звезду. Задавая нужный режим ТРГ (углы управления вентилей), можно полностью скомпенсировать емкостную составляющую тока подпитки.

Если линия в момент ОАПВ передает энергию по неповрежденным фазам, возникает дополнительная составляющая тока подпитки дуги за счет взаимоиндуктивностей поврежденной и здоровых фаз. Анализ, проведенный применительно к параметрам линии 1150 кВ длиной до 500 км, показывает, что указанная ТРГ при надлежащем управлении углами включения вентилей может скомпенсировать и эту составляющую тока дуги.

Таким образом, использование СТК для гашения дуги в паузу ОАПВ позволяет снизить ток подпитки дуги до малых значений, при которых дуга гаснет за 0,1-0,3 с, что дает возможность уменьшить время цикла ОАПВ до 0,3-0,4 с и тем самым практически исключить опасность нарушения устойчивости электропередачи при однофазных к.з. на линии.

Стабилизация напряжения в условиях быстрого изменения потока энергии по линии (функция 7) обеспечивает устойчивость длинных линий электропередачи. Для поддержания устойчивости регулятор напряжения должен иметь высокое быстродействие, требуемая величина которого зависит от параметров электропередачи и длины линии.

Фильтрация гармоник тока нагрузки (функция 8) достаточно проста, если спектр тока линейчатый и быстрозатухающий с ростом частоты. Такой спектр имеют токи тиристорных преобразователей с нагрузкой на стороне постоянного тока, выпрямители и инверторы передач постоянного тока, мощные выпрямители электролизных установок и др. Амплитуды гармоник тока шестипульсного тиристорного преобразователя даны на рисунке 19 (точки ТП).

Рисунок 19 - Спектры тока различных потребителей

Тиристорно-реакторная группа СТК имеет аналогичный спектр, но значения гармоник значительно меньше (рис. 20, точки ТРГ). Для фильтрации токов с линейчатым спектром используются цепочки узкополосных фильтров, настроенные на частоты наибольших гармоник.

Значительно сложнее обеспечить эффективную фильтрацию несинусоидальной составляющей тока нагрузки типа дуговых сталеплавильных печей (функция 9), т.к. спектр тока ДСП - сплошной (рис. 20).

Таким образом, функции СТК всех четырех типов далеко не исчерпываются компенсацией реактивной мощности. Поэтому можно сказать, что принятое для СТК название "Статические компенсаторы реактивной мощности" в неполной мере соответствует действительности и может неправильно ориентировать специалистов по энергосистемам и электрическим сетям.

В одном из первых применений вентильного преобразователя для быстродействующего управления реактивной мощностью выпрямитель и инвертор включены последовательно с общим реактором и используются как регулируемый потребитель реактивной мощности в качестве единой, выпрямительно-инверторной подстанции (ВИП). Более перспективной оказалась схема с тиристорно управляемыми реакторами на переменном токе (ТУР) в сочетании с фильтрокомпенсирующими цепями (ФКЦ). В разработках фирмы АСЕА используется СТК по схеме тиристорно переключаемых секций конденсаторов (ТПК) или сочетание схем ТПК и ТУР. В последние годы ведутся разработки СТК на базе многофазных инверторов с принудительной коммутацией или тиристорных преобразователей частоты (КТПЧ).

При оценке показателя 1 мощность тиристорной части учитывалась исходя из равенства диапазонов бесконтактного (тиристорного) регулирования сравниваемых схем. Потери (показатель 2) также были отнесены к диапазону бесконтактного регулирования. Величины потерь взяты с учетом данных зарубежных и отечественных СТК.

Оценка допустимых перенапряжений (показатель 3) призведена с учетом того, что в схеме ТУР вентили полностью открываются при напряжениях выше заданного уровня, что не только защищает их от повреждений, но и снижает уровень перенапряжений в питающей сети. Остальные схемы критичны к перенапряжениям, проектируются в расчете на заданную (максимально допустимую) кратность повышения напряжения и по этой причине должны снабжаться специальными сильноточными ограничителями перенапряжений (ОПН). При вынужденном включении от перенапряжений вентили этих схем оказываются в аварийном режиме.

Наличие импульсного управления в схемах СТК позволяет рассматривать их при малых возмущениях стационарного режима как импульсные системы, интервал съема (показатель 4) при этом определяется так называемой пульсностью преобразователя

где Т - интервал съема импульсной системы; Т с - период частоты сети; m - число вентилей, поочередно коммутируемых за период.

На основании приведенной оценки характеристик различных схем СТК можно сделать вывод о том, что по совокупности показателей (мощность тиристорной части, удельные потери, быстродействие, устойчивость к перенапряжениям) схема с тиристорно управляемым реактором превосходит другие схемы. Поэтому для всех вышеуказанных четырех типов СТК при современном уровне силовой преобразовательной техники целесообразно использовать схему ТУР в сочетании с ФКЦ.

Тиристорные преобразователи с нагрузкой на стороне постоянного тока имеют линейчатый спектр несинусоидальности тока (рис. 21, точки ТП). В составе СТК необходимо иметь ФКЦ с частотами n = 5,7 и широкополосную ФКЦ с частотой n = 11.

Приведенные выше схемы СТК легли в основу разработки серий СТК на напряжение 6; 10; 35 и 110 кВ, выполненной институтами и заводами электротехнической промышленности.

На основании проведенного исследования можно сделать вывод, что статические тиристорные компенсаторы открывают новые возможности по повышению надежности и качества электрических систем, обеспечивая помимо компенсации реактивной мощности ограничение коммутационных перенапряжений и соответствующее облегчение координации изоляции оборудования ультравысоковольтных передач, повышение вероятности успешных БАПВ и ОАПВ, повышение предела мощности по длинным линиям, симметрирование режима, снижение потерь в линиях, компенсацию влияния резкопеременной нагрузки, фильтрацию высших гармоник.

При современном уровне развития высоковольтной преобразовательной техники предпочтительной схемой СТК является шести- или двенадцатипульсная тиристорно-реакторная схема с необходимым набором фильтрокомпенсирующих цепей.

Регулирование индуктивности осуществляется тиристорными группами VS, управляющие электроды которых подсоединены к схеме управления.

Реактивная мощность Q, выдаваемая такой установкой в сеть, регулируется переменной реактивной мощностью индуктивности Q L , т. е.

где Q C - мощность БК.

В настоящее время промышленностью выпускаются тиристорные компенсаторы реактивной мощности для сети 0,4 кВ, на номинальный ток 190 А, мощностью 125 квар типа ТК-125-380. Диапазон регулирования мощности 25-125 квар, скорость изменения реактивной мощности 500 квар/с.

Силовая часть такого компенсатора представляет собой два параллельно включенных трехфазных управляемых моста, нагрузками которых являются изолированные обмотки дросселя, размещенные на крайних стержнях Ш-образного сердечника.

При эксплуатации СКРМ типа ТК-125-380 выявилось их главное преимущество - плавное автоматическое регулирование ими реактивной мощности и стабилизация напряжения сети системой управления тиристорами. Тиристорный компенсатор может работать в режимах регулирования соsj или регулирования напряжения.

Несмотря на то, что данный компенсатор требует некоторой доработки, целесообразность его применения в распределительных электросетях 380 В, особенно с резкопеременным потреблением реактивной мощности, не вызывает сомнения.

Управляющее устройство генерирует в соответствующие моменты токовые импульсы, которые, проходя через БК, изменяют напряжение на ее зажимах. Таким образом, бросков тока при коммутации вентилей в цепи этой БК не возникает. Длительность протекания тока в течение каждого полупериода может регулироваться моментом подачи импульса тока от управляющего устройства.

Устройство состоит из двух симметричных блоков. В каждом блоке трехфазные группы соединяются в треугольник. Последовательно с конденсаторами включаются два встречно-параллельно соединенных вентиля 3 и 4. Батареи конденсаторов БК 1 и 2 и вентили включаются в сеть через трехфазный трансформатор. Обмотки трансформаторов 5 и 6 соединяются таким образом, чтобы суммарный ток блоков не содержал гармоник, кратных трем, которые, как показывают теоретические и экспериментальные исследования, являются самыми значительными в токе ИРМ. Это можно получить, если для одного трансформатора предусмотреть схему соединения обмоток "звезда-звезда", а другого - "звезда-треугольник". При соединении конденсаторов в треугольник компенсируются третья и кратная ей гармоники тока.

Для практически возможных случаев рассматриваемая схема имеет следующие параметры: постоянная времени 0,02 - 0,03 с; диапазон регулирования мощности (в долях от номинальной) 0,3 - 1; диапазон изменения угла управления вентилями - около 50°.

Данные его эксплуатации показали, что фильтр снизил содержание тока 5-й гармоники в 5 раз. В фильтре использован реактор, допускающий регулировку индуктивности в диапазоне от +25 до -20% номинального значения. При наличии фильтров возможно подключение БК к тем же шинам без защитных реакторов.

Опыт разработки и промышленная эксплуатация фильтров высших гармоник имеется за рубежом (США, Япония, Германия и др.). Обычно это простые режекторные фильтры, состоящие из последовательно включенных нерегулируемых конденсаторов и реакторов. Реакторы фильтров зарубежных фирм, как правило, изготовляют без железного сердечника. Это обеспечивает лучшую добротность, но приводит к увеличению габаритов.

Измерительные трансформаторы тока и напряжения передают показания мгновенных значений токов I A , I B , I C и напряжений U A , U B , U C , а также реактивной Q A , Q B , Q C и активной P A , P B , P C мощности в систему регулирования. Тиристорно-реакторная группа, содержащая тиристорные ключи VD1, VD2, VD3 и реакторы LR, управляется системами автоматического регулирования САР-1, 2, 3. Фильтрокомпенсирующие устройства ФКУ-1 и ФКУ-2 представляют собой комбинированные многополюсные трехфазные фильтры 3, 5 и 7-й гармоник, включающие реакторы и батареи конденсаторов с вакуумными выключателями QW1 и QW2. Система управления регулирует величину реактивной мощности отдельно в каждой фазе компенсатора путем изменения углов открытия вентилей VD1-VD3, причем регулируется не емкость, а индуктивность. Фильтрокомпенсирующие устройства настроены на определенную постоянную мощность, а регулируемые реакторы снижают эту постоянную емкостную мощность до того уровня, который необходим для регулирования заданного напряжения.

В настоящее время фирма Nokian Capacitors Ltd. (Финляндия) производит и устанавливает статические компенсаторы возмущений для линий передачи электроэнергии и промышленных предприятий.

Возмущения при обычной работе линий передачи электроэнергии и промышленных распределительных систем могут быть вызваны подключением линий, авариями на линиях, нелинейными компонентами, такими как тиристорные регуляторы, и быстро изменяющимися активными или реактивными нагрузками.

Проблемы, которые при этом возникают, включают в себя: наличие гармоник; потребность в дополнительной реактивной мощности; флуктуации напряжения; фликкер-эффект (мерцание); несбалансированные нагрузки; быстрые изменения в реактивной мощности. Эти проблемы можно решить с помощью быстродействующего статического компенсатора (БСК).

Устройства БСК проектируются индивидуально, используя стандартные компоненты, для решения конкретных проблем каждого заказчика. Несколько из приведенных выше проблем могут возникать одновременно. Оптимальное решение диктуется техническими и экономическими соображениями.

Возмущения, вызванные наличием гармоник, могут быть устранены с помощью фильтров. Реактивная мощность может быть обеспечена применением конденсаторов, которые, если их использовать как фильтры, могут обеспечить как коррекцию коэффициента мощности, так и снизить уровень гармоник.

Флуктуации напряжения могут быть устранены путем использования индуктивных стабилизаторов с конденсаторами, подключаемых через тиристорную схему управления.

От фликкер-эффекта, вызванного быстроменяющейся нагрузкой, можно избавиться с помощью индуктивных стабилизаторов, подключаемых через тиристорную схему управления.

Несбалансированные нагрузки могут быть уравновешены путем селективного подключения, через тиристорную управляющую схему, индуктивных стабилизаторов и конденсаторов.

Быстрые флуктуации в реактивных нагрузках, таких как искровые плавильные печи, могут быть скомпенсированы аналогичным способом.

При использовании системы БСК на сталелитейном заводе было достигнуто улучшение следующих показателей:

  • - флуктуации напряжения были снижены на 80%;
  • - уровень напряжения повысился;
  • - при повышении уровня напряжения увеличилась производительность за счет уменьшения времени плавки в искровых печах;
  • - удалось избежать штрафов компании-поставщика электроэнергии за низкий коэффициент мощности;
  • - мощность, выделяемая в искре плавильных печей, была стабилизирована, что привело к снижению износа графитовых электродов;
  • - уровень гармоник в сети подачи электроэнергии, благодаря использованию фильтров, снизился до приемлемого значения.

Статические компенсаторы проектируются индивидуально, таким образом, чтобы каждый компенсатор соответствовал своему конкретному назначению и приносил положительный экономический эффект.

Для проектирования необходима следующая информация: принципиальная схема той системы, к которой компенсатор будет подсоединен; номинальное напряжение и частота сети; мощность, выделяемая при коротком замыкании в точке общего подсоединения, и диапазон любых возможных изменений; информация относительно изменений реактивной мощности и/или информация о связанной с этим нагрузке; данные по имеющемуся уровню и характеру гармоник или данные о нагрузке, вызывающей наличие гармоник; конструкторские требования, например, допустимое изменение напряжения и содержания гармоник, требования по реактивной составляющей мощности и быстродействие системы компенсации; любые дополнительные или особые требования, которые предъявляются к компенсатору; окружающие условия.

накладывается переменный поток сетевой обмотки, то результирующий поток смещается в область насыщения стержней магнитопровода. В свою очередь, насыщение стержней приводит к появлению тока в сетевой обмотке. При вводе или выводе энергии из контура управления возникает переходный процесс увеличения или уменьшения сетевого тока и соответственно потребляемой реактором реактивной мощности.

Рисунок 3.8. Схема УШР с подмагничиванием

Регулирование тока сетевой обмотки реактора производится по пропорциональному закону, в котором угол управления тиристорами источника выпрямленного тока изменяется по линейному закону в зависимости от рассогласования между заданным напряжением уставки и напряжением в точке подключения реактора.

Рисунок 3.9. Регулирование тока сетевой обмотки

Существует четыре основных вида подмагничивания реакторов:

1. Реакторы с продольным подмагничиванием – управляющий постоянный магнитный поток совпадает по направлению с переменным рабочим потоком, такие реакторы имеют резко нелинейные вольт-амперные характеристики, причем степень нелинейности возрастает с уменьшением подмагничивания.

2. Реакторы с поперечным подмагничиванием – управляющий магнитный поток направлен перпендикулярно переменному рабочему потоку. При этом характеристики намагничивания по продольной оси симметричны относительно начала координат. Реакторы такого типа имеют практически линейные вольт-амперные характеристики, наклон которых определяется током управления. Кроме того отсутствие прямой электромагнитной связи между ОУ и СО облегчает получение высокого быстродействия. Поэтому поперечное подмагничивание имеет ряд преимуществ перед продольными, однако уступает в эффективности намагничивания (приращение реактивной мощности на единицу напряжения управляющего поля).

3. Реакторы с продольно-поперечным подмагничиванием – имеют участки как с продольным, так и с поперечным подмагничванием, что позволяет получить оптимальную функциональность по отношению к реакторам с только продольным или только поперечным подмагничиванием.

4. Реакторы с кольцевым подмагничиванием – по конструктиву близки к электрической машине с заторможенным ротором. Регулировочные характеристики реактора аналогичны характеристикам реактора с продольным подмагничиванием и имеют существенную нелинейность. К недостаткам таких реакторов относится: невозможность пофазного управления и сложность изготовления.

Области работы магнитной системы УШРП на кривой намагничивания электротехнической стали определяются степенью намагничивания постоянным током (рисунок 3.10).

Диаграммы, поясняющие принцип действия и основные режимы работы УШРП приведены на рисунке 3.11. При отсутствии тока подмагничивания реактора формируемый магнитный поток близок к синусоидальному, поскольку магнитная система работает на начальном участке кривой намагничивания. В результате в сетевой обмотке реактора наводится противодействующая ЭДС и мощность потребляемая реактором из сети не превышает 3–5% от номинального значения.

По мере намагничивания магнитной цепи реактора происходит смещение по кривой намагничивания в область насыщения, в результате чего уменьшается амплитуда изменения потока, а следовательно и противодействующая ЭДС в сетевой обмотке и реактор загружается по реактивной мощности.

В режиме полного насыщения (максимальный постоянный ток в обмотке управления) магнитная система УШРП работает на участке насыщения и создаваемая противоэдс минимальна.

Ток фазы I

Ток управления I

Магнитные потоки Ф, Ф2

Рисунок 3.11. Осциллограммы физических величин УШРП с изменением степени намагничивания во времени

Рисунок 3.12. УТРТ

Схема УТРТ близка к схеме УШРТ, отличается тем, что ректоры LR совмещены с индуктивностью рассеяния согласующего трансформатора T. Таким образом, трансформатор имеет индуктивность рассеяния равную 100 %. Ток

трансреактора регулируется изменением углов управления одной равнозначной по мощности тиристорной группой.

В другой модификации УТРТ используется многоступенчатый принцип изменения реактивной мощности, однако, реакторы основанные на данной схеме в настоящее время не выпускаются.

УШРВ представляет собой упрощенную модификацию УШРТ, тиристорные вентили которого заменены на более дешевые вакуумные выключатели.

Рисунок 3.13. УШРВ.

Принцип действия УШРВ следующий. При изменении напряжения на шинах ПС автоматический регулятор АР с помощью распределителя управляющих воздействий РУВС подключает или отключает тем ступенями необходимое количество реакторных секций, воздействуя тем самым на потребляемую реактивную мощность и обеспечивая поддержание напряжения в заданных уставкой пределах.

Регулятор имеет два канала:

Медленно действующий – обеспечивающий минимальное число коммутаций и отрабатывающий только два максимума суточного графика нагрузки.

Быстродействующй – реагирующий на существенное увеличение напряжения или на команду внешней автоматики, например при гашении дуги в паузе ОАПВ.

LRo – дополнительный реактор в нейтрали трансформатора, для гашения дуги подпитки, при этом включаются все реакторы Q2 и размыкается треугольник Q3 (КБ отсутствует).

Второй вариант гашения аналогичен УШРТ отключаютя выключатели Q2 неповрежденных фаз и отключением выключателя Q3 в треугольник вводится КБ.

Лекция 4 Поперечный компенсатор второго поколения FACTS устройств

Статический синхронный компенсатор (СТАТКОМ) или static synchronous compensator (STATCOM) – это устройство на базе статического преобразователя, работающее в качестве статического компенсатора реактивной мощности, чей емкостный или индуктивный выходной ток может изменяться независимо от переменного напряжения сети.

СТАТКОМ является одним из основных устройств FACTS, на его основе могут быть реализованы вставки постоянного тока и различные комбинированные устройства продольно-поперечной и продольно-продольной компенсации . При этом, СТАТКОМ может быть реализован и на основе источника напряжения (предпочтительно), и на основе источника тока.

Рисунок 4.1. СТАТКОМ на базе источника напряжения и источника тока

Устройство СТАТКОМ в общем случае содержит (см. рисунок 4.2):

- статический преобразователь, способный работать в различных режимах потребления и генерации активной и реактивной мощности и обычно располагающийся в закрытом помещении (красный);

- согласующий трансформатор для подключения к шинам высокого напряжения (желтый);

- звено постоянного тока (выпрямленного напряжения), обеспечивающее стабильность тока (напряжения) для реализации модуляции синусоидальных токов (напряжений) (голубой);

- пассивные фильтры (зеленый).

Рисунок 4.2. Вставка постоянного тока на базе двух СТАТКОМ

Существуют различные схемы реализации СТАТКОМ. Один из возможных вариантов СТАТКОМ с преобразователем напряжения представлен на рисунке 4.3.

Рисунок 4.3. Упрощенная принципиальная схема СТАТКОМ

Для определения функциональных возможностей СТАТКОМ необходимо рассмотрение принципа работы силового оборудования. Рассматривая принципиальную схему, стоит отметить следующее:

- имеющиеся в составе СТАТКОМ фильтры не оказывают существенного влияния на его характеристики с точки зрения описания процессов протекающих в СТАТКОМ, и их роль будет рассмотрена позднее;

- статический преобразователь формирует напряжение близкое к гармоническому в довольно широком спектре частот (вплоть до частоты коммутации вентилей) и может быть замещено источником ЭДС при условии пренебрежения потерями;

- реактор и трансформатор без учета потерь могут быть представлены индуктивным сопротивлением – сопротивлением связи между шинами подстанции и статическим преобразователем.

Таким образом, схема замещения СТАТКОМ (рисунок 4.4) аналогична схеме замещения синхронной электрической машины. А поскольку сходными также являются и характеристики этих устройств, то становится понятна и причина названия данного статического устройства – статический синхронный компенсатор.

Рисунок 4.4. Схема замещения СТАТКОМ

Полная мощность устройства определяется по выражению

S = 3 С sin α − j3С cos α −С ,

а поскольку напряжение статического преобразователя может быть управляемо как по модулю, так и по фазе, и при этом независимо по трем фазам, то потребляемая активная и реактивная мощности могут быть изменены независимо друг от друга. Таким образом, СТАТКОМ может работать в четырех квадрантах, но лишь кратковременно, поскольку потребление или генерация активной энергии ведет к ее накоплению или отбору из конденсаторных батарей на стороне выпрямленного напряжения,

то есть изменению напряжения и выход его за допустимые пределы. Векторные диаграммы напряжений и токов, поясняющие принцип действия СТАТКОМ приведены на рисунке 4.5.

I SjX LS

I SjX LS

I SjX LS

I SjX LS

Рисунок 4.5. Векторные диаграммы напряжений и токов СТАТКОМ

1 – генерация реактивной мощности;

2 – потребление активной мощности;

3 – генерация активной мощности;

4 – потребление реактивной мощности.

Длительное потребление или генерация активной мощности СТАТКОМ возможна только в случаях, если он является составляющей комбинированного устройства компенсации или вставки постоянного тока, либо в случае, когда на стороне выпрямленного напряжения установлен накопитель энергии, например аккумуляторная батарея.

С учетом вышесказанного диаграмма мощности, определяющая области допустимой работы СТАТКОМ – степень участия СТАТКОМ в управлении режимами, приведена на рисунке 4.6.

Область допустимой длительной работы СТАТКОМ ограничена номинальным значением тока и напряжения на стороне выпрямленного напряжения статического преобразователя. В кратковременных режимах допускается превышение тока выше номинального вплоть до двукратного, что положительно сказывается на влиянии СТАТКОМ на режим энергосистемы в аварийных и послеаварийных режимах их работы.

Размер: px

Начинать показ со страницы:

Транскрипт

1 На правах рукописи Пешков Максим Валерьевич Разработка и исследование системы управления статическим компенсатором реактивной мощности типа СТАТКОМ для электроэнергетических систем Специальности: «Электростанции и электроэнергетические системы» «Силовая электроника» Автореферат диссертации на соискание ученой степени кандидата технических наук Москва 2009 г.

2 Работа выполнена в филиале ОАО «НТЦ электроэнергетики» - «ВНИИЭ», г. Москва. Научный руководитель: Официальные оппоненты: доктор технических наук, старший научный сотрудник Кочкин Валерий Иванович. доктор технических наук, старший научный сотрудник Челазнов Александр Алексеевич доктор технических наук, профессор Розанов Юрий Константинович Ведущая организация: ОАО НИИПТ «Научно-исследовательский институт по передаче электроэнергии постоянным током высокого напряжения» Защита диссертации состоится 28 апреля 2009 г. в на заседании диссертационного совета Д при Открытом акционерном обществе «Научно-технический центр электроэнергетики» (ОАО «НТЦ электроэнергетики») по адресу: , г. Москва, Каширское шоссе, д. 22 корп. 3. Отзывы на автореферат в двух экземплярах, заверенные печатью организации, просим направлять на имя ученого секретаря диссертационного совета Д по адресу: , г. Москва, Каширское шоссе, 22 корп. 3, ОАО «НТЦ электроэнергетики». С диссертационной работой можно ознакомиться в библиотеке филиала ОАО «НТЦ электроэнергетики» - «ВНИИЭ» Автореферат разослан марта 2009 г. Ученый секретарь диссертационного совета Д д.т.н. Новиков Н.Л. 2

3 Общая характеристика работы Актуальность. Научно-технический прогресс в области систем передачи электроэнергии развивается в направлении повышения их управляемости, устойчивости и надежности при обеспечении высокого качества энергоснабжения потребителей. Наиболее оптимально и комплексно указанные цели могут быть достигнуты путем применения технологии гибких (управляемых) линий электропередачи переменного тока (FACTS), содержащих современные многофункциональные устройства и, в частности, устройства регулирования реактивной мощности - СТАТКОМ. СТАТКОМ представляет собой управляемое статическое устройство, выполненное по схеме преобразователя напряжения (ПН), включенное в электрическую сеть параллельно. На базе СТАТКОМ могут быть реализованы другие устройства FACTS: вставка постоянного тока (ВПТ), управляемая продольная компенсация (УПК), объединенный регулятор потоков мощности (ОРПМ), компенсаторы активно- реактивной мощности (КАРМ). Вопросу разработки алгоритмов управления СТАТКОМ посвящено много работ отечественных и зарубежных авторов: Казачков Ю.А., Иванов А.В., Климов В.И., Крутяков Е.А., Левин В.Н., Зиновьев Г.С., Попов В. И., Кобзев А.В., N.G. Hingorani, A. Nabae, I. Takahashi, H. Akagi и других авторов. Между тем, в опубликованных работах указанных авторов не раскрыты все аспекты функционирования преобразователя напряжения, подключенного к электроэнергетической сети по схеме СТАТКОМ. Алгоритмы управления таким преобразователем должны, с одной стороны, обеспечивать высокие показатели качества работы преобразователя в установившихся режимах (низкие потери, удовлетворяющий требованиям ГОСТ гармонический состав напряжения), а, с другой стороны, обеспечивать работоспособность и высокое быстродействие СТАТКОМ в аварийных и послеаварийных режимах сети. Кроме того, актуальной является задача разработки алгоритмов симметрирования напряжения в электрической сети средствами СТАТКОМ. Целью работы является разработка и исследование алгоритмов системы управления СТАТКОМ, предназначенного для регулирования напряжения на подстанциях электроэнергетических систем в нормальных, аварийных и послеаварийных режимах сети и симметрирования напряжения в точке подключения. Алгоритмы системы управления должны обеспечивать СТАТКОМ соответствие предъявляемым к нему со стороны электроэнергетических систем требованиям по быстродействию, уровню высших гармоник тока, генерируемых в электрическую сеть, и уровню потерь в собственном оборудовании СТАТКОМ. 3

4 Достижение цели предполагает решение следующих основных задач: - разработка алгоритмов независимого регулирования активной и реактивной мощности и алгоритмов симметрирования сетевого напряжения средствами СТАТКОМ; - разработка алгоритмов быстродействующего управления преобразователем напряжения; - разработка алгоритмов уменьшения потерь в преобразователе напряжения СТАТКОМ; - разработка цифровой модели преобразователя напряжения, подключенного к сети по схеме СТАТКОМ, и модели системы управления для исследования разработанных алгоритмов управления СТАТКОМ в электроэнергетических системах; - исследование работы СТАТКОМ в нормальных, аварийных и послеаварийных режимах электроэнергетической системы; - исследование влияния основных параметров алгоритмов управления СТАТКОМ на гармонический состав напряжения и на уровень электрических потерь в преобразователе напряжения. Методы исследования. При решении поставленных задач использованы методы теории электроэнергетических систем, электрических цепей, линейной алгебры, элементы дифференциального и интегрального исчисления, методы математического моделирования. Научная новизна основных результатов диссертационной работы состоит в следующем: - разработан алгоритм быстродействующего управления СТАТКОМ, выполненного на базе преобразователя напряжения нового типа; - разработаны алгоритмы снижения потерь в вентилях преобразователя; - разработан алгоритм симметрирования напряжения в точке подключения средствами СТАТКОМ; - разработана цифровая модель «Узел», включающая модель электрической сети и модель СТАТКОМ, для исследования работы СТАТКОМ. Разработана цифровая модель «Тепло» системы IGBT-модуль/охладитель для расчета потерь в вентилях и тепловых процессов протекающих в них; - проведены исследования работы СТАТКОМ с разработанной системой управления в нормальных и аварийных режимах электроэнергетической системы, которые подтвердили эффективность СТАТКОМ при регулировании и симметрировании напряжения в точке подключения, а так же показали высокое 4

5 быстродействие СТАТКОМ, достаточное для устойчивой работы СТАТКОМ в аварийных режимах энергосистемы; - разработана методика расчета тепловых процессов в вентилях преобразователя с определением пиковых значений температур кристаллов полупроводниковых приборов. - проведена оптимизация параметров алгоритмов системы управления СТАТКОМ с целью получения баланса между качеством гармонического состава генерируемого в сеть тока и уровнем потерь в преобразователе. Конкретное личное участие автора в получении результатов, изложенных в диссертации. Основные результаты диссертационной работы получены лично автором. Достоверность полученных результатов подтверждается: - использованием классических положений теоретической электротехники и математики; - корректностью выполнения теоретических построений; - совпадением результатов с экспериментальными данными. Практическая значимость основных результатов диссертационной работы. Разработанные алгоритмы управления преобразователем напряжения используются в системе управления преобразователем напряжения в составе быстродействующих компенсаторов реактивной мощности типа СТАТКОМ 50Мвар, 15,75кВ, а так же могут использоваться для управления и другими устройствами FACTS. Материалы отдельных глав использовались в научно-исследовательских работах, проводимых по договорам ВНИИЭ с ОАО «ФСК ЕЭС»: «Разработка ТЗ на СТАТКОМ мощностью 50 Мвар напряжением 15,75 кв и основные виды его силового оборудования. Разработка, изготовление и испытание узлов силовой части СТАТКОМ. Разработка технических решений на устройства силового оборудования.», «Разработка, изготовление и испытание макетов СУРЗА. Разработка технических решений на узлы микропроцессорной системы управления(сурза). Разработка рабочей документации на силовое оборудование СТАТКОМ.» Разработанная цифровая модель преобразователя напряжения может найти применение при проектировании устройств FACTS на базе преобразователя напряжения для выбора и уточнения параметров основного оборудования, при отладке алгоритмов управления и защитных комплексов, а также при настройке их параметров и уставок в процессе пусконаладочных работ в СТАТКОМ в электроэнергетических системах. 5

6 Разработанная методика расчета тепловых процессов и потерь в вентилях преобразователя позволяет определять параметры системы охлаждения для них. Апробация работы. Основные результаты диссертационной работы докладывались и обсуждались на: - конференция молодых специалистов электроэнергетики РАО ЕЭС (г. Москва, 2003 г.); - всероссийской конференции по итогам конкурса молодых специалистов организаций НПК ОАО РАО «ЕЭС России» (с. Дивноморское, 2005 г.); - конференция «Разработки молодых специалистов в области электроэнергетики 2008» (г. Москва сентябрь 2008). Публикации. По теме диссертации опубликовано 7 печатных работ. Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения и списка использованных источников, содержащего 50 наименований. Текстовая часть изложена на 159 страницах содержательной части (рисунков 78,таблиц 4) Краткое содержание работы Во введении обосновывается актуальность проблемы, формулируются задачи, решению которых посвящена диссертация, формулируется цель диссертации, излагаются подход и методы исследования, отмечаются научная новизна и практическая значимость работы. В первой главе проведен обзор существующих средств компенсации реактивной мощности и регулирования напряжения в электрических сетях: традиционные устройства и устройства на основе новых технологий гибких линий электропередачи переменного тока. Приведена общая классификация устройств компенсации и отмечено особое место в ней СТАТКОМ, поскольку он может использоваться в качестве базового блока при создании целого ряда современных многофункциональных устройств FACTS. Произведен выбор структуры преобразователя напряжения для СТАТКОМ, сформулированы требования к СТАТКОМ и к его системе управления. Поставлена задача исследований по разработке системы управления СТАТКОМ. СТАТКОМ как источник реактивной мощности осуществляет: повышение пропускной способности электрических сетей разного класса напряжения; поддержание напряжения на подстанциях в протяженных и сильно загруженных сетях в нормальных, аварийных и послеаварийных режимах; ограничение коммутационных перенапряжений; симметрирование напряжений; 6

7 Работа СТАТКОМ в аварийных и послеаварийных режимах сети предъявляет к его системе управления (СУ) жесткие требования по быстродействию регулирования реактивной мощности и реакции СТАТКОМ на возмущения, возникающие в сети (к.з. и коммутации линий). Система управления должна обеспечивать в данных режимах работу СТАТКОМ без аварийных отключений. Поскольку предполагается использование СТАТКОМ как в качестве самостоятельного устройства, так и в качестве базового элемента при создании других устройств FACTS, то целесообразно иметь универсальное решение по схеме СТАТКОМ, которое позволит использовать его для указанных устройств FACTS без значительных переработок. На рис.1 изображена усовершенствованная схема мостового трех уровневого 18ти вентильного преобразователя напряжения СТАТКОМ, предложенная специалистами ВНИИЭ отдела 5, которая отвечает поставленному требованию универсальности и обеспечивает максимальную единичную мощность СТАТКОМ в сравнении с другими известными мостовыми схемами. Рис. 1 Схема инновационного мостового трехуровневого 18ти вентильного преобразователя для СТАТКОМ 7

8 Выбор новой схемы преобразователя СТАТКОМ подразумевает и разработку новых алгоритмов управления для него. СТАТКОМ как источник реактивной мощности, имея лучшие статические и динамические характеристики по сравнению с традиционным СТК, должен иметь сопоставимый с ним уровень гармоник тока и потерь. Удовлетворительный гармонический состав напряжения на выходе выбранного преобразователя можно получить, применяя алгоритмы широтно-импульсной модуляции (ШИМ) с частотой коммутации много большей частоты сети. Более высокая частоты коммутации позволяет улучшить гармонический состав напряжения на выходе преобразователя и дает возможность применять менее мощный фильтр для подавления высших гармоник в области частоты коммутации. Однако увеличение частоты коммутации вентилей приводит к росту потерь в них, что должно учитываться при выборе ее оптимальной величины. Примерно 80% электрических потерь в СТАТКОМ составляют потери, выделяемые в вентильной части преобразователя. Они определяют один из важнейших эксплуатационных показателей СТАТКОМ его КПД, а также перегрузочную способность СТАТКОМ. Возможность форсировки реактивной мощности как в СК является важным свойством СТАТКОМ при решении задач поддержания напряжения на подстанциях в аварийных и послеаварийных режимах сети. Уровень потерь в вентилях для выбранной схемы преобразователя напряжения во многом определяется применяемым алгоритмом ШИМ и его параметрами. В связи с чем, актуальной является разработка алгоритмических средств снижения потерь в вентилях преобразователя и оптимизация параметров алгоритма ШИМ с целью поиска компромисса между уровнем электрических потерь и уровнем генерируемых в сеть высших гармоник тока. Другой задачей СТАТКОМ в части улучшения показателей качества электроэнергии является симметрирование сетевого напряжения. Система управления СТАТКОМ должна включать в себя соответствующие алгоритмы. СТАТКОМ позволяет обеспечить раздельное управление активной и реактивной мощностями, что имеет принципиальное значение для устройств КАРМ, ОРПМ, ВПТ, выполненных на базе СТАТКОМ. В случае использования СТАТКОМ в качестве компенсатора реактивной мощности, канал управления активной мощностью используется в СТАТКОМ для регулирования напряжения стороны постоянного тока преобразователя. Суммируя вышесказанное можно сформулировать требования к системе управления СТАТКОМ, которая должна: - осуществлять независимое регулирование активной и реактивной мощности и включать в себя алгоритмы симметрирования сетевого напряжения; 8

9 - обеспечивать высокое быстродействие СТАТКОМ в переходных режимах и его работоспособность в аварийных и послеаварийных режимах электроэнергетической системы; - обладать средствами снижения электрических потерь в преобразователе СТАТКОМ; - обеспечивать приемлемое качество гармонического состава тока на выходе СТАТКОМ. Анализ существующих систем управления показал их несоответствие поставленным требованиям, из-за отсутствия единого решения, сочетающего высокое быстродействие в динамике с хорошими показателями качества в установившихся режимах. Во второй главе рассмотрены разработанные принципы управления СТАТКОМ, включающие алгоритмы широтно-импульсной модуляции и алгоритмы уменьшения числа коммутаций вентилей преобразователя. Получены следующие аналитические выражения для активной и реактивной мощности СТАТКОМ:, (1) (2) где U 1 и U 2 амплитуды прямой и обратной последовательности напряжения в точке подключения СТАТКОМ, I 1 и I 2 - амплитуды прямой и обратной последовательности фазного тока СТАТКОМ, γ - угол между напряжением сети и фазным током СТАТКОМ по прямой последовательности, β-угол между напряжением сети и фазным током СТАТКОМ по обратной последовательности. Из (1) и (2) следует, что управление активной и реактивной мощностью может проводиться ортогональными векторами фазного тока, независимо друг от друга. Работа СТАТКОМ поясняется на векторной диаграмме, изображенной на рис.2. В сети в общем случае присутствует прямая и обратная последовательность напряжения. Поддержание уровня напряжения в точке подключения осуществляется путем генерации/потребления в сеть реактивного тока прямой последовательности и создания регулируемого вектора напряжения, а уменьшение амплитуды обратной последовательности напряжения сети осуществляется за счет потребления реактивного тока обратной последовательности, и создания вектора. Реализация алгоритмов управления показана на приведенной на рис.3 блок схеме системы управления СТАТКОМ. 9

10 Рис. 2 Векторная диаграмма работы СТАТКОМ Рис.3 Блок схема алгоритмов управления СТАТКОМ 10

11 Блок «вычислитель параметров напряжения сети» определяет значения амплитуд прямой U 1 и обратной последовательности U 2 напряжения сети и их фазы α и β относительно эталонного вектора. Блоки Г1 и Г2 являются генераторами эталонных единичных синусоид и косинусоид прямой последовательности, которые используются в abc\dq преобразовании фазных напряжений сети по формулам: где a,b,c мгновенные значения фазных напряжений сети, а, (3) Значения d и q фильтруются интегральным фильтром второй гармоники Ф2. Блок Б1 вычисляет амплитуду и фазу прямой последовательности напряжения по усредненным значениям d и q. Блок Б2 определяет проекции вектора обратной последовательности на эталонные вектора синуса и косинуса. Блок Б3 вычисляет амплитуду и фазу обратной последовательности напряжения. Блок «регулятор напряжения сети на шинах ПС» осуществляет регулирование амплитуды прямой последовательности напряжения. Уставка реактивной мощности СТАТКОМ задается пропорциональным регулятором по закону: (U U) рад. Qmax Q = уст 1 U, (4) где U уст уставка напряжения прямой последовательности;u 1 напряжение прямой последовательности сети; Q max = 3 U уст I max - максимальная мощность, выдаваемая преобразователем, I max максимально допустимый фазный ток преобразователя. Статизм регулятора определяется максимальным отклонением напряжения U от напряжения уставки. Блок «регулятор несимметрии напряжения сети» представляет собой пропорциональный регулятор, на выходе которого формируется уставка тока симметрирования I 2. Блок «регулятор напряжения стороны постоянного тока преобразователя U d» состоит из блока вычисления уставки напряжения Ud (ВУН КБ) и регулятора активной мощности (ПИ). Регулирование напряжения стороны постоянного тока преобразователя СТАТКОМ позволяет уменьшить уровень потерь и частоту выходов из строя полупроводниковых приборов высоковольтных вентилей. 11

12 Уставка напряжения на стороне постоянного тока преобразователя в блоке ВУН КБ вычисляется по формуле Ud = U Л / k M, где k M коэффициент модуляции преобразователя напряжения, а U Л максимальное из линейных напряжений преобразователя, рассчитанных по формулам:. (5), (6), (7) где U i1 и U i2 амплитуды прямой и обратной последовательности первой гармоники напряжения на выходе преобразователя в установившемся режиме: U i1 =U 1 +I q ωl, (8) U i2 =U 2 +I 2 ωl, (9) где L индуктивность фазных реакторов СТАТКОМ. По разности реального напряжения на КБ и уставки, регулятор активной мощности формирует уставку активной мощности СТАТКОМ P. Регулятор активной мощности представляет собой ПИ регулятор. Блок «генератор уставок фазных токов» по уставкам активной, реактивной мощности и по уставке симметрирующего тока формирует мгновенные значения ожидаемого фазного тока уставки фазных токов, по уравнениям:, где Iq - модуль реактивной составляющей фазного тока прямой последовательности, Ip - модуль активной составляющей фазного тока прямой последовательности, I 2 -модуль симметрирующего тока. Вычисленные уставки фазных токов далее подаются в блок алгоритмов ШИМ и алгоритмы уменьшения числа коммутаций вентилей преобразователя (АУЧК). В разработанных алгоритмах применяется новый подход к управлению СТАТКОМ, при котором он работает в режиме квази источника тока. Такое управление обеспечивает СТАТКОМ высокое быстродействие и устойчивость по току, что позволяет ему успешно функционировать в переходных режимах, включая и режимы внешних коротких замыканий. Режим квази источника тока, 12

13 обеспечивается алгоритмом токовой широтно-импульсной модуляции. В данном алгоритме ШИМ импульсы управления рассчитываются таким образом, чтобы формируемое на фазных реакторах L преобразователя напряжение создавало на расчетном такте заданную производную фазных токов i (рис.4). Тем самым, обеспечивается равенство реального фазного тока i Ф и уставки фазного тока i УСТ на границах расчетного такта. Такое управление преобразователем приближает СТАТКОМ к управляемому источнику тока, что исключает работу защиты СТАТКОМ от превышения допустимого уровня коммутируемого вентилем тока с выводом СТАТКОМ из работы при возникновении в энергосистеме значительных возмущений (коммутации, К.З.). Расчетный такт τ X S UA L ia X ПН X S UB L ib Y Ν X S UC L i C Z Рис. 4 Алгоритм широтно-импульсной модуляции по приращениям тока Важной характеристикой преобразователя является его перегрузочная способность, определяемая текущим температурным режимом полупроводниковых приборов, и уровнем электрических потерь в транзисторных модулях. Кроме того, уровень потерь в модулях определяет общий КПД СТАТКОМ. Поэтому задача снижения потерь имеет большое значение. Возможным способом уменьшения потерь в вентилях без уменьшения амплитуды фазных токов является снижение коммутационной составляющей потерь за счет уменьшения числа коммутаций вентилей. В главе рассмотрены разработанные алгоритмы уменьшения числа коммутаций вентилей. Для сравнения, на рис. 5 приведены кривые токов полюсных вентилей полученных по алгоритму токовой ШИМ без алгоритмов 13

14 уменьшения числа коммутаций и с ними. По кривой тока полюсного вентиля можно судить о количестве коммутаций во всем преобразователе. Видно, что алгоритмы уменьшения числа коммутаций исключили 16 коммутаций в фазе на периоде основной частоты Рис. 5 Кривые токов, протекающих через полюсные модули ПН Верхний рисунок: моменты коммутаций рассчитаны по алгоритму токовой ШИМ без алгоритмами уменьшения числа коммутаций.; Нижний рисунок: моменты коммутаций рассчитаны по алгоритму токовой ШИМ с алгоритмами уменьшения числа коммутаций. В третьей главе проводятся исследования работы СТАТКОМ в простой электроэнергетической системе (рис. 6) в нормальных и аварийных режимах энергосистемы. Исследования проводились на разработанной цифровой модели «Узел» (рис.7), представляющей собой 3-х фазную модель сети и модель подключенного к ней компенсатора реактивной мощности типа СТАТКОМ с повентильным представлением преобразователя напряжения и детализированной моделью системы управления. Рис. 6 Однолинейная схема подключения СТАТКОМ к электроэнергетической системе 14

15 Рис 7 Математическая модель «Узел» PS модель электроэнергетической системы; CS- система управления; M1 и М2- измерители токов и напряжений. Проверялись следующие характерные режимы работы СТАТКОМ в электроэнергетической системе: - генерация\потребление номинальной реактивной мощности СТАТКОМ; - работа СТАТКОМ на сеть в несимметричном режиме; - режим реверса мощности СТАТКОМ; - глубокая посадка напряжения в точке подключения СТАТКОМ до уровня 50%; - междуфазное короткое замыкание в точке подключение СТАТКОМ. Исследования работы СТАТКОМ в данных режимах подтвердили эффективность алгоритмов регулирования напряжения сети, симметрирования напряжения, а так же показали высокое быстродействие СУ, достаточное для работы СТАТКОМ в аварийных и послеаварийных режимах сети. В качестве примера на рис. 8 показаны кривые токов и напряжений при работе СТАТКОМ в несимметричном режиме сети. В начальный момент времени СТАТКОМ работал в режиме холостого хода, регулятор напряжения сети и регулятор несимметрии напряжения сети были отключены. В момент времени t 1 регуляторы были включены. Амплитуда прямой последовательности напряжения сети возросла, а амплитуда обратной последовательности уменьшилось в соответствии с текущими уставками регуляторов. 15

16 U M1, кв 12,88 кв 10,27 кв 0,495 кв U M2, кв 0,25 кв i f, А 3,1 ка t 1 Рис. 8 Работа СТАТКОМ на сеть в несимметричном режиме U M1 амплитуда прямой последовательности напряжения сети, U M2 амплитуда обратной последовательности напряжения сети, i f фазные токи СТАТКОМ. Для оценки быстродействия системы управления в части регулирования реактивной мощности проведен опыт реверса мощности СТАТКОМ из режима потребления в режим генерации номинальной реактивной мощности (рис. 9). Изменение величины напряжения на КБ отражает переход СТАТКОМ в режим генерации. На диаграмме токов видно характерное изменение фазы, связанное с изменением режима мощности. Время переходного процесса tp=0,03c. Такого быстродействия достаточно для успешного решения системных задач, стоящих перед СТАТКОМ. На рис. 10 изображена осциллограмма опыта мгновенной посадки напряжения до уровня 50%. Посадка напряжения происходит в момент времени t=0,2c. Опыт проводился с целью исследования способности разработанной системы управления управлять СТАТКОМ в режиме квази источника тока в переходных процессах с быстрой динамикой. Регулятор напряжения сети для проведения данного опыта был отключен. Система управления формировала постоянную уставку реактивного тока. Процесс глубокой посадки напряжения не повлиял на форму фазных токов преобразователя. Преобразователь 16

17 функционировал как управляемый источник тока, что исключает работу защиты СТАТКОМ от превышения допустимого уровня коммутируемого вентилем тока с выводом СТАТКОМ из работы x x в) а) б) Рис. 9 Режим реверса мощности (из режима потребления в режим генерации) а фазные токи; б и в напряжения на плечах конденсаторной батареи x Рис 10 Опыт мгновенной посадки напряжения сети до уровня 50% На верхней диаграмме изображены фазные токи преобразователя, на нижней диаграмме изображены линейное напряжение в точке подключения и линейное напряжение на выходе преобразователя. 17

18 На рис. 11 изображен опыт междуфазного короткого замыкания сети в точке подключения СТАТКОМ. Режимы внешних близких КЗ требуют от СУ СТАТКОМ максимального быстродействия в части скорости ее реакции на возмущения, возникающие в сети. Система управления должна обеспечивать в данных режимах устойчивою работу СТАТКОМ с максимальной реактивной мощностью без аварийных отключений. До момента возникновения КЗ СТАТКОМ находился в режиме генерации номинальной реактивной мощности. Короткое замыкание не привело к броскам фазных токов и аварийному отключению СТАТКОМ. После возникновения короткого замыкания СТАТКОМ стремиться поддержать уровень прямой последовательности сети, которая в данном режиме уменьшается. Регулятор реактивной мощности вышел на максимальный допустимый уровень амплитуды фазного тока (3100 А). СТАТКОМ в данном режиме может длительно оставаться в работе. Рис 11 Опыт междуфазного короткого замыкания в точке подключения СТАТКОМ верхняя диаграмма - линейные напряжений сети в точке подключения ПН; нижняя диаграмма - фазные токи преобразователя. В четвертой главе проведено исследование влияния параметров системы управления на гармонический состав напряжения в точке подключения СТАТКОМ. Для расчета гармонического состава напряжения ПН использовалась математическая модель «Узел». Кривые напряжений в процессе расчета записывались и затем подвергалась гармоническому анализу. 18

19 Расчет гармонического состава напряжений проводился с допущением, что преобразователь напряжения является единственным источником высших гармоник, а сеть - источник синусоидального напряжения с частотой 50 Гц. Анализ зависимостей гармонического состава напряжения ПН от параметров алгоритма управления вентилями позволил сделать вывод о предпочтительности более высокой частоты коммутации, поскольку при этом первый максимум в спектре напряжения ПН отодвигается в область частот с большей кратностью. Это дает возможность использовать более легкий фильтр для подавления высших гармоник в точке подключения преобразователя к сети. Однако увеличение частоты коммутации приводит к росту потерь в вентилях преобразователя. Предварительный подсчет потерь в вентилях показал, что число коммутаций в полюсном вентиле в режиме генерации реактивной мощности не должно превышать 5-ти. При таком количестве коммутаций суммарные потери СТАТКОМ не превысят 1 % от его номинальной мощности. Поставленному требованию обеспечить не более 5 коммутаций полюсного вентиля на максимуме тока удовлетворяют частоты: 1650Гц, 1350Гц, 1050Гц. Наилучший гармонический состав напряжения ПН имеет место при частоте коммутации f k =1650Гц. Использование алгоритма уменьшения числа коммутаций благоприятно сказывается на гармоническом составе напряжения, а также позволяет добиваться минимально-возможного количества коммутаций в вентилях при меньшем коэффициенте модуляции k M. Это в свою очередь позволяет получить лучший гармонический состав напряжения ПН при меньшем уровне потерь. В пятой главе разработаны методика и модель «Тепло» для расчета потерь, выделяемых в вентилях, и анализа тепловых процессов в них. Исследуется влияние параметров системы управления на потери в вентилях преобразователя. Модель «Тепло» включает в себя два основных блока: вычислитель потерь и тепловую модель IGBT транзистора. Вычислитель потерь выполняет расчет мгновенных значений потерь в диодном и транзистором чипе IGBT-модуля. Блок «тепловая модель IGBT транзистора» является тепловой моделью системы IGBTмодуль/охладитель и предназначен для определения температур p/n переходов кристаллов диодных и транзисторных чипов модуля. Потери открытого состояния и коммутационные потери рассчитываются по разработанной методике определения потерь в вентилях, на основе экспериментальных данных, полученных от завода изготовителя полупроводниковых приборов. На рис. 12 изображена эквивалентная электрическая схема тепловой модели модуля с двухсторонним охлаждением. Источники тока P IGBT и P DIODE моделируют 19

20 мощности потерь, выделяемые в структурах модуля. Источник напряжения Tinlet воспроизводит температуру охлаждающей жидкости. Параметры RC цепочек рассчитываются по экспериментальным данным. С помощью созданной модели были получены зависимости уровня мощности потерь, выделяемых в вентилях, а так же пиковых значений температур p/n переходов модулей от параметров алгоритма управления. Сравнение результатов расчета с экспериментальными данными, полученными на реальном образце СТАТКОМ, показало, что погрешность вычислений на модели «Тепло» не превышает 1%. Исследования показали, что применение алгоритма уменьшения числа коммутаций приводит к снижению уровня потерь, выделяемых в вентилях преобразователя в среднем на 100кВт, и, как следствие, к уменьшению пиковых значений температуры кристаллов полупроводниковых приборов преобразователя. TIGBT TDiode Ri1 Ci1 Cd1 Rd1 Ri2 Ci2 Cd2 Rd2 PIGBT PDiode Ri3 Ci3 Ri4 Ri4 Cd3 Rd3 Rvlet Ci4 Cd4 Tinlet Рис. 12 Эквивалентная электрическая схема тепловой модели модуля с двухсторонним охлаждением Кроме меньшего уровня потерь в вентилях, алгоритм уменьшения числа коммутаций дает возможность распределять потери по вентилям различных групп. Величиной, характеризующей текущий режим алгоритма распределения коммутаций, является коэффициент деления kd. Если kd=0, то коммутации исключаются из транзисторной части полюсного вентиля, если kd=1, то коммутации исключаются из транзисторной части нулевого вентиля. В случае, 20

21 когда kd=0,5, коммутации делятся поровну между полюсными и нулевыми вентилями. При изменении коэффициента деления kd от 0 до 1-цы уровень потерь в транзисторах полюсного и нулевого модуля меняется на 12х900Вт. Алгоритм позволяет временно переносить потери из перегруженного вентиля в вентиль другой группы, который загружен в меньшей степени. Исследования зависимости уровня потерь от частоты коммутации показали правильность произведенного в главе 3 выбора частоты коммутации f k =1650Гц. Суммарные потери в оборудовании СТАТКОМ на данной частоте коммутации ШИМ алгоритма составляют ~480кВт, т.е. 0,96% от номинальной мощности СТАТКОМ. По данному показателю СТАТКОМ с разработанной СУ занимает промежуточное место между синхронными компенсаторами, потери у которых составляют ~1,5%, и статическими тиристорными компенсаторами, потери которых ~0,7%. Надо отметить, что заявленные потери в производимых компаниями SIEMENS и ABB устройствах СТАТКОМ составляют ~2%. Таким образом, использование новой схемы преобразователя в совокупности с разработанным алгоритмом уменьшения числа коммутаций вентилей позволило снизить потери в оборудовании СТАТКОМ в 2 раза по сравнению с известными аналогами. Расчет пиковых значений температур p/n кристаллов вентилей, для режимов генерации/потребления выше номинальной мощности показал, что СТАТКОМ допускает 1,5 кратную перегрузку по мощности. Возможность форсировки реактивной мощности является важным свойством СТАТКОМ при решении им задач поддержания напряжения на подстанциях в аварийных и послеаварийных режимах сети. Основные результаты работы Главный итог работы разработаны, исследованы и оптимизированы алгоритмы системы управления статическим компенсатором реактивной мощности типа СТАТКОМ для электроэнергетических сетей. При этом получены следующие результаты: 1 Проведен обзор существующих устройств компенсации реактивной мощности и регулирования напряжения в электроэнергетических системах. 2 Сформулированы требования к СТАТКОМ и его системе управления для работы в электроэнергетической системе. Проведен обзор известных систем управления СТАТКОМ, выявлены их недостатки и поставлена задача разработки новых алгоритмов управления. 3 Разработан быстродействующий алгоритм управления СТАТКОМ для электроэнергетических систем, который обеспечивает работоспособность 21

22 СТАТКОМ в аварийных и послеаварийных режимах энергосистемы и при коммутациях в энергосистеме. 4 Разработаны алгоритмы снижения потерь в преобразователе напряжения СТАТКОМ, которые снизили суммарные электрические потери в оборудовании СТАТКОМ до 0,96% от его номинальной мощности, что в два раза меньше заявляемых потерь в известных зарубежных аналогах, и занимает промежуточное место между уровнем потерь в СК (~1,5%), и потерями в СТК (~0,7%). Низкий уровень потерь в преобразователе позволяет СТАТКОМ с разработанными алгоритмами управления кратковременно работать с 1,5 перегрузкой по реактивной мощности, что является важным свойством СТАТКОМ при решении задач поддержания напряжения на шинах подстанции в аварийных и послеаварийных режимах электроэнергетической системы. 5 Разработан алгоритм раздельного управления активной и реактивной мощности СТАТКОМ в зависимости от напряжений и токов прямой и обратной последовательности, который позволяет с помощью СТАТКОМ осуществлять симметрирование напряжения на шинах подстанции в несимметричных режимах электроэнергетической системы. 6 Разработана цифровая модель «Узел» включающая в себя модель электроэнергетической системы, модель СТАТКОМ с повентильным представлением преобразователя напряжения и детализированной моделью системы управления, и тепловую модель системы IGBT-модуль/охладитель «Тепло». Модель может найти применение при проектировании устройств FACTS на базе СТАТКОМ для выбора и уточнения параметров основного оборудования, при отладке алгоритмов управления и защитных комплексов, а также при настройке их параметров и уставок в процессе пусконаладочных работ СТАТКОМ в электроэнергетических системах. 7 Произведены исследования работы СТАТКОМ в электроэнергетической системе в нормальных и аварийных режимах сети. Показано успешное решение задач регулирования напряжения сети и симметрирования сетевого напряжения с помощью СТАТКОМ. Исследования подтвердили высокое быстродействие СТАТКОМ с разработанной системой управления, что позволяет ему работать в аварийных и послеаварийных режимах энергосистемы. 8 Разработана методика расчета потерь в IGBT модулях преобразователя на основе экспериментальных данных, предоставленных заводом изготовителем полупроводниковых приборов, погрешность которой не превышает 1%, что позволяет на этапе проектирования с высокой точностью 22

23 определять один из важнейших показателей СТАТКОМ, работающего в электроэнергетической системе его КПД. 9 Проведены исследования влияния параметров алгоритма управления на гармонический состав напряжения на выходе СТАТКОМ и на потери в вентилях преобразователя. На основе исследований была проведена оптимизация алгоритма управления СТАТКОМ. 10 В системе управления компенсатора реактивной мощности типа СТАТКОМ мощностью 50 Мвар напряжением 15,75 кв, изготовленного отделом 5 ОАО «ВНИИЭ» для подстанции 400/330 кв Выборгская использованы разработанные автором алгоритмы управления. Основное содержание диссертации опубликовано в следующих публикациях. 1. М.В. Пешков. Технические средства регулирования напряжения и потоков активной и реактивной мощности в линиях электропередач. Вторая научнотехническая конференция молодых специалистов электроэнергетики. Сборник докладов. г. Москва 2003 г. 2. В.И. Кочкин, М.В. Пешков, Д.В. Романенко. Линии электропередачи с параллельной и последовательной компенсацией реактивной мощности Вестник ВНИИЭ 2004 г. Москва 3. В.И. Кочкин, М.В. Пешков, Д.В. Романенко. Преобразователь напряжения как управляемый элемент электрических сетей. НИИ Постоянного тока г. Санкт Петербург. 4. М.В. Пешков. Разработка и исследование модели 3-х уровневого преобразователя напряжения с алгоритмом токового ШИМ модулятора. Вторая научно-техническая конференция молодых специалистов электроэнергетики. Сборник докладов. п. Дивноморское 2005 г. 5. К.С.Кошелев, М.В Пешков. Выбор параметров статического компенсатора реактивной мощности типа СТАТКОМ. Электротехника, 7,2008 г. 6. М.В. Пешков. Алгоритм управления высоковольтным преобразователем напряжения ПОЛИШИМ: оптимальный для статики и быстродействующий в динамике. Конференция «разработки молодых специалистов в области электроэнергетики 2008». Сборник докладов. г. Москва, сентябрь 2008 г. 7. С.В. Еньков, В.И. Кочкин, М.В. Пешков. Оценочный и точный расчет потерь вентильной части преобразователя напряжения при проектировании. Электротехника, 10, 2008 г. 23


АНАЛИЗ ФИЗИЧЕСКИХ ПРОЦЕССОВ КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ С СИММЕТРИРОВАНИЕМ ТОКА СЕТИ И НОВЫМ ПРИНЦИПОМ УПРАВЛЕНИЯ Климаш В.С., докт. техн. наук, Светлаков Д.П. КнАГТУ, г. Комсомольск-на-Амуре Для

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Лабораторная работа 3 Статический компенсатор на базе преобразователя напряжения Цель работы: исследование режимов работы трехфазного статического преобразователя напряжения как элемента статического компенсатора

СТАТИЧЕСКИЕ КОМПЕНСАТОРЫ РЕАКТИВНОЙ МОЩНОСТИ 1. ПРИНЦИП ДЕЙСТВИЯ СТАТИЧЕСКИХ КОМПЕНСАТОРОВ И ОСОБЕННОСТИ ИХ ИСПОЛЬЗОВАНИЯ ДЛЯ ДУГОВЫХ СТАЛЕПЛАВИЛЬНЫХ ПЕЧЕЙ Статические тиристорные компенсаторы реактивной

Безтрансформаторный СТАТКОМ 35 кв 100 МВА на базе многоуровневого инвертора напряжения для электросетей / Tranformerless STATCOM 35 kv 100 MVA based on multilevel voltage source converter for grid application

УДК 621.314 МНОГОФУНКЦИОНАЛЬНЫЙ РЕГУЛЯТОР КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ Лепанов М.Г., Киселев М.Г. Национальный исследовательский университет «МЭИ» В трехфазных системах электроснабжения основными параметрами,

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2007. 4(50). 81 86 УДК 621.314.527 МНОГОУРОВНЕВЫЙ ИНВЕРТОР НАПРЯЖЕНИЯ С ЧЕТВЕРТОЙ СТОЙКОЙ В СОСТАВЕ СИСТЕМЫ ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПЕРЕМЕННОГО ТОКА А.В. ГЕЙСТ

Управление режимами ЭЭС на базе силовой электроники Лабораторная работа 1 Исследование тиристорно-управляемого реактора Цель работы: Исследование однофазного тиристорно-управляемого реактора как элемента

Основные технические решения по моделированию преобразователей напряжения в расчетной модели электрической сети, используемой для расчета уставок устройств РЗА Инженер отдела электроэнергетических систем

70 УДК 62.33.3.025. Современные технологии транспорту С. В. Кузьмин ПРИНЦИП ПОСТРОЕНИЯ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТАТИЧЕСКОГО КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ В ТЯГОВОЙ СЕТИ ПЕРЕМЕННОГО ТОКА Известные

5 Лекция 2 ИНВЕРТОРЫ План. Введение 2. Двухтактный инвертор 3. Мостовой инвертор 4. Способы формирования напряжения синусоидальной формы 5. Трехфазные инверторы 6. Выводы. Введение Инверторы устройства,

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ ПЕРЕЧЕНЬ И СОДЕРЖАНИЕ РАЗДЕЛОВ (МОДУЛЕЙ) ДИСЦИПЛИНЫ п/п Модуль дисциплины Лекции, ч\заочн 1 Введение 0.25 2 Линейные электрические цепи постоянного тока 0.5 3 Линейные электрические

ОТЧЕТ о вводе в эксплуатацию двух статических тиристорных компенсаторов реактивной мощности типа СТК-5/40-11 для ПС 220 кв «Горелое» МЭС Востока (г. Дальнегорск) 1. Введение В октябре 2013 г. ЗАО «Нидек

Влияние режимов работы энергосистем на несинусоидальность и несимметрию напряжений в магистральных электрических сетях М. А. Силаев, В. Н. Тульский, Р. Г. Шамонов Инструментальное исследование качества

Тема 3. Статическая устойчивость генераторов возобновляемых источников энергии (2 часа) Основные понятия и определения статической устойчивости Деление режимов электрической системы на установившиеся и

Научно-практическая конференция «Опыт и перспективы применения силовой электроники и электропередач постоянным током для повышения надежности электрических сетей и реализации международных проектов». Моделирование

ОТЗЫВ официального оппонента Лебедева Владимира Дмитриевича на диссертационную работу ОНИСОВОЙ Ольги Александровны на тему «Совершенствование релейной защиты электроэнергетических систем с малыми распределёнными

Лекция 4. Постановка задач математического моделирования физических процессов в устройствах высокого напряжения на основе анализа электрических полей и регулирования полей при проектировании энергетического

ОТЗЫВ официального оппонента, д.т.н. профессора, заведующего кафедрой «Электроснабжение промышленных предприятий» ФГБОУ ВО «СКГМИ (ГТУ)» Клюева Романа Владимировича на диссертационную работу Махмадджонова

РОСАТОМ ФГУП «Всероссийский электротехнический институт имени В.И. Ленина» Состояние и перспективы применения передач постоянного тока Преимущества ЛЭП/вставок постоянного тока (ППТ ВН) Сокращение затрат

На правах рукописи Матинян Александр Маратович ПОВЫШЕНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ СОВРЕМЕННЫМИ КОМПЕНСИРУЮЩИМИ УСТРОЙСТВАМИ Специальность 05.14.02 Электрические станции и электроэнергетические

Работа линейного УШРТ конструкции АО «НТЦ ФСК ЕЭС» в цикле ОАПВ линии 5 кв АО «НТЦ ФСК ЕЭС» Матинян А.М., Пешков М.В., Карпов В.Н., Алексеев Н.А. Москва - 216 год Общие сведения об УШРТ конструкции АО

Предисловие... 3 Глава 1. ОСНОВНЫЕ СВЕДЕНИЯ О СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ ОБЪЕКТОВ... 4 1.1. Общие сведения... 4 1.2. Электрические параметры электроэнергетических систем... 7 1.3. Напряжения электрических

УДК 621.314.6+ 621.314.228 ЭЛЕКТРОМАГНИТНЫЕ ПРОЦЕССЫ В НЕКОМПЕНСИРОВАННЫХ ВЫПРЯМИТЕЛЯХ С ПОВЫШЕНИЕМ ФАЗНОСТИ ВЕКТОРНЫМ УПРАВЛЕНИЕМ Ю.И. Хохлов, В.И. Сафонов, П.В. Лонзингер Рассмотрены две схемы 24-фазных

Круглый стол «Умные сети умная энергетика умная экономика» г. Санкт-Петербург Высоковольтное электротехническое оборудование для развития «интеллектуальной» Единой энергосистемы России Макаревич Л.В. генеральный

ИССЛЕДОВАНИЕ КОРРЕКТОРОВ КОЭФФИЦИЕНТА МОЩНОСТИ Игнатенко В.В. ПрЭ-1106. гр.361-3 Проблема коррекции коэффициента мощности Неэффективное использование электроэнергии, помехи в электросети, вызванные подключенными

1 УДК 621.314.6 НЕКОТОРЫЕ ОСОБЕННОСТИ УПРАВЛЕНИЯ ТРЕХФАЗНЫМ ВЫПРЯМИТЕЛЕМ С КОРРЕКЦИЕЙ КОЭФФИЦИЕНТА МОЩНОСТИ Карасев А. В., Смирнов В. М. ГОУВПО «Мордовский государственный университет им. Н. П. Огарева»,

ВІСНИК ПРИАЗОВСЬКОГО ДЕРЖАВНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ 2005 р. Вип. 15 УДК 621.311.004 УПРАВЛЕНИЕ ВЕНТИЛЬНЫМИ КОМПЕНСАТОРАМИ НЕАКТИВНЫХ СОСТАВЛЯЮЩИХ ПОЛНОЙ МОЩНОСТИ Колб А.А.* Предложен релейно-векторный

Научно-практическая конференция «Опыт и перспективы применения силовой электроники и электропередач постоянным током для повышения надежности электрических сетей и реализации международных проектов». Стратегии

РЕАКТИВНАЯ МОЩНОСТЬ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ Технологии управляемой компенсации Для электрической сети в целом требуется равенство генерации и потребления активной и реактивной мощности. Основным нормативным

ОТЗЫВ официального оппонента на диссертационную работу Литвинова Артема Валерьевича «Совершенствование технологии испытаний асинхронных тяговых двигателей локомотивов», по специальности 05.22.07 «Подвижной

Климова Галина Николаевна к.т.н., доцент кафедры ЭПП ТПУ Томский политехнический университет На примере продукции Минского трансформаторного завода им. Козлова http://www.metz.by Трансформаторы серии ТМГСУ

Управляемый подмагничиванием трансформатор С.С. Смирнов, А.Б. Осак В качестве управляемого источника реактивной мощности предлагается использовать 3-х фазную группу однофазных управляемых подмагничиванием

ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА на диссертационную работу Рыбина Ю.К. на тему: Аналоговые генераторы измерительных сигналов произвольной формы, представленную на соискание ученой степени доктора технических

Отзыв официального оппонента Львова Юрия Николаевича на диссертацию МЕЛЬНИКОВОЙ Ольги Сергеевны «Диагностика главной изоляции силовых маслонаполненных электроэнергетических трансформаторов по статистическому

Э л е к т р о э н е р г е т и к а УДК 61.315 ПРИМЕНЕНИЕ УПРАВЛЯЕМЫХ ГИБКИХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ ЭНЕРГОСИСТЕМ Засл. деятель науки и техн. РБ, докт. техн. наук, проф. ПОСПЕЛОВ Г. Е.,

Современные высоковольтные преобразователи частоты переменного тока - мощные комплектные регулируемые электроприводы VCH ООО "ЭЛПРО-М" совместно с ЗАО «Восток-Электро» предлагает поставку современных высоковольтных

Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р. Е.

ОДЕССКАЯ НАЦИОНАЛЬНАЯ МОРСКАЯ АКАДЕМИЯ (ОНМА) На правах рукописи ДАО МИНЬ КУАН УДК 629.5.064.5:621.313.332 СОВЕРШЕСТВОВАНИЕ РЕЖИМОВ РАБОТЫ СУДОВОГО АСИНХРОННОГО ДИЗЕЛЬ-ГЕНЕРАТОРА 05.05.03 двигатели и энергетические

ОГЛАВЛЕНИЕ Введение 3 Глава 1. ПРИМЕНЕНИЕ ПОЛУПРОВОДНИКОВОЙ ПРЕОБРАЗОВАТЕЛЬНОЙ ТЕХНИКИ ОСНОВНОЙ СПОСОБ ПРЕОБРАЗОВАНИЯ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 1.1. Предмет преобразовательной техники... 5 1.2.

Выбор устройств компенсации реактивной мощности Выбор и разработка системы компенсации реактивной мощности сводится к следующим этапам определения: 1. Общих исходных параметров - оптимальное место включения,

1 Качество электрической энергии В. В. Суднова, к.т.н., ст. научн. сотр. «НИЦ Тест-Электро» Электрическая энергия как товар используется во всех сферах жизнедеятельности человека, обладает совокупностью

УДК 621.11 УПРАВЛЕНИЕ РЕАКТИВНОЙ МОЩНОСТЬЮ ГЕНЕРАТОРОВ ЭЛЕКТРОСТАНЦИЙ ДЛЯ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ Канд. техн. наук, доц. КАЛЕНТИОНОК Е. В., асп. ФИЛИПЧИК Ю. Д. Белорусский национальный

УДК 61.311 СНИЖЕНИЕ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ А.С. Енин., К.Б. Корнеев, Т.И. Узикова Новая редакция Федерального закона 61-ФЗ от 3 ноября 009 года «Об энергосбережении и о повышении

Лекция 1. Динамическая устойчивость простейшей системы Переходные режимы разделяют на нормальные (эксплуатационные) и аварийные. В любых переходных процессах происходят закономерные последовательные изменения

Реактивная мощность - это технические потери электроэнергии, вызванные электромагнитными процессами в сетях. Недостаток её вызывает повышенный нагрев проводников и создает избыточную нагрузку на сеть, в результате чего источник электроэнергии работает в усиленном режиме. Если средства компенсации мощности не предусмотрены, то за потребление реактивной энергии из сети приходится переплачивать значительные суммы.

Существенные реактивные нагрузки становятся причиной понижения напряжения в электросети и ухудшения качества электропитания. Помимо того, чрезмерно нагружаются линии электропередач и трансформаторное оборудование, в результате чего увеличиваются капитальные затраты на обустройство и эксплуатацию электрораспределительных станций.

Исторический обзор решений для динамической компенсации реактивной мощности с начала применения переменного тока для передачи электроэнергии до наших дней

Передача электрической энергии с использованием переменного тока началась еще в конце 19 века, заменяя существовавшие небольшие локальные системы постоянного тока. При расширении локальных систем энергоснабжения и обеспечении передачи на дальние расстояния возникали различные проблемы с управлением напряжением и стабильностью, связанные в первую очередь с небалансом реактивной мощности в системах. Для управления напряжениями стационарной системы в основном использовалась коммутируемая компенсация реактивной мощности (шунтирующие конденсаторы и шунтирующие реакторы). Динамический способ основывался на вращающихся машинах, например синхронных компенсаторах.

В середине 60-х годов 20 века появились первые статические компенсирующие устройства реактивной мощности, то есть реакторы, управляемые постоянным током (ртутные вентили) и устройства, управляемые тиристорами (конденсаторы с тиристорным управлением, реакторы с тиристорным управлением).Малое время отклика, низкие потери и меньшие требования к техническому обслуживанию сняли многие ограничения, присущие вращающимся машинам и устройствам, управляемым постоянным током. Оценка рабочих потерь имеет своим результатом всё большее увеличение использования статических конденсаторных установок реактивной мощности, состоящих из комбинаций ветвей конденсаторов и реакторов с тиристорным управлением. Эти шунтирующие устройства совместно с последовательными конденсаторами с тиристорным управлением составили основу гибких систем передачи переменного тока (FACTS). FACTS позволяет более эффективно использовать системы передачи благодаря улучшенному динамическому управлению напряжением системы с одной стороны и более высокой пропускной способностью с другой стороны. В системах передачи переменного тока в настоящее время установлены статические конденсаторные установки реактивной мощности общей мощностью более 100 000 МВА.

В устройствах FACTS стали использоваться новые силовые электронные приборы (GTO, IGCT, IGBT), которые позволяют использовать преобразователи тока и напряжения для обеспечения быстродействующей компенсации реактивной мощности. На основе дальнейшего развития систем управления, совершенствования полупроводниковых приборов и новых технологий преобразователей напряжения в настоящее время компенсация реактивной мощности является ключевым фактором для надёжной передачи энергии переменного тока. В данной статье вашему вниманию предлагается обзор положений в области систем передачи от начала применения первых УКРМ до существующего в настоящее время положения. Также сравниваются ранние решения и современные устройства, приводятся основные факторы и этапы совершенствования установок и обсуждаются преимущества современных устройств.

Передача энергии переменного тока началась в конце 19 века. Развитие шло от низких уровней напряжения и ограниченных районов до больших расстояний, высоких мощностей и всё более возрастающего напряжения передачи. На рис. 1 приводится примерная картина возрастания напряжения систем передачи от года к году.

Генерация электрической энергии и её потребители обычно не находятся близко друг от друга. Большие города и большие промышленные регионы часто получают электроэнергию от источников, находящихся на большом расстоянии. Составляющие системы и нагрузка включают в себя источники реактивной мощности (конденсаторы и катушки индуктивности), которые оказывают влияние на профиль напряжения сети и стабильность системы. Линии передачи высоковольтных систем (735 кВ) могут иметь до 200 Мвар емкостной мощности на длину 100 км. Кабельные соединения могут давать даже большую реактивную мощность. Большие нагрузки, содержащие электрические дуговые печи или мощные приводы, могут иметь до 100 Мвар индуктивной реактивной мощности. Без соответствующей компенсации реактивной мощности в длинных линиях передачи могут наступить критические условия работы системы из-за сильных колебаний напряжения и проблем со стабильностью. Эти проблемы могут быть решены с помощью схем параллельной и последовательной компенсации.

Активная мощность

Если нагрузка чисто резистивная, без индуктивных или емкостных компонентов (реактивной мощности), например, электрический нагреватель, кривые напряжения и тока пересекают координатную ось (проходят через ноль) в одной точке (рис. 1.1).

В этом случае говорят, что напряжение и ток находятся «в фазе». Точки кривой мощности (P) рассчитывается как произведение мгновенных значений напряжения (V) и тока (I). Эта кривая имеет частоту в 2 раза выше частоты напряжения питания и полностью находится в положительной области, так как произведение двух отрицательных чисел является положительным числом, так же, как, естественно, произведение двух положительных чисел.


Рис. 1.1. Кривые напряжения, тока и мощности для чисто резистивной нагрузки (φ = 0°)

В этом случае:

(-V) · (-I) = (+P)

Активная или полезная мощность определяется как составляющая мощности, которая преобразуется в другую форму (например, тепло, свет, механическую энергию) и регистрируется счётчиком электроэнергии. При чисто резистивной или омической нагрузке она вычисляется путём перемножения эффективных значений напряжения [V] и тока [I]:

P (Вт) = V (В) · I (А)

Активная и реактивная мощность

На практике, однако, чисто резистивные нагрузки не являются типичными, обычно также имеется и индуктивная составляющая. Это относится ко всем потребляющим электроэнергию устройствам, принцип работы которых основан на использовании магнитного поля, к примеру, электродвигателям, дросселям, трансформаторам. Также реактивный ток необходим для процессов коммутации в силовых преобразователях. Ток, используемый для создания и изменения магнитного поля, не рассеивается, а циркулирует туда и обратно как реактивный ток между генератором и потребителем.


Как показано на рисунке 1.2, кривые напряжения и тока уже не проходят через ноль в одной точке, а имеется смещение фазы. При индуктивной нагрузке ток отстаёт от напряжения, а при емкостной – ток опережает напряжение. При расчёте мгновенных значений мощности по формуле (P) = (V)·(I) теперь получаются отрицательные значения, если один из множителей отрицательный.

В этом примере фазовый сдвиг φ = 45°. Это соответствует индуктивному cosφ = 0,707. Как видим, часть кривой мощности находится в отрицательной области.

Активная мощность в этом случае определяется по формуле:

P (Вт) = V (В) · I (А) · cosφ

Реактивная мощность

Чисто индуктивная реактивная мощность потребляется двигателями и трансформаторами, работающими без нагрузки (если пренебречь потерями в меди, железе и, при их наличии, потерями на трение). Можно считать, что имеют чисто емкостную реактивную мощность, так как они имеют очень низкие потери (менее 0,05%).


Если напряжение и ток имеют сдвиг по фазе на 90°, одна половина кривой мощности находится в положительной области, а другая – в отрицательной (рис. 1.3). Активная мощность равна нулю, так как положительная и отрицательная области уравновешивают друг друга.

Реактивная мощность определяется как мощность, которая циркулирует между генератором и нагрузкой на частоте питающего напряжения для обеспечения нарастания и спада магнитного поля.

Q (вар) = V (В) · I (А) · sinφ

Полная мощность

Значение полной мощности является основным параметром при выборе номинальных параметров сетей энергоснабжения. На полную мощность системы должны рассчитываться генераторы, трансформаторы, распределительные устройства, предохранители, автоматические выключатели и проводники.

Значение полной мощности – это результат произведения значений напряжения и тока без учёта фазового сдвига.

S (Вт) = V (В) · I (А)

Полная мощность определяется как векторная сумма активной и реактивной мощностей.


Рис. 1.4. Треугольник мощностей

Коэффициент мощности (cosφ и tgφ)

Удобным параметром для определения активного и реактивного компонентов мощности, напряжения и тока является косинус угла сдвига фаз (фазовый угол) между током и напряжением. В электротехнической практике этот параметр получил название «коэффициент мощности».

Коэффициент мощности (cos) фазового угла φ при полной нагрузке маркируется на электрических машинах.

cosφ = P/S(Вт) / (ВА)

Тангенс (tg) фазового угла φ удобен для выражения отношения реактивной мощности к активной.

tgφ = Q/P(Вт) / (ВА)

Два следующих выражения показывают соотношение между косинусом и тангенсом фазового угла φ.

Так как система распределения электроэнергии должна быть рассчитана на полную мощность, предпринимаются усилия для снижения её значения. Если параллельно потребителю электроэнергии установлены конденсаторы соответствующей величины, реактивный ток циркулирует между конденсатором и потребителями. Это значит, что этот дополнительный ток не протекает по остальной части распределительной сети. Если, таким способом, достигнут коэффициент мощности, равный единице, через систему распределения протекает только активный ток.

Реактивная мощность QC, скомпенсированная конденсатором, - это разность между индуктивной реактивной мощностью до компенсации Q1 и реактивной мощностью после компенсации Q2, то есть

QC (вар) = P (Вт) · (tgφ1 – tgφ2)


Рис. 1.5. Треугольник мощностей, иллюстрирующий действие компенсации реактивной мощности

Необходимость компенсации реактивной мощности

Реактивный ток, циркулирующий между генератором энергоснабжающей компании и потребителем, преобразуется в тепловую энергию в системе распределения электроэнергии, то есть создаётся дополнительная нагрузка на генераторы, трансформаторы, кабели и распределительное устройство.

Это приводит к потерям электроэнергии и падению напряжения. Если доля реактивного тока высока, имеющиеся сечения проводников не могут полностью использоваться для передачи полезной энергии, возможно, их нужно соответственно увеличить.

С точки зрения энергоснабжающей компании низкий коэффициент мощности приводит к увеличению затрат на инвестиции и обслуживание, и эти дополнительные затраты перекладываются на тех, кто за них ответственен, то есть на потребителей с низким коэффициентом мощности. Поэтому в дополнение к счётчику активной энергии устанавливается счётчик реактивной энергии.


Рис. 1.6. Активная и реактивная мощность в системе распределения электроэнергии без компенсации реактивной мощности


Рис. 1.7. Активная и реактивная мощности в системе распределения электроэнергии c компенсацией реактивной мощности

Преимущества компенсации реактивной мощности

  • Эффективное использование:
    • генераторов (энергоснабжающей компании);
    • трансформаторов;
    • кабельной сети;
    • распределительного устройства.
  • Пониженные потери
  • Меньше падение напряжения

Следовательно - более низкая стоимость электроэнергии!

Выгода применения установки компенсации реактивной мощности

Огромное количество потребителей электроэнергии постоянно нагружает сеть реактивной составляющей потребляемой мощности, причем эта нагрузка постоянно возрастает. Внедрение компенсирующих устройств реактивной мощности позволяет повысить надежность электропитающих сетей и увеличить пропускную способность энергосистемы.

Среди целого ряда преимуществ от применения устройств компенсации реактивной мощности можно выделить пять главных:

  • Экономия энергопотребления
  • Внедрение компенсирующих устройств реактивной мощности дает существенный экономический эффект. Снижение уровня энергопотребления может составить до 40-50% от общего объема. При таких объемах срок окупаемости систем компенсации мощности составит не более одного года.

  • Увеличение срока службы оборудования
  • Средства компенсации увеличивают срок службы силовых трансформаторов, поскольку их использование снижает нагрузку на оборудование. Использование установок компенсации также снижает нагрузку на линии передач и нагрев проводов, что позволяет использовать токоведущие жилы меньшего сечения.

  • Экономия затрат на устройство подводящих электросетей
  • На этапе проектирования и строительства новых зданий монтаж системы компенсации реактивной мощности позволяет существенно сэкономить на обустройстве распределительной электросети.

  • Улучшение качества энергоснабжения
  • Применение средств компенсации реактивной мощности дает возможность подавить сетевые помехи, избежать глубокой просадки напряжения и минимизировать несимметрию фаз. Кроме того, системы компенсации в составе пассивных фильтров позволяют снизить уровень высших гармоник.

  • Отсутствие штрафов

Устройство компенсации реактивной мощности позволяет избежать штрафных санкций от поставщика электроэнергии за ухудшение показателей коэффициента мощности.

Поперечная компенсация реактивной мощности

В настоящее время используются коммутируемые конденсаторные установки для поперечной компенсации реактивной мощности и конденсаторные установки с непрерывным управлением. Емкостная мощность линий передачи или кабельной сети частично компенсируется параллельным шунтом из подключенных к линии реакторов, индуктивные нагрузки компенсируются шунтирующими конденсаторами. Линейные реакторы постоянно подключены к линиям передачи, чтобы обеспечить постоянную компенсацию в широком рабочем диапазоне. Шунтирующие конденсаторы обычно разделены на ступени для компенсации промежуточных нагрузок. Непрерывное управление реактивной мощностью ранее было возможно только с помощью регулирования возбуждения генераторов или специальных синхронных конденсаторных установок. Первые устройства статической компенсации строились на основе насыщенных реакторов, следующими были тиристорные установки. Основой последних устройств компенсации реактивной мощности стали преобразователи напряжения, использующие сначала запираемые тиристоры (GTO), а сейчас биполярные транзисторы с изолированным затвором (IGBT).

A. Синхронные компенсаторы


Поведение синхронного компенсатора определяется влиянием МДС возбуждения на реактивную мощность. В некоторых случаях с целью экономии средств для управления реактивной мощностью используются старые генераторы, демонтированные с турбин. Вновь изготовленные синхронные компенсаторы использовались в конкретных местах системы для улучшения профиля напряжения и увеличения мощности короткого замыкания особенно в точке подключения высоковольтных вставок постоянного тока. Время отклика машин было улучшено с внедрением систем возбуждения с управлением с помощью тиристоров. На рис. 2 показана схема подключения синхронного компенсатора к системе высокого напряжения.

На рис. 3 показана вольт-амперная рабочая характеристика. Наклон характеристики зависит от реактивного сопротивления двигателя и его сетевого трансформатора. Изменение опорного напряжения приводит к работе синхронного компенсатора в перевозбуждённом или недовозбуждённом режиме, то есть он отдаёт (как ёмкость) или поглощает (как индуктивность) реактивную мощность. Он реагирует сам, то есть без управляющего воздействия, и обеспечивает поддержание напряжения вне рабочей характеристики в установившемся режиме в условиях переходного процесса.

B. Статические компенсаторы на основе насыщающихся реакторов

Эти первые статические компенсаторы строились из статических (неподвижных) компонентов, то есть конденсаторов и реакторов. Реакторы работали в области насыщения, ограничивая при этом изменения напряжения. На рис. 4 показано устройство такого компенсатора и его рабочие характеристики.

Насыщающийся реактор (SR) обычно выполняется на 9-стержневом стальном магнитопроводе для нейтрализации гармоники третьего порядка. Наклон характеристики SR уменьшается благодаря конденсатору Cs, подключенному последовательно. Параллельно им подключен шунтирующий конденсатор Cp, который обеспечивает емкостной характер устройства. В правой части рис. 4 показана характеристика каждого компонента (SR, Cs и Cp), суммарная характеристика SR и Cs (SR+Cs) и окончательная характеристика SR+Cs+Cp после параллельного подключения Cp. Насыщающиеся статические компенсаторы по существу реагируют на изменения напряжения системы. Регулировка опорного напряжения производится при помощи переключателя ответвлений сетевого трансформатора. Демпфирующие фильтры подключаются параллельно конденсатору Cs для устранения возможности феррорезонанса совместно с защитой от перенапряжения конденсатора. Общий рабочий диапазон может быть установлен ступенчатым переключением шунтирующих конденсаторов. Статический компенсатор нормально работает в условиях симметричного напряжения системы.

C. Статические компенсаторы реактивной мощности

Статические конденсаторные установки составлены из статических компонентов (индуктивностей и емкостей), с быстродействующим управлением с помощью полупроводниковых устройств (тиристоров). Преимуществами статических компенсаторов по сравнению с синхронными компенсаторами являются более низкие требования к техническому обслуживанию (нет движущихся частей),простое трёхфазное или однофазное управление, другие опциональные возможности управления, а также меньшая стоимость при тех же номинальных параметрах. На рис. 5 показано типовое устройство статического компенсатора.

Необходимая емкостная мощность для системы может быть установлена в емкостных ветвях, которые могут быть фиксировано подключенными к шине низкого напряжения или коммутируемыми с помощью тиристорных вентилей (конденсаторы с тиристорной коммутацией). Фиксированные ветви обычно настраиваются с помощью последовательных реакторов для фильтрации гармоник. Индуктивная мощность устанавливается в одной фазе или комбинациях трёхфазных реакторов, которые плавно регулируются с помощью тиристорных вентилей. Ветви подключены к высоковольтной системе через специальный трансформатор. Трансформатор изменяет напряжение системы до уровня, оптимального для работы тиристора.

Ветви реакторов с тиристорным управлением (TCR)

Ветви реакторов с тиристорным управлением содержат реакторы, которые управляются по углу с помощью тиристорных ключей. Три однофазные ветви соединяются в треугольник для уменьшения генерации гармоник, кратных трём, при симметричной работе.

Ветви конденсаторов с тиристорной коммутацией (TSC)

Ветви конденсаторов с тиристорной коммутацией содержат конденсаторы и токоограничивающие реакторы и коммутируются с помощью тиристорных ключей. Ветви могут соединяться треугольником или звездой. При соединении звездой один ключ становится лишним и может не приниматься во внимание в одной из трёх фаз. При использовании тиристоров с таким же номинальным током, как для TCR, номинал ветви будет соответственно ниже.

Тиристоры

Развитие технологий тиристоров большой мощности создало основу использования электронных устройств большой мощности в энергосистемах.

Процесс совершенствования тиристоров (см. рис. 6) начался в 70-х годах. Токопроводящая способность мощных тиристоров ступенчато возрастала от 800 А (эфф.) до 4000 А (эфф.) при использовании кремниевых подложек с диаметром от 40 до 125 мм. При этом величина максимально допустимого обратного напряжения увеличилась с 1,6 до 8 (10) кВ. Следующий этап дальнейшего увеличения номинальных токов тиристоров ожидается с 2009 г.

Конфигурации статической конденсаторной установки

Вначале в статических конденсаторных установках для соответствия условиям работы различных цепей, управляемых тиристорами, они устанавливались параллельно. Последовательное подключение тиристоров обуславливалось напряжением шины низкого напряжения (обычно до 36 кВ). 12-пульсное подключение использовалось для разделения ветвей, управляемых тиристорами, и уменьшения тока короткого замыкания цепи каждого вентиля, а также чтобы избежать 6-пульсных гармонических искажений в системе. На рис. 7 показан типовой статический компенсатор реактивной мощности в 12-пульсном соединении, использующий только одну ветвь TCR и фиксированную емкостную ветвь (FC).

Конфигурации TCR/TSC

Конфигурации статических компенсаторов изменялись со временем по мере повышения номинальных токов и в связи с обсуждающимися далее факторами, связанными с потерями, занимаемой площадью и мобильностью.

Потери

Величины потерь в статических компенсаторах с конфигурацией TCR/FC показаны на рис.8. Значение потерь не включает в себя нагрузку, потери трансформатора, потери реактора с тиристорным управлением и реактора фильтра, диэлектрические потери конденсаторов, потери в ключах, как в стационарном режиме, так и при переключении, потери в оборудовании охлаждения (трансформатор и вентили) и во вспомогательном оборудовании.

Средняя величина рабочих потерь в статических компенсаторах с конфигурацией TCR/FC составляет около 0,5 – 0,7% номинальной емкостной мощности. На рис. 9 показан график рабочих потерь установки с конфигурацией TCR/TSC/FC.

Средняя величина рабочих потерь в статических компенсаторах конфигурации TCR/TSC/FC составляет около 0,5 – 0,7% номинальной емкостной мощности компенсатора. Стоимость конфигурации компенсатора TCR/TSC/FC выше, чем конфигурации TCR/FC за счёт дополнительной стоимости конденсаторов с тиристорной коммутацией. Из-за того, что статический компенсатор должен работать основную часть времени при нуле на выходе, чтобы быть готовым к быстрому поддержанию напряжения при нештатных ситуациях в системе, стоимость потерь должна определяться в рабочей области.

Возможна следующая методика оценки:

Pveval = Pv1 x t1 + Pv2 x t2 + … + Pvn x tn, где
Pveval – значение общих рабочих потерь,
Pv1, 2, n – средние потери в рабочем диапазоне 1, 2, n для периодов работы t1, t2, tn.

Суммарное время работы – до 8760 часов за год. Стоимость потерь определяется умножением Pveval на конкретную стоимость потерь ($/кВт) у потребителя, величина которой зависит от поставщика электроэнергии от 1500 до 8000 $/кВт.

Общая стоимость компенсации реактивной мощности состоит из стоимости инвестиций (составные части, установка) и стоимости потерь. Решение статического компенсатора конфигурации TCR/TSC/FC может оказаться более экономичным, чем более простое – TCR/FC. Последние установки статических компенсаторов реактивной мощности в основном имели конфигурации TCR/TSC/FC.

Занимаемая площадь

Несмотря на то, что конфигурации TCR/TSC/FC требуют больше места, так как имеют больше ветвей, требования по площади размещения могут быть уменьшены более чем на 50% (в настоящее время – до 8 м2/Мвар) по сравнению с ранними конструкциями. Требования по занимаемой площади также могут использоваться в качестве критерия оценки.

Мобильность

Процессы либерализации и приватизации могут приводить к изменениям потоков в некоторых высоковольтных системах в течение короткого времени. Некоторые ранее установленные конденсаторные установки реактивной мощности могут оказаться больше не эффективными в данном месте, и может потребоваться их установка в другой точке системы. Возможность перемещения установки также может быть использована в качестве критерия при оценке общей стоимости.

Переход от аналогового управления к цифровому

Со временем происходил переход от чисто аналоговых систем управления и защиты к цифровым системам. Преимуществами цифровых систем являются отсутствие дрейфа параметризации и сигнализации, программное управление функциональностью, графическое конфигурирование, самодиагностика и модульное построение. Современные системы управления конденсаторных установок имеют многообразные функции и позволяют полностью интегрироваться в систему. На рис. 10 показана схема блока управления, включающего в себя различные функции управления и замкнутую петлю обратной связи.

Выделенная на рисунке часть схемы показывает прохождение сигнала управления напряжением. Сигнал управления напряжением может быть модулирован быстродействующим сигналом управления для подавления качаний мощности (POD) в случае серьёзных проблем со стабильностью после аварии системы. Замедленное действие тракта управления реактивной мощностью помогает статической конденсаторной установке оперировать из заданной оптимальной рабочей точки, например 0 Мвар. Из этой оптимальной рабочей точки конденсаторная установка сможет быстро отдавать или поглощать реактивную мощность в критических условиях работы системы.

D. Преобразователи напряжения

Идея применить самокоммутирующиеся преобразователи для статической компенсации реактивной мощности долго обсуждалась перед созданием в 70-е годы 20 века первой конструкции на тиристорах со специальной схемой для ускорения коммутации. В принципе, могут быть использованы преобразователи с фиксированным постоянным напряжением или током. Тем не менее, при поддержке других отраслей, например, систем электроприводов, стал доступен широкий ряд полупроводниковых приборов с управляемым запиранием и полным максимальным обратным напряжением. В первых экспериментальных образцах статических компенсаторов STATCOM на базе преобразователей напряжения были использованы запираемые тиристоры (GTO).

На векторной диаграмме, на рис. 11, показан емкостной характер работы. Фаза и амплитуда тока могут регулироваться изменением VVSC. Для данного напряжения системы VN регулируется напряжение преобразователя VVSC, чтобы получить ток IN, который может находиться внутри зоны, обозначенной «максимальный ток преобразователя». Если пренебречь потерями, можно считать, что ток опережает напряжение или отстаёт от напряжения на 90°. Значение максимального тока симметрично при опережении или отставании по фазе. В широком диапазоне изменения напряжения системы ток может оставаться неизменным. Эта функция графически представлена на рис. 12, где сравниваются вольт-амперные характеристики STATCOM и статические конденсаторные установки. В условиях низкого напряжения STATCOM может обеспечить большую мощность, чем СКРМ, а при перенапряжении максимальная выходная мощность STATCOM меньше.

Развитие технологий преобразователей напряжения для компенсации реактивной мощности было нацелено на следующие задачи: улучшение поддержания работы системы в случае понижения напряжения, повышение скорости отклика при компенсации фликеров, создание более компактных и мобильных конструкций, уменьшение взаимного влияния гармоник с системой энергоснабжения. В настоящее время предлагается много технических решений, которые сводятся к концепции мультипреобразования, высоковольтным ШИМ-преобразователям или многоуровневым преобразователям. Причины сложившейся ситуации и перспективы можно увидеть из истории развития. В первых преобразователях напряжения количество последовательно соединённых запираемых тиристоров было ограничено в основном тем, что нельзя было обеспечить равномерное распределение напряжений между отдельными тиристорами. Это приводило к тому, что выходная мощность одиночного преобразователя была мала. Также высокие потери при коммутации препятствовали эффективному использованию широтно-импульсной модуляции (ШИМ) для получения синусоидальной формы тока. Эти ограничения были впервые преодолены сочетанием нескольких преобразователей при использовании подавления гармоник с помощью магнитных цепей.

Позднее появились полупроводниковые приборы с улучшенной коммутационной способностью. С внедрением коммутируемых по затвору запираемых тиристоров (IGCT) были созданы мощные преобразователи с номинальными мощностями до 10 МВА. С использованием высоковольтных биполярных транзисторов постоянного тока с изолированным затвором (IGBT) были созданы вентили на 300 кВ, что дало возможность реализации одиночных преобразователей диапазона 100 МВА.

В преобразователях на IGBT выходной синусоидальный ток формируется с помощью ШИМ с высокой частотой коммутации (в килогерцовом диапазоне). Кроме того факта, что высокая частота коммутации ведёт к значительным потерям преобразователя, наличие крутых фронтов высокого напряжения dv/dt требует применения специального оборудования для предотвращения воздействия высокой частоты и принятия мер по ограничению электромагнитных помех.

Дальнейшее увеличение предложения полупроводников высокой мощности и эффективных систем управления позволяют сегодня преодолевать проблемы, связанные с высокой частотой коммутации высоковольтных вентилей. Системы преобразования, появившиеся в последнее время, имеют модульное построение и генерируют выходное напряжение переменного тока, близкое к синусоидальному с большим количество уровней напряжения (многоуровневые преобразователи).

На рис. 13 показана конфигурация однофазного преобразователя, используемого для компенсации реактивной мощности. Три таких устройства могут быть соединены в треугольник. Напряжения и токи многоуровневых преобразователей аналогичны напряжениям и токам синхронных компенсаторов, но многоуровневые преобразователи имеют намного меньшие времена отклика. Благодаря сниженному взаимному влиянию гармоник с подключенной системой многоуровневые преобразователи на преобразователях напряжения по сравнению с другими типами статических компенсаторов имеют меньше компонентов и проще встраиваются в системы энергоснабжения. Потери энергии многоуровневого преобразователя значительно меньше по сравнению с преобразователями других типов, но всё-таки несколько больше, чем у компенсаторов на тиристорах.

На сегодняшний день общая мощность установленных статических компенсаторов составляет около 110 000 Мвар, из них мощность преобразователей напряжения, применяемых для систем передачи, достигает около 4000 Мвар.

Продольная компенсация реактивной мощности


Электростанции по экономическим причинам не строятся близко к нагрузкам, то есть выработанная энергия должна транспортироваться на большие расстояния. На рис. 14 показана зависимость напряжения на конце линии 345 кВ от передаваемой активной мощности для трёх величин длины линии (100, 200 и 300 км). Натуральная мощность этой линии – 410 МВт.

Чем длиннее линия, тем меньше максимальная передаваемая мощность. Электрическая длина линии может быть увеличена при установке последовательных конденсаторов. Этот принцип раньше использовался для компенсации импеданса трансформаторов, чтобы улучшить параметры напряжения при больших изменениях нагрузки, подключенной на стороне низкого напряжения.

A. Фиксированные последовательные конденсаторы

Последовательные конденсаторы могут быть установлены на обоих концах линии или в средней точке. Основное внимание уделяется профилю напряжения вдоль линии при передаче электроэнергии. Степень компенсации обычно не превышает 70% импеданса линии. Фиксированные последовательные конденсаторы могут быть установлены как один основной блок или в субблоках, чтобы обеспечить возможность ступенчатой адаптации степени компенсации для различных условий работы системы.

B. Последовательные конденсаторы с тиристорным управлением

В некоторых приложениях часть фиксированных последовательных конденсаторов может быть дополнена параллельными реакторами с тиристорным управлением, которые допускают плавное регулирование в пределах определённого диапазона угла управления. На рис. 15 показана установка с такими последовательными конденсаторами с тиристорным управлением и её возможная характеристика управления импедансом.

Последовательные конденсаторы с тиристорным управлением имеют ограниченный рабочий диапазон угла управления от около 150° до 180°. Продолжительность работы в индуктивном диапазоне невозможна из-за слишком больших токов тиристоров. Допустима только работа в режиме полной проводимости реактора, управляемого тиристором.

C. Преобразователи напряжения

Установки STATCOM с преобразователями напряжения, установленные последовательно в линию, формируют унифицированный контроллер потока мощности. В других станциях такие последовательно подключенные конфигурации преобразователей напряжения устанавливаются для целей распределения потоков мощности или нагрузки между параллельными линиями (трансформируемый статический компенсатор). Преимуществом установки последовательной компенсации реактивной мощности с преобразователем напряжения является возможность управления в индуктивной области.

Подведем итоги


Динамическая компенсация реактивной мощности с управлением при помощи силовой электроники обеспечивает улучшение работы систем передачи и теперь является признанным средством компенсации реактивной мощности среди других устройств.

Большое разнообразие технологий FACTS обеспечивает надёжные решения для большинства имеющихся и возникающих вновь требований при передаче электроэнергии.

Комбинация динамических и обычных коммутируемых устройств компенсации часто приводит к экономичным решениям для работы в установившемся режиме и при переходных процессах в электрической системе. FACTS на основе преобразователей напряжения будут использоваться более широко, особенно в диапазоне малых и средних мощностей.

В ближайшем будущем, вероятно, для преодоления имеющихся ограничений при работе систем передачи потребуется большее количество конденсаторных установок компенсации реактивной мощности, которые рассматриваются как важное средство для повышения стабильности системы и защиты от перебоев энергоснабжения.



Рекомендуем почитать

Наверх