Управление нагрузкой с развязкой микроконтроллером. Управление нагрузкой с Arduino

Бытовая техника 21.06.2019
Бытовая техника

Симистор («триак» по терминологии, принятой в США) — это двунаправленный симметричный тиристор. Симисторы очень удобны для систем ключевого регулирования в цепях переменного тока. Как следствие, они практически вытеснили тиристоры из бытовой техники (стиральные машины, пылесосы и т.д.).

У симистора нет анода и катода. Его три вывода называются: УЭ (управляющий электрод), СЭУ (силовой электрод, расположенный ближе к УЭ), СЭ (силовой электрод у основания прибора) . Существуют также аналогичные зарубежные названия, принятые в триаках, соответственно, «G» (Gate — затвор), «Т1» (Main Terminal 1) и «Т2» (Main Terminal 2).

Симистор, в зависимости от конструкции, может открываться как положительными, так и отрицательными импульсами на выводе УЭ. Ветви ВАХ симметричные, поэтому ток через силовые электроды может быть и втекающим, и вытекающим. Итого, различают четыре режима работы в квадрантах 1…4 (Рис. 2.105).

Рис. 2.105. Режимы работы симисторов (триаков).

Первыми были разработаны четырёх квадрантные симисторы или, по-другому, 4Q-TpnaKM. Они требуют для нормальной работы введения в схему демпферных ЛС-цепочек (100 Ом, 0.1 МК Ф), которые устанавливаются параллельно силовым электродам СЭУ и СЭ. Таким нехитрым способом снижается скорость нарастания напряжения через симистор и устраняются ложные срабатывания при повышенной температуре и значительной индуктивной или ёмкостной нагрузке.

Технологические достижения последнего времени позволили создать трёхквадрантные симисторы или, по-другому, 3Q триаки. Они, в отличие от симисторов «4Q», работают в трёх из четырёх квадрантов и не требуют ЯС-цепочек. Типовые параметры 3Q-TpnaKOB Hi-Com BTA208…225 фирмы Philips: максимальное коммутируемое напряжение 600…800 В, ток силовой части 8…25 А, ток отпирания затвора (УЭ) 2…50 мА, малогабаритный SMD-корпус.

Схемы подключения симисторов к MK можно условно разделить на две группы: без развязки от сети 220 В (Рис. 2.106, a…r) и с гальванической изоляцией (Рис. 2.107, а…л).

Некоторые замечания. Типы указанных на схемах симисторов однообразны, в основном КУ208х, BTxxx, MACxxx. Это сделано специально, чтобы заострить внимание на схемотехнике низковольтной управляющей части, поскольку она ближе всего к MK. На практике можно использовать и другие типы симисторов, следя за их выходной мощностью и амплитудой управляющего тока.

Демпферные цепочки в силовой части на схемах, как правило, отсутствуют. Это упрощение, чтобы не загромождать рисунки, поскольку предполагается, что сопротивление нагрузки R H носит чисто активный характер. В реальной жизни демпфирование необходимо для 4Q-триаков, если нагрузка имеет значительную индуктивную или ёмкостную составляющую.

а) ВЫСОКИЙ уровень на выходе МК открывает транзистор VT1, через который включается симистор VS1. Варистор RU1 защищает симистор от всплесков напряжения, начиная с порога 470 В (разброс 423…517 В). Это актуально при индуктивном характере нагрузки jR H ;

б) аналогично Рис. 2.106, а, но с другой полярностью сигнала на выходе MK и с транзистором VT1 другой структуры, который выполняет функцию инвертора напряжения. Благодаря низкому сопротивлению резистора R2, повышается помехоусточивость. Сопротивление резистора R2 выбирается по тем же критериям, что и для схем на тиристорах;

Рис. 2.106. Схемы подключения симисторов к MK без гальванической изоляции.

в) высоковольтный транзистор ГУ2замыкаетдиагональдиодного моста VD1 при НИЗКОМ уровне на линии MK. Транзистор VT1 в момент рестарта MK находится в открытом состоянии из-за резистора R1, при этом симистор VS1 закрывается и ток через нагрузку R H не протекает;

г) прямое управление симистором VS1 с одного или нескольких выходов MK. Запараллеливание линий применяется при недостаточном токе управления (показано пунктиром). Ток через нагрузку R H не более 150 мА. Возможные замены: VS1 — MAC97A8, VD2— KC147A.

а) симистор VS1 включается/выключается при наличии/отсутствии импульсов 50…100 кГц, генерируемых с выхода MK. Изолирующий трансформатор T1 наматывается на кольце из феррита N30 и содержит в обмотке I — 15 витков, в обмотке II — 45 витков провода ПЭВ-0.2;

б) простая схема трансформаторной развязки. Симистор VS1 включается короткими импульсами с выхода MK. Ток управления зависит от коэффициента трансформации 77;

Рис. 2.107. Схемы гальванической изоляции МК от симисторов.

в) разделительный трансформатор T1 наматывается на ферритовом кольце M1000HM размерами K20xl2x6 и содержит в обмотке I — 60 витков, в обмотке II — 120 витков провода ПЭВ-0.2. Цепочка R3, C1 накапливает энергию для импульсной коммутации транзистора K77;

г) если не требуется частое включение/выключение нагрузки, то для гальванической развязки можно использовать реле K1. Его контакты должны выдерживать без пробоя переменное напряжение 220 В. В некоторых схемах токоограничивающий резистор R3 закорачивают;

д) контакты геркона SF1 замыкаются при протекании тока через катушку индуктивности L1, которая намотана на его корпус. Достоинство — сверхбольшое сопротивление изоляции;

е) гальваническая развязка на транзисторной оптопаре VU1. Резистор R3 повышает помехоустойчивость, но может отсутствовать. Резистор Я2определяет порог открывания транзистора VT1. При использовании симисторов КУ208, TC106-10 сопротивление резистора Я2уменьшают до 30…75 кОм;

ж) симистором VS1 управляет драйвер DA1 (по-старому, КР1182ПМ1), который обеспечивает плавное изменение тока в нагрузке R H в зависимости от напряжения на конденсаторе C1. Если транзистор оптопары W/закрыт, то конденсатор С1 заряжается от внутреннего ИОН микросхемы DA1 и в нагрузке устанавливается максимальное напряжение. Резистор R4 может отсутствовать при наличии резистора R3. Резистор R3 можно закоротить при наличии резистора R4\

з) гальваническая развязка на опторезисторе VU1. Резистором R1 подбирается ток через своизлучатель VU1 и, соответственно, ток управления симистором VS1;

и) применение двух оптотиристоров VU1, УУ2щ\я коммутации симистора VS1 в любой пупериод сетевого напряжения. Резистор Л2ограничивает ток управления симистора;

к) питание входа УЭ симистора VS1 осуществляется от отдельной низковольтной обмотки промышленного трансформатора T1ТПП235-220/110-50;

л) применение оптотиристора VU1 для управления симистором VS1 (замена КУ208Д1). Из двух токоограничивающих резисторов R2, R3 обычно оставляют один, второй замыкают перемычкой. Замена VD1 — мост КЦ407А или четыре отдельных диода КД226.

Источник :
Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2, :ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

Все знают, насколько ардуинщики гордятся миганием лампочками

Так как мигать светодиодами не интересно, речь пойдет про управление лампой накаливания на 220 вольт, включая управление её яркостью. Впрочем, материал относится и к некоторым другим типам нагрузки. Эта тема достаточно избита, но информация об особенностях, которые необходимо учесть, разрозненна по статьям и темам на форумах. Я постарался собрать её воедино и описать различия между схемами и обосновать выбор нужных компонентов.

Выбор управляемой нагрузки

Существует много различных типов ламп. Не все из них поддаются регулировке яркости. И, в зависимости от типа лампы, требуются разные способы управления. Про типы ламп есть хорошая . Я же буду рассматриваться только лампы, работающие от переменного тока. Для таких ламп существует три основных способа управления яркостью (диммирование по переднему фронту, по заднему фронту и синус-диммирование).
Иллюстрация в формате SVG, может не отображжаться в старых браузерах и, особенно, в IE
Отличаются они тем, какая часть периода переменного тока пропускается через лампу. О применимости этих методов можно прочитать . В этой статье речь пойдет только о RL диммере, так как это самая простая и распространенная схема. Она подходит для управления яркостью ламп накаливания (включая галогенные), в том числе подключенных через ферромагнитный (не электронный) трансформатор. Эта же схема может применяться для управления мощностью нагревательных элементов и электромоторов, а также для включения/выключения других электроприборов (без управления мощностью).

Выбор элементной базы

Различных вариантов схем управления нагрузкой в интернете много. Отличаются они по следующим параметрам:Первые два пункта определяются элементной базой. Очень часто для управления нагрузкой используют реле, как проверенный многолетним опытом элемент. Но, если вы хотите управлять яркостью лампы, её необходимо включать и выключать 100 раз в секунду. Реле не рассчитаны на такую нагрузку и быстро выйдут из строя, даже если смогут переключаться так часто. Если в схеме используется MOSFET, то его можно открывать и закрывать в любой момент. Нам нем можно построить и RL, и RC, и синус димер. Но так как он проводит ток только в одну сторону, понадобится два транзистора на канал. Кроме того, высоковольтные MOSFET относительно дороги. Самым простым и дешевым способом является использование симистора. Он проводит ток в обоих направлениях и сам закрывается, когда через него прекращает течь ток. Про то, как он работает можно прочитать в статье DiHalt"а . Далее я буду полагаться на то, что вы это знаете.

Фазовая модуляция

Чтобы управлять яркостью лампы нам нужно подавать импульсы тока на затвор симистора в моменты, когда ток через симистор достигает определенной величины. В схемах без микроконтроллера для этого применяется настраиваемый делитель напряжения и динистор. Когда напряжение на симисторе превышает порог, при котором открывается динистор, ток проходит на затвор симистора и открывает его.
Если же управление ведется с микроконтроллера, то возможны два варианта:

  1. Подавать импульсы равно в тот момент времени, когда нужно. Для этого придётся завести на микроконтроллер сигнал с детектора перехода напряжения через ноль
  2. К затвору симистора подключить компаратор, на который завести сигнал с делителя напряжения и с аналогового выхода микроконтроллера

Первый способ хорош тем, что позволяет легко организовать гальваническую развязку высоковольтной части и микроконтроллера. О её важности будет сказано позже. Но любители arduino будут огорчены: чтобы лапа горела ровно, не вспыхивая и не погасая, импульсы нужно подавать вовремя. Для этого управлять выводом нужно из прерывания таймера, а моменты перехода напряжения через ноль фиксировать с помощью «input capture». Это «недокументированные» функции. Проблема решается отказом от библиотек arduino и внимательным чтением datashit"а на процессоры avr. Это не так сложно, как кажется.
Второй способ управления симистором крайне прост в программном плане, но из-за отсутствия гальванической развязки я бы не стал его применять.

Гальваническая развязка

Самый простой способ управлять симистором - это подключить к затвору ножку микроконтроллера. Есть даже специальная серия симисторов BTA-600SW управляемых малыми токами.Но тогда контроллер и вся низковольтная часть не будет защищена от помех, гуляющих по бытовой сети. Некоторое из них могут быть достаточно мощными, чтобы сжечь микроконтроллер, другие будут вызывать сбои. Кроме того, сразу возникают проблемы со связью микроконтроллера с компьютером или другими микроконтроллерами: нужно будет делать развязку в линии связи или использовать дифференциальные линии, ведь, чтобы управлять симистором прямо с ноги микроконтроллера, нулевой потенциал для него должен совпадать с потенциалом нуля в бытовой сети. У компьютера или другого такого же микроконтроллера, подключенного в другой точке сети, нулевой потенциал почти наверняка будет другим. Результат будет плачевным.
Простой способ обеспечить гальваническую развязку: использовать драйвер симистора MOC30XX. Эти микросхемы отличаются:

  1. Расчетным напряжением. Если для сетей 110 вольт, есть для 220
  2. Наличием детектора нуля
  3. Током, открывающим драйвер

Драйвер с детектором нуля (MOC306X) переключается только в начале периода. Это обеспечивает отсутствие помех в электросети от симистора. Поэтому, если нет необходимости управлять выделяемой мощностью или управляемый прибор обладает большой инерционностью (например это нагревательный элемент в электроплитке), драйвер с детектором нуля будет оптимальным выбором. Но, если вы хотите управлять яркостью лампы освещения, необходимо использовать драйвер без детектора нуля (MOC305X) и самостоятельно открывать его в нужные моменты.
Ток, необходимый для открытия важен, если вы хотите управлять несколькими нагрузками одновременно. У MOC3051 он 15 мА, у MOC3052 10мА. При этом микроконтроллеры stm могут пропускать через себя до 80-120 мА, а avr до 200 мА. Точные цифры нужно смотреть в соответствующих datashit"ах.

Устойчивость к помехам/возможность коммутации индуктивной нагрузки

В электросети могут быть помехи, вызывающие самопроизвольное открытие симистора или его повреждение. Источником помех может служить:

  1. Нагрузка, управляемая симистором (обмотка мотора)
  2. Фильтр (snubber), расположенный рядом с симистором и призванный его защищать
  3. Внешняя помеха (грозовой разряд)

Помеха может быть как по напряжению, так и по току, причем более критичны скорости изменения соответствующих значений, чем их амплитуды. В datashit"ах соответствующие значения указаны как:
V - максимальное напряжение, при котором может работать симистор. Максимальное пиковое напряжение не намного больше.
I - Максимальный ток, который может пропускать через себя симистор. Максимальный пиковый ток как правило значительно больше.
dV/dt - Максимальная скорость изменения напряжения на закрытом симисторе. При превышении этого значения он самопроизвольно откроется.
dI/dt - Максимальная скорость изменения тока при открытии симистора. При превышении этого значения он сгорит из-за того, что не успеет полностью открыться.
(dV/dt)c - Максимальная скорость изменения напряжения в момент закрытия симистора. Значительно меньше dV/dt. При превышении симистор продолжит проводить ток.
(dI/dt)c - Максимальная скорость изменения тока в момент закрытия симистора. Значительно меньше dI/dt. При превышении симистор продолжит проводить ток.
Подробно о природе этих ограничений и о том, как сделать фильтр, защищающий от превышения этих величин описано в Application Note AN-3008 . К немо можно только добавить, что существуют 3Q симисторы, у которых значения dV/dt и dI/dt выше, чем у обычных за счет невозможности работать в 4ом квадранте (что обычно не требуется).

Выбор симистора

Максимальный ток коммутации

Максимальный ток коммутации ограничивается двумя параметрами: максимальным током, который может пропустить симистор и количеством тепла, которое вы можете от него отвести. С первым параметром все просто, он указан в datashit"е. Но если посмотреть внимательно, то при токе в 16 ампер на BTA16-600BW выделяется около 20 ватт. Такую грелку уже не получится засунуть в коробку выключателя без вентиляции.

Минимальный ток коммутации

Симистор сохраняет проводимость до тех пор, пока через него идёт ток. Минимально необходимый ток указан в datashit"е под именем latching current. Соответственно, слишком мощный симистор не сможет включать маломощную лампочку так как будет выключаться, как только с затвора пропадёт управляющий сигнал. Но так, как этот сигнал мы самостоятельно формируем микроконтроллером, то можно удерживать управляющий сигнал почти до самого конца полупериода, тем самым убрав ограничение на минимальную нагрузку. Однако, если не успеть снять сигнал, симистор не закроется и лампа не погаснет. При плохо подобранных константах лампы, работающие на не полной яркости периодически вспыхивают.

Изоляция

Симисторы в корпусе SOT-220 могут быть изолированными или не изолированными. Я сначала сделал ошибку и купил BT137, в результате радиаторы охлаждения оказались под напряжением, что в моем случае нежелательно. Симисторы с маркировкой BTA изолированы, с маркировкой BTB нет.

Защита от перегрузки

Не стоит полагаться на автоматические выключатели. Посмотрите на спецификацию , при перегрузке в 1.4 раза автомат обязан выключиться не ранее , чем через час. А быстрое размыкание происходит только при перегрузке в 5 раз (для автоматов типа C). Это сделано для того, чтобы автомат не отключался при включении приборов, требующих при старте значительно больше энергии, чем при постоянной работе. Примером такого прибора является холодильник.
Симистор нужно защитить отдельным предохранителем, либо контролировать ток через него и отключать его при перегрузке, давая остыть.

Защита от короткого замыкания

При перегорании лампы накаливания может образовываться искровой разряд, имеющий очень низкое сопротивление. В результате цепь фактически замыкается накоротко, что приводит к выгоранию симистора.
Симистор может выгорать из-за двух причин:

  1. Превышение dI/dt. Симистор не успевает открыться полностью, ток идет не через весь кристалл, образуются локальные горячие области, выжигающие кристалл.
  2. Превышение интеграла Джоуля I^2t. Задает количество теплоты, накопление которой в кристалле приведет к разрушению кристалла.

dI/dt ограничивается индуктивностью проводки и внутренней ёмкостью симистора. Так как dI/dt достаточно велика (50 А/с для BTA16), может хватить индуктивности подводящей проводки, если она достаточно длинная. Можно подстраховаться и добавить небольшую индуктивность в виде нескольких витков провода вокруг сердечника.
С превышением интеграла Джоуля можно бороться либо уменьшая время прохождения тока через симистор, либо ограничивая ток. Так как симистор не закроется, пока ток не перейдет через ноль, не вводя дополнительных размыкателей нельзя сделать время прохождения тока менее одного полупериода. В качестве такого размыкателя можно использовать:

  1. Быстродействующий плавкий предохранитель. Обычный предохранитель не подойдет так как симистор сгорит до того, как он сработает. Но стоят такие предохранители дороже новых симисторов.
  2. Геркон/реле. Если удастся найти такое, чтобы выдерживало кратковременные большие токи.

Можно пойти по другому пути. BTA16-600 может выдержать ток в 160 амер в течении одного периода. Если сопротивление замыкаемой цепи будет порядка 1.5 Ом, то полупериод он выдержит. Сопротивление проводки даст 0.5 Ом. Остается добавить в цепь сопротивление в 1 Ом. Схема станет менее эффективной и появится еще одна грелка, выделяющая при штатной работе до 16 Вт тепла (0.45 Вт при работе 100 ваттной лампы), зато симистор не сгорит, если успеть его вовремя выключить и позаботиться о хорошем охлаждении, чтобы оставался запас на нагрев во время КЗ.
Из этого сопротивления можно извлечь дополнительную выгоду: измеряя падение напряжения на нем, можно узнавать ток, протекающий через симистор. Полученное значение можно использовать для того, чтобы определять короткое замыкание или перегрузку и отключать симистор.

Заключение

Я не претендую на абсолютную верность всего написанного. Статья писалась для того, чтобы упорядочить знания, прочитанные на просторах интернета и проверить, не забыл ли я чего. В частности раздел, касающийся защиты от перегрузок я еще не опробовал на практике. Если я где-то не прав, мне было бы интересно узнать об ошибках.
В статье нет ни одной схемы: знакомые с темой и так знают их наизусть, а новичку придётся заглянуть в datashit к MOC3052 или в AN-3008 и, возможно, он заодно узнает что-то еще и не будет бездумно реализовывать готовую схему.

МОП (по буржуйски MOSFET ) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной , по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.


У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314 , способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
Тут вариантов три:


Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или I D выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это V GS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость I D от V DS при разных значениях V GS . И прикидыываешь какой у тебя будет режим.

Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или t on ,t off , в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора C iss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО . Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги:).

  • Tutorial
Все знают, насколько ардуинщики гордятся миганием лампочками
Так как мигать светодиодами не интересно, речь пойдет про управление лампой накаливания на 220 вольт, включая управление её яркостью. Впрочем, материал относится и к некоторым другим типам нагрузки. Эта тема достаточно избита, но информация об особенностях, которые необходимо учесть, разрозненна по статьям и темам на форумах. Я постарался собрать её воедино и описать различия между схемами и обосновать выбор нужных компонентов.

Выбор управляемой нагрузки

Существует много различных типов ламп. Не все из них поддаются регулировке яркости. И, в зависимости от типа лампы, требуются разные способы управления. Про типы ламп есть хорошая . Я же буду рассматриваться только лампы, работающие от переменного тока. Для таких ламп существует три основных способа управления яркостью (диммирование по переднему фронту, по заднему фронту и синус-диммирование).
Иллюстрация в формате SVG, может не отображжаться в старых браузерах и, особенно, в IE
Отличаются они тем, какая часть периода переменного тока пропускается через лампу. О применимости этих методов можно прочитать . В этой статье речь пойдет только о диммировании по преднему фронту, так как это самая простой и распространенный способ. Он подходит для управления яркостью ламп накаливания (включая галогенные), в том числе подключенных через ферромагнитный (не электронный) трансформатор. Эта же схема может применяться для управления мощностью нагревательных элементов и, в некоторой степени, электромоторов, а также для включения/выключения других электроприборов (без управления мощностью).

Выбор элементной базы

Различных вариантов схем управления нагрузкой в интернете много. Отличаются они по следующим параметрам:Первые два пункта определяются элементной базой. Очень часто для управления нагрузкой используют реле, как проверенный многолетним опытом элемент. Но, если вы хотите управлять яркостью лампы, её необходимо включать и выключать 100 раз в секунду. Реле не рассчитаны на такую нагрузку и быстро выйдут из строя, даже если смогут переключаться так часто. Если в схеме используется MOSFET, то его можно открывать и закрывать в любой момент. Нам нем можно построить и RL, и RC, и синус димер. Но так как он проводит ток только в одну сторону, понадобится два транзистора на канал. Кроме того, высоковольтные MOSFET относительно дороги. Самым простым и дешевым способом является использование симистора. Он проводит ток в обоих направлениях и сам закрывается, когда через него прекращает течь ток. Про то, как он работает можно прочитать в статье DiHalt"а . Далее я буду полагаться на то, что вы это знаете.

Фазовая модуляция

Чтобы управлять яркостью лампы нам нужно подавать импульсы тока на затвор симистора в моменты, когда ток через симистор достигает определенной величины. В схемах без микроконтроллера для этого применяется настраиваемый делитель напряжения и динистор. Когда напряжение на симисторе превышает порог, при котором открывается динистор, ток проходит на затвор симистора и открывает его.
Если же управление ведется с микроконтроллера, то возможны два варианта:
  1. Подавать импульсы равно в тот момент времени, когда нужно. Для этого придётся завести на микроконтроллер сигнал с детектора перехода напряжения через ноль
  2. К затвору симистора подключить компаратор, на который завести сигнал с делителя напряжения и с аналогового выхода микроконтроллера
Первый способ хорош тем, что позволяет легко организовать гальваническую развязку высоковольтной части и микроконтроллера. О её важности будет сказано позже. Но любители arduino будут огорчены: чтобы лапа горела ровно, не вспыхивая и не погасая, импульсы нужно подавать вовремя. Для этого управлять выводом нужно из прерывания таймера, а моменты перехода напряжения через ноль фиксировать с помощью «input capture». Это «недокументированные» функции. Проблема решается отказом от библиотек arduino и внимательным чтением datasheet"а на процессоры avr. Это не так сложно, как кажется.
Второй способ управления симистором крайне прост в программном плане, но из-за отсутствия гальванической развязки я бы не стал его применять.

Гальваническая развязка

Самый простой способ управлять симистором - это подключить к затвору ножку микроконтроллера. Есть даже специальная серия симисторов BTA-600SW управляемых малыми токами.Но тогда контроллер и вся низковольтная часть не будет защищена от помех, гуляющих по бытовой сети. Некоторое из них могут быть достаточно мощными, чтобы сжечь микроконтроллер, другие будут вызывать сбои. Кроме того, сразу возникают проблемы со связью микроконтроллера с компьютером или другими микроконтроллерами: нужно будет делать развязку в линии связи или использовать дифференциальные линии, ведь, чтобы управлять симистором прямо с ноги микроконтроллера, нулевой потенциал для него должен совпадать с потенциалом нуля в бытовой сети. У компьютера или другого такого же микроконтроллера, подключенного в другой точке сети, нулевой потенциал почти наверняка будет другим. Результат будет плачевным.
Простой способ обеспечить гальваническую развязку: использовать драйвер симистора MOC30XX. Эти микросхемы отличаются:
  1. Расчетным напряжением. Если для сетей 110 вольт, есть для 220
  2. Наличием детектора нуля
  3. Током, открывающим драйвер
Драйвер с детектором нуля (MOC306X) переключается только в начале периода. Это обеспечивает отсутствие помех в электросети от симистора. Поэтому, если нет необходимости управлять выделяемой мощностью или управляемый прибор обладает большой инерционностью (например это нагревательный элемент в электроплитке), драйвер с детектором нуля будет оптимальным выбором. Но, если вы хотите управлять яркостью лампы освещения, необходимо использовать драйвер без детектора нуля (MOC305X) и самостоятельно открывать его в нужные моменты.
Ток, необходимый для открытия важен, если вы хотите управлять несколькими нагрузками одновременно. У MOC3051 он 15 мА, у MOC3052 10мА. При этом микроконтроллеры stm могут пропускать через себя до 80-120 мА, а avr до 200 мА. Точные цифры нужно смотреть в соответствующих datasheet"ах.

Устойчивость к помехам/возможность коммутации индуктивной нагрузки

В электросети могут быть помехи, вызывающие самопроизвольное открытие симистора или его повреждение. Источником помех может служить:
  1. Нагрузка, управляемая симистором (обмотка мотора)
  2. Фильтр (snubber), расположенный рядом с симистором и призванный его защищать
  3. Внешняя помеха (грозовой разряд)
Помеха может быть как по напряжению, так и по току, причем более критичны скорости изменения соответствующих значений, чем их амплитуды. В datasheet"ах соответствующие значения указаны как:
V - максимальное напряжение, при котором может работать симистор. Максимальное пиковое напряжение не намного больше.
I - Максимальный ток, который может пропускать через себя симистор. Максимальный пиковый ток как правило значительно больше.
dV/dt - Максимальная скорость изменения напряжения на закрытом симисторе. При превышении этого значения он самопроизвольно откроется.
dI/dt - Максимальная скорость изменения тока при открытии симистора. При превышении этого значения он сгорит из-за того, что не успеет полностью открыться.
(dV/dt)c - Максимальная скорость изменения напряжения в момент закрытия симистора. Значительно меньше dV/dt. При превышении симистор продолжит проводить ток.
(dI/dt)c - Максимальная скорость изменения тока в момент закрытия симистора. Значительно меньше dI/dt. При превышении симистор продолжит проводить ток.
Подробно о природе этих ограничений и о том, как сделать фильтр, защищающий от превышения этих величин описано в Application Note AN-3008 . К немо можно только добавить, что существуют 3Q симисторы, у которых значения dV/dt и dI/dt выше, чем у обычных за счет невозможности работать в 4ом квадранте (что обычно не требуется).

Выбор симистора

Максимальный ток коммутации
Максимальный ток коммутации ограничивается двумя параметрами: максимальным током, который может пропустить симистор и количеством тепла, которое вы можете от него отвести. С первым параметром все просто, он указан в datasheet"е. Но если посмотреть внимательно, то при токе в 16 ампер на BTA16-600BW выделяется около 20 ватт. Такую грелку уже не получится засунуть в коробку выключателя без вентиляции.
Минимальный ток коммутации
Симистор сохраняет проводимость до тех пор, пока через него идёт ток. Минимально необходимый ток указан в datasheet"е под именем latching current. Соответственно, слишком мощный симистор не сможет включать маломощную лампочку так как будет выключаться, как только с затвора пропадёт управляющий сигнал. Но так, как этот сигнал мы самостоятельно формируем микроконтроллером, то можно удерживать управляющий сигнал почти до самого конца полупериода, тем самым убрав ограничение на минимальную нагрузку. Однако, если не успеть снять сигнал, симистор не закроется и лампа не погаснет. При плохо подобранных константах лампы, работающие на не полной яркости периодически вспыхивают.
Изоляция
Симисторы в корпусе TO-220 могут быть изолированными или не изолированными. Я сначала сделал ошибку и купил BT137, в результате радиаторы охлаждения оказались под напряжением, что в моем случае нежелательно. Симисторы с маркировкой BTA изолированы, с маркировкой BTB нет.
Защита от перегрузки
Не стоит полагаться на автоматические выключатели. Посмотрите на спецификацию , при перегрузке в 1.4 раза автомат обязан выключиться не ранее , чем через час. А быстрое размыкание происходит только при перегрузке в 5 раз (для автоматов типа C). Это сделано для того, чтобы автомат не отключался при включении приборов, требующих при старте значительно больше энергии, чем при постоянной работе. Примером такого прибора является холодильник.
Симистор нужно защитить отдельным предохранителем, либо контролировать ток через него и отключать его при перегрузке, давая остыть.

Защита от короткого замыкания

При перегорании лампы накаливания может образовываться искровой разряд, имеющий очень низкое сопротивление. В результате цепь фактически замыкается накоротко, что приводит к выгоранию симистора.
Симистор может выгорать из-за двух причин:
  1. Превышение dI/dt. Симистор не успевает открыться полностью, ток идет не через весь кристалл, образуются локальные горячие области, выжигающие кристалл.
  2. Превышение интеграла Джоуля I^2t. Задает количество теплоты, накопление которой в кристалле приведет к разрушению кристалла.
dI/dt ограничивается индуктивностью проводки и внутренней ёмкостью симистора. Так как dI/dt достаточно велика (50 А/с для BTA16), может хватить индуктивности подводящей проводки, если она достаточно длинная. Можно подстраховаться и добавить небольшую индуктивность в виде нескольких витков провода вокруг сердечника.
С превышением интеграла Джоуля можно бороться либо уменьшая время прохождения тока через симистор, либо ограничивая ток. Так как симистор не закроется, пока ток не перейдет через ноль, не вводя дополнительных размыкателей нельзя сделать время прохождения тока менее одного полупериода. В качестве такого размыкателя можно использовать:
  1. Быстродействующий плавкий предохранитель. Обычный предохранитель не подойдет так как симистор сгорит до того, как он сработает. Но стоят такие предохранители дороже новых симисторов.
  2. Геркон/реле. Если удастся найти такое, чтобы выдерживало кратковременные большие токи.
Можно пойти по другому пути. BTA16-600 может выдержать ток в 160 амер в течении одного периода. Если сопротивление замыкаемой цепи будет порядка 1.5 Ом, то полупериод он выдержит. Сопротивление проводки даст 0.5 Ом. Остается добавить в цепь сопротивление в 1 Ом. Схема станет менее эффективной и появится еще одна грелка, выделяющая при штатной работе до 16 Вт тепла (0.45 Вт при работе 100 ваттной лампы), зато симистор не сгорит, если успеть его вовремя выключить и позаботиться о хорошем охлаждении, чтобы оставался запас на нагрев во время КЗ.
Из этого сопротивления можно извлечь дополнительную выгоду: измеряя падение напряжения на нем, можно узнавать ток, протекающий через симистор. Полученное значение можно использовать для того, чтобы определять короткое замыкание или перегрузку и отключать симистор.

Заключение

Я не претендую на абсолютную верность всего написанного. Статья писалась для того, чтобы упорядочить знания, прочитанные на просторах интернета и проверить, не забыл ли я чего. В частности раздел, касающийся защиты от перегрузок я еще не опробовал на практике. Если я где-то не прав, мне было бы интересно узнать об ошибках.
В статье нет ни одной схемы: знакомые с темой и так знают их наизусть, а новичку придётся заглянуть в datasheet к MOC3052 или в AN-3008 и, возможно, он заодно узнает что-то еще и не будет бездумно реализовывать готовую схему. Автор : elremont от 17-03-2014

Это схема, в которой есть неизолированные металлические части под напряжением! Будьте осторожны и примите все меры предосторожности, чтобы избежать поражения электрическим током. Кроме того, обязательно используйте предохранитель с низким значением отсечки (мА) , поставив его на провод от аккумуляторной батареи до управляющего электрода. Вы имеете дело с 220В! Металлический лепесток на симисторе (T2) всегда ПОД НАПРЯЖЕНИЕМ. Тем из вас, кто имел мало опыта работы с электроникой, не стоит заниматься этим проектом. Как я говорю и в видео, вам необходимо удостоверится, где в розетке «фазовый» и где «нейтральный» контакт с помощью индикатора на 220 В! Маленькие контакты могут быть фазными, а большое лезвие всегда НЕЙТРАЛЬНО. Ничего не берите на веру. Всегда проверяйте отсутствие напряжения до прикосновения к контакту.
Итак, это руководство для переключения симистора постоянным током. Большинство людей не понимают, что вы можете отдельным источником постоянного тока переключать симистор, как на этой схеме. Для простоты я использую BT136/600 и его распиновка такая: Т1, Т2 ... Т2 пойдет к нагрузке, T1 пойдет на нейтраль и G это управление. Итак, что мы делаем, по цепи 220 В, провод идет в нагрузку, которой может быть все что угодно: свет, электронное устройство, а затем попадает на контакт T2 симистора. Контакт T2 переходит на T1 подключенный к нейтральному проводу, завершая цепь. Включить и выключить симистор вы можете с помощью отдельной батареи. При желании вы могли бы использовать понижающий трансформатор с электропитанием от той же линии, что у вас есть, чтобы получить постоянное напряжение для тока управления. Или вы можете использовать внешнюю сеть переменного тока, есть много вариантов получения постоянного тока для управления. Скажем, вы придумали схему, которая работает на постоянном токе, и вы хотите что то включить на переменном, так что это прекрасно подходит для этого. Хорошо, у меня есть 6-вольтовая батарея, я покажу вам ее через минуту. Берем минус и проверяем, что он присоединен к нейтральной шине. Это очень важно. Не надо делать этого в обратном направлении, проверьте, что эта отрицательная клемма на нейтрали. При помощи индикатора или тестера убедитесь, что провода к электрической розетке присоединены правильно. Итак минус на нейтраль, и хорошей идеей будет поставить предохранитель между минусом и нейтралью. В случае, если что либо замкнет в симисторе, и один из контактов замкнет на управляющий электрод, то вы можете получить 220 вольт, проходящие через батарейку. Так что ставьте предохранитель прямо здесь, на очень низкую сила тока. Лучше всего поставить на 50 миллиампер. Так что, если произойдет короткое замыкание, оно будет кратковременно и не катастрофично. Теперь берем наш плюс, он проходит через цепи коммутации и управления и на управляющий электрод симистора плюс поступает через токоограничивающий резистор. Этот симистор - BT136, с током управления максимум 35 мА, а напряжение, я думаю, максимум 12. Но я использую 6. Таким образом, вычислить сопротивление резистора очень просто, вы берете свое напряжение и делите его на ток который необходим, и вы получите сопротивление в Омвх. Я взял резистор 330 Ом, и эта батарея как я уже сказал, на 6.2 вольта. Я покажу прямо сейчас. У меня есть удлинитель подключенный к ночнику на 7 Вт, мощность этого симистора достаточно высока, вероятно, в 1000 или 1500 Вт. Убедитесь, что он стоит на радиаторе с термопастой, и все будет нормально. Нагрузка... я знаю, что это зеленая жила кабеля, но это не имеет значения. Вы проводите линию, идущую к нагрузке, в данном случае это 7 ваттная лампа. С другой стороны нагрузки подключен красный провод, хорошо. Это контакт T2, корпус это его часть, лепесток корпуса и средний контакт на этом симисторе это T2. T1 это первый контакт, он присоединен к нейтральной шине. Эта нейтральная шина соединена с нейтралью домовой проводки.Теперь берем 6 вольтовую батарею. Вы берете общий провод от нейтрали, и присоединяете его к минусу. У меня есть небольшой предохранитель он на 100 миллиампер, но лучше было бы поставить на 50, если ты собираешься это сделать. Поэтому убедитесь, что ставите на 50 с нейтральной стороны. Положительный полюс батарейки присоединяем к резистору, ведущему к управляющему электроду. Я поморгаю светом, просто прикасаясь к нейтральной шине, подключив ее к отрицательному полюсу на батарейке. Все готово к включению. Я все покажу. Мы замкнем цепь от батареи к управляющему электроду, и вы можете увидеть, что свет включается. И я проверил это... Все работает прекрасно, и я проверю разъем на лампе, и я получаю полное напряжение, что означает, что управление полностью открыло симистор. Так что это действительно хорошая схема для понимания работы симистора. Теперь вы можете включать устройства переменного тока. Как я уже говорил... Я оставлю это подключенным. Хорошо, что в итоге. В том случае, если в симисторе будет короткое замыкание, у нас фазовое напряжение будет пытаться идти в эту батарею. Поэтому поставьте предохранитель как можно меньше. Как только высокое напряжение попытается войти, если случится короткое замыкание, предохранитель перегорит, и батарея будет в порядке. Хорошо, я покажу вам еще работу с дрелью, и вы увидите, что питание это не проблема. Я присоединю штекер на секунду. Я отодвину камеру подальше, чтобы вы рассмотрели. Замечательно. Я прикоснусь... Выключено. Включено. Переключается от батарейки.
_





Рекомендуем почитать

Наверх