Что такое nand память. Образ NAND и двоичный образ

Авто 17.05.2019

Первые SSD , или твердотельные накопители, использующие флэш-память , появились в 1995 году, и использовались исключительно в военной и аэрокосмической сферах. Огромная на тот момент стоимость компенсировалась уникальными характеристиками, позволяющими эксплуатацию таких дисков в агрессивных средах при широком диапазоне температур.

В масс-маркете накопители SSD появились не так давно, но быстро стали популярны, так как являются современной альтернативой стандартному жёсткому диску (HDD ). Разберёмся, по каким параметрам нужно выбирать твердотельный накопитель, и что он из себя вообще представляет.

Устройство

По привычке, SSD называют «диском», но его скорее можно назвать «твердотельным параллелепипедом », поскольку движущихся частей в нём нет, и ничего по форме похожего на диск – тоже. Память в нём основана на физических свойствах проводимости полупроводников, так что SSD – полупроводниковое (или твердотельное) устройство, тогда как обычный жёсткий диск можно назвать электро-механическим устройством.

Аббревиатура SSD как раз и означает «solid-state drive », то есть, буквально, «твердотельный накопитель ». Он состоит из контроллера и чипов памяти.

Контроллер – наиболее важная часть устройства, которая связывает память с компьютером. Основные характеристики SSD – скорость обмена данных, энергопотребление, и т.п., зависят именно от него. Контроллер имеет свой микропроцессор, работающий по предустановленной программе, и может выполнять функции исправления ошибок кода, предотвращения износа, чистки от мусора.

Память в накопителях может быть как энергонезависимой (NAND ), так и энергозависимой (RAM ).

NAND-память поначалу выигрывала у HDD только в скорости доступа к произвольным блокам памяти, и только с 2012 года скорость чтения/записи также многократно выросла. Сейчас в масс-маркете накопители SSD представлены моделями именно с энергонезависимой NAND -памятью.

RAM память отличается сверхбыстрыми скоростями чтения и записи, и построена по принципы оперативной памяти компьютера. Такая память энергозависима – при отсутствии питания данные пропадают. Используется как правило в специфичных сферах, вроде ускорения работы с базами данных, в продаже встретить трудно.

Отличия SSD от HDD

SSD отличает от HDD в первую очередь, физическое устройство. Благодаря этому он может похвастаться некоторыми преимуществами, но имеет и ряд серьёзных недостатков.

Основные преимущества:

· Быстродействие. Даже по техническим характеристикам видно, что скорость чтения/записи у SSD выше в несколько раз, но на практике быстродействие может различаться в 50-100 раз.
· Отсутствие движущихся частей, а соответственно, шума. Также это означает высокую стойкость к механическим воздействиям.
· Скорость произвольного доступа к памяти гораздо выше. В результате скорость работы не зависит от расположения файлов и их фрагментации.
· Гораздо меньшая уязвимость к электромагнитным полям.
· Малые габариты и вес, низкое энергопотребление.

Недостатки:

· Ограничение ресурса по циклам перезаписи. Означает, что перезаписать отдельную ячейку можно определённое количество раз – в среднем, этот показатель варьируется от 1 000 до 100 000 раз.
· Стоимость гигабайта объёма пока достаточно высока, и превосходит стоимость обычного HDD в несколько раз. Однако, этот недостаток со временем исчезнет.
· Сложность или даже невозможность восстановления удалённых или утерянных данных, связанная с применяемой накопителем аппаратной командой TRIM , и с высокой чувствительностью к перепадам напряжения питания: при таком повреждении чипов памяти информация с них теряется безвозвратно.

В целом, у твердотельных накопителей есть ряд преимуществ, которыми стандартные жёсткие диски не обладают – в случаях, когда главную роль играют быстродействие, скорость доступа, размеры и устойчивость к механическим нагрузкам, SDD настойчиво вытесняет HDD .

Какой объём SSD понадобится?

Первое, на что стоит обратить внимание при выборе SSD – его объём. В продаже есть модели с ёмкостью от 32 до 2000 Гб.

Решение зависит от варианта использования – вы можете установить на накопитель только операционную систему, и ограничиться объёмом SSD в 60-128 Гб , что будет вполне достаточно для Windows и установки основных программ.

Второй вариант – использовать SSD как основную медиа-библиотеку, но тогда вам понадобится диск объёмом в 500-1000 Гб , что выйдет довольно дорого. Это имеет смысл, только если вы работаете с большим количеством файлов, к которым нужно обеспечить действительно быстрый доступ. Применительно к рядовому пользователю – не очень рациональное соотношение цена/скорость.

Но есть и ещё одно свойство твердотельных накопителей – в зависимости от объёма скорость записи может сильно отличаться. Чем больше объём диска, тем, как правило, больше скорость записи. Это связано с тем, что SSD способен параллельно использовать сразу несколько кристаллов памяти, а количество кристаллов растёт вместе с объёмом. То есть в одинаковых моделях SSD с разной ёмкостью в 128 и 480 Гб разница в скорости может различаться примерно в 3 раза.

Учитывая данную особенность, можно сказать, что сейчас наиболее оптимальным по цене/скорости выбором можно назвать 120-240 гигабайтные модели SSD , их хватит для установки системы и наиболее важного софта, а может быть, и для нескольких игр.

Интерфейс и форм-фактор

2.5" SSD

Самым распространённым форм-фактором SSD является формат 2,5 дюйма. Представляет собой «брусок» размерами примерно 100х70х7мм, у разных производителей они могут слегка различаться (±1мм). Интерфейс у 2.5” накопителей, как правило, SATA3 (6 Гбит/с ).

Преимущества формата 2.5":

  • Распространённость на рынке, доступен любой объём
  • Удобство и простота использования, совместим с любыми материнскими платами
  • Демократичная цена
Недостатки формата:
  • Относительно низкая скорость среди ssd - максимально до 600 Мб/с на один канал, против, например 1 Гб/с у интерфейса PCIe
  • Контроллеры AHCI, которые были разработаны для классических жёстких дисков
Если вам нужен накопитель, который удобно и легко монтировать в корпус ПК, а ваша материнская плата имеет только разъёмы SATA2 или SATA3 , то 2.5” SSD накопитель – это ваш выбор. Система и офисные программы будет загружаться очевидно быстрее по сравнению с HDD, а большой разницы с более скоростными решениями обычный пользователь не заметит.

mSATA SSD

Существует более компактный форм-фактор - mSATA , размерами 30х51х4 мм. Имеет смысл использовать в ноутбуках и любых других компактных устройствах, где установка обычного 2.5” накопителя нецелесообразна. Если у них, конечно, есть разъём mSATA . По скорости - это всё та же спецификация SATA3 (6 Гбит/с ), и не отличается от 2.5".

M.2 SSD

Есть ещё один, самый компактный форм-фактор M.2 , постепенно сменяющий mSATA . Предназначен, главным образом, для ноутбуков. Размеры - 3.5х22х42(60,80) мм. Есть три разных длины планок - 42, 60 и 80 мм, обратите внимание на совместимость при установке в свою систему. Современные материнские платы предлагают, по крайней мере, один слот U.2 под формат M.2.

M.2 может быть как с интерфейсом SATA , так и PCIe . Разница между этими вариантами интерфейса в скорости, и при том довольно большая - SATA накопители могут похвастаться скоростью в среднем 550 Мб/с, тогда как PCIe, в зависимости от поколения, может предложить 500 Мб/с на одну линию для PCI-E 2.0 , и скорость до 985 Мб/с на одну линию PCI-E 3.0 . Таким образом, твердотельный накопитель, установленный в слот PCIe x4 (с четырьмя линиями), может обмениваться данными на скорости до 2 Гб/с в случае PCI Express 2.0 и до почти 4 Гб/с – при использовании PCI Express третьего поколения.

Различия в цене при этом существенны, диск форм-фактора M.2 с интерфейсом PCIe обойдётся в среднем в два раза дороже интерфейса SATA при одинаковом объёме.

Форм-фактор имеет разъём U.2, который может иметь коннекторы, отличающиеся друг от друга ключами – специальными «вырезами» в них. Существуют ключи B и , а также B&M . Отличаются скоростью по шине PCIe : ключ М обеспечит скорость до PCIe х4 , ключ M скорость до PCIe х2 , как и совмещённый ключ B&M .

B -коннектор несовместим с M -разъёмом, M -коннектор соответственно, с B -разъёмом, а B&M коннектор совместим с любым. Будьте внимательны, приобретая формата M.2 , так как материнская плата, ноутбук или планшет должны иметь подходящий разъём.

PCI-E SSD

Наконец, последний существующий форм-фактор – , как плата расширения PCI-E . Монтируется, соответственно в слот PCI-E , обладают самой высокой скоростью, порядка 2000 Мбайт/с на чтение, и 1000 Мбайт/с на запись . Такие скорости встанут вам очень дорого: очевидно, что выбирать такой накопитель стоит для профессиональных задач.

NVM Express

Существуют также SSD , имеющие новый логический интерфейс NVM Express , разработанный специально для твердотельных накопителей. От старого AHCI он отличается ещё более низкими задержками доступа и высокой параллельностью работы чипов памяти за счёт нового набора аппаратных алгоритмов.
На рынке есть модели как c разъёмом M.2 , так и в PCIe . Минус PCIe тут только в том, что он займёт важный слот, который может пригодиться и под другую плату.

Поскольку стандарт NVMe предназначен именно для флэш-памяти, он учитывает её особенности, тогда как AHCI всё же только компромисс. Поэтому, NVMe - будущее твердотельных накопителей, и со временем он будет только оптимизироваться.

Какой тип памяти в SSD лучше?

Разберёмся в типах памяти SSD . Это одна из главных характеристик SSD, определяющая ресурс перезаписи ячеек и скорость.

MLC (Multi-Level Cell) - наиболее популярный тип памяти. Ячейки содержат 2 бита, в отличии от 1-го бита в старом типе SLC , который уже почти не продаётся. Благодаря этому – больший объём, а значит, меньшая стоимость. Ресурс записи от 2000 до 5000 циклов перезаписи. При этом «перезапись» означает перезапись каждой ячейки диска. Следовательно, для модели в 240 Гб, например, можно записать как минимум 480 Тб информации. Так что, ресурса такого SSD даже при постоянном интенсивном использовании должно хватить лет эдак на 5-10 (за которые он уже всё равно сильно устареет). А при домашнем использовании его хватит и вовсе на 20 лет, так что ограниченность циклов перезаписи можно вообще не брать во внимание. MLC – это лучшее сочетание надёжность/цена.

TLC (Triple-Level Cell) - из названия следует, что здесь в одной ячейки хранится сразу 3 бита данных. Плотность записи здесь в сравнении с MLC выше на целых 50% , а значит, ресурс перезаписи меньше – всего от 1000 циклов. Скорость доступа тоже ниже из-за большей плотности. Стоимость сейчас не сильно отличается от MLC . Давно и широко используется во флэшках. Срок службы также достаточный для домашнего решения, но подверженность неисправимым ошибкам и «отмиранию» ячеек памяти заметно выше, причём во время всего срока службы.

3D NAND – это скорее форма организации памяти, а не её новый тип. Существует как MLC , так и TLC 3D NAND . Такая память имеет вертикально размещённые ячейки памяти, и отдельный кристалл памяти в ней имеет несколько уровней ячеек. Получается, что у ячейки появляется третья пространственная координата, отсюда и приставка "3D" в названии памяти - 3D NAND . Отличается очень низким количеством ошибок и высокой выносливостью из-за более крупного техпроцесса в 30-40нМ.
Гарантия производителя на отдельные модели достигает 10 лет использования, но стоимость высока. Самый надёжный тип памяти из существующих.

Отличия дешёвых SSD от дорогих

Диски одного и того же объёма могут даже у одного производителя сильно отличаться по цене. Дешёвый SSD от дорого может отличаться следующими моментами:

· Более дешёвый тип памяти. По возрастанию стоимости/надёжности, условно: TLC MLC 3D NAND .
· Более дешёвый контроллер. Также влияет на скорость чтения/записи.
· Буфер обмена. Самый дешёвые SSD могут вовсе не иметь буфера обмена, это не сильно удешевляет их, но заметно снижает быстродействие.
· Системы защиты. Например, в дорогих моделях есть защита от прерывания питания в виде резервных конденсаторов, позволяющих корректно завершить операцию записи, и не потерять данные.
· Брэнд. Само собой, более раскрученный брэнд будет дороже, что не всегда означает техническое превосходство.

Вывод. Что выгоднее купить?

Можно с уверенностью сказать, что современные SSD накопители достаточно надёжны. Боязнь потери данных и негативное отношение к твердотельным накопителям, как классу, на данный момент уже совсем неоправданны. Если говорить о более-менее популярных брэндах, то даже дешёвая TLC память подойдёт для бюджетного домашнего использования, и её ресурса хватит вам на несколько лет как минимум. Многие производители к тому же дают гарантию в 3 года.

Итак, если вы ограничены в средствах, то ваш выбор – это ёмкостью в 60-128 Гб для установки системы и часто используемых приложений. Тип памяти не столь критичен для домашнего использования – TLC это будет или MLC , диск устареет раньше, чем выработается ресурс. При прочих равных, конечно, стоит выбрать MLC .

Если вы готовы заглянуть в средний ценовой сегмент и цените надёжность, то лучше рассмотреть SSD MLC на 200-500 Гб . За старшие модели придётся выложить около 12 тысяч рублей. При этом, объёма вам хватит практически для всего, что должно работать быстро на домашнем пк. Также можно взять модели ещё более повышенной надёжности с кристаллами памяти 3D NAND .

Если ваша боязнь износа флэш-памяти достигает панического уровня, то стоит смотреть на новые (и дорогие) технологии в виде формата накопителей 3D NAND . А если без шуток, то это будущее SSD высокая скорость и высокая надёжность здесь объединены. Подобный накопитель подойдёт даже для важных баз данных серверов, поскольку ресурс записи здесь достигает петабайт , а количество ошибок минимально.

В отдельную группу хочется выделить накопители с интерфейсом PCI-E . Он обладают высокой скоростью чтения и записи (1000-2000 Мб/с ), и в среднем дороже прочих категорий. Если во главу угла ставить именно быстродействие, то это лучший выбор. Недостаток - занимает универсальный слот PCIe, у материнских плат компактных форматов слот PCIe может быть всего один.

Вне конкуренции - SSD с логическим интерфейсом NVMe , скорость чтения которых переваливает за 2000 Мб/с. В сравнении с компромиссной для SSD логикой AHCI , имеет гораздо большую глубину очереди и параллелизм. Высокая стоимость на рынке, и лучшие характеристики - выбор энтузиастов или профессионалов.

Всем привет! Буквально на днях встретил своего давнишнего приятеля. Мы разговорились, и он, со словами «Смотри с каким телефоном я сейчас хожу!», продемонстрировал свою старенькую кнопочную Nokia. Выяснилось, что на его iPhone стала постоянно «слетать» прошивка - пришлось отдать смартфон в сервисный центр. Казалось бы, обычное дело...

Однако, для приятеля оказался необычным тот перечь работ, которые будет проводить сервис. Полная диагностика, обновление программного обеспечения (при необходимости) и другие «обычные штуки» - здесь все стандартно и понятно. Главный же вопрос вызвала вот такая фраза мастера - «скорей всего, надо перекатывать Nand Flash».

Я, конечно, в сервисе не показал что не понимаю о чем речь - дескать и так все знаю без вас. Вы главное - делайте. Но пришел домой и сразу полез «гуглить» - а что это вообще такое, Nand Flash? И на фига его куда-то катать внутри iPhone?

Посмеялись с ним, разошлись, а я подумал - почему бы не написать коротенькую заметку на эту тему? Много времени это не займет, а людям, которые столкнулись с той же проблемой что и мой знакомый, станет чуточку понятней, что вообще происходит с их смартфоном. Подумал - сделал. Поехали!:)

Что такое Nand Flash в iPhone?

Это внутренняя память устройства. Да, да, то самое и которого очень часто не хватает владельцам iPhone на 16 GB.

Грубо говоря, Nand Flash в iPhone 7 32 GB это и есть те самые 32 GB внутренней памяти.

Расположена память на основной системной плате устройства и ни чем примечательным не выделяется - самый обычный чип.

Естественно, это никакая не флешка - нельзя разобрать iPhone, легко отсоединить Nand Flash, поставить другую и думать что все будет «ОК». Не будет. Хотя, стоит оговориться, что в некоторых случаях это все-таки возможно. Но об это чуть дальше. А пока переходим к неполадкам...

Причины неисправности

Вариантов не очень много, и все они, как правило «стандартные»:

  1. Падения устройства.
  2. Иные физические повреждения.
  3. Попадание жидкости.
  4. Брак.
  5. Джейлбрейк.

Здесь особо и расписывать нечего - понятное дело, что если устройство бросать и заливать водой, то это скажется на его работоспособности.

Хотя, отдельно все-таки отмечу такой пункт, как заводской брак - такое тоже очень даже возможно. Я был свидетелем подобной ситуации - iPhone только что куплен, а работать толком не работает - перезагружается, при восстановлении показывает ошибки и вообще ведет себя странно. Отдали в сервис, как итог - брак Nand Flash памяти и последующая замена устройства.

Симптомы неисправности Flash памяти iPhone

Каких-то четких и определенных симптомов у этой неисправности нет (на экране не выскакивает надпись - у вашего устройства проблемы с памятью), поэтому обо всем этом можно догадаться только по косвенным признакам:


Кстати, об ошибках...

Ошибки iTunes, указывающие на неисправность Nand Flash

Самый верный способ борьбы с различными неполадками в работе устройства. Однако, если у iPhone существуют проблемы с Nand Flash памятью, то процесс восстановления может прерываться и сопровождаться следующими характерными ошибками:


Но, важно помнить вот о чем - iTunes устроен таким образом, что одна и та же цифра ошибки может иметь несколько причин.

Например, ошибка 4013 может сигнализировать как о проблемах с самой микросхемой, так и о неоригинальности использования провода для подключения к ПК.

Как видите, разброс очень большой - от простого провода, до очень сложного ремонта. Поэтому, использовать этот перечень ошибок для предварительного анализа ситуации можно, а вот слепо доверять - нельзя.

Ремонт Nand Flash памяти - возможно ли это?

Возможно. Но, конечно же, не «в домашних условиях». Более того, далеко не все сервисные центры умеют проделывать эту операцию. Например, «в палатке на рынке» вам с большой долей вероятности помочь не смогут - там просто не будет необходимого оборудования. Да и навык, какой-никакой, должен быть.

В который раз отдельно замечу - если у вашего iPhone не закончился гарантийный срок (), то ничего выдумывать не нужно - . С большой долей вероятности вы получите взамен новое устройство.

Если с гарантией «пролет», а ремонт Nand Flash памяти все-таки необходим, то у сервисного центра есть два варианта исправления ситуации:


Кстати, если говорить про оборудование для прошивки Nand Flash, то подобные программаторы достаточно разнообразны, но одна вещь их все-таки объединяет - цена. Все они стоят приличных денег - далеко не каждый может позволить себе такую штуку.

Какой вывод можно сделать из всего этого? Проблемы с памятью iPhone - это достаточно серьезная поломка, которую очень тяжело исправить самостоятельно. Но и безнадежной ситуацию назвать нельзя. Главное - найти хороший сервисный центр с грамотными специалистами и необходимым оборудованием. И тогда iPhone еще долго будет радовать вас своей работой!

P.S. Да уж, короткой заметки не получилось:) Впрочем, что есть, то есть - не удалять же теперь. Да и информация полезная - кому-нибудь да пригодится. Согласны? Ставьте «лайки», жмите на кнопки социальных сетей - поддержите автора! Он старался, честно. Спасибо!

P.S.S. Остались какие-то вопросы? Есть чем дополнить статью или хочется рассказать свою историю? Для этого существуют комментарии - пишите смело!

Существует два основных типа Flash-памяти: NOR и NAND. Каждый из них имеет свои преимущества и недостатки, которые и определяют области использования каждой технологии. Их основные характеристики представлены в таблице.

NOR Flash Memory

Память NOR, названная так в честь особой разметки данных (Not OR – логическое Не-ИЛИ), является высокоскоростной памятью Flash. Память NOR предоставляет возможность высокоскоростного, случайного доступа к информации, и обладает способностью записывать и считывать данные в определенном месте без необходимости обращаться к памяти последовательно. В отличие от NAND памяти, память NOR позволяет обращаться к данным размером до одного байта. Технология NOR выигрывает в ситуациях, когда данные случайным образом записываются или читаются. Поэтому NOR чаще всего встраивают в сотовые телефоны (для хранения операционной системы) и планшеты, а также используется в компьютерах для хранения BIOS.

NAND Flash Memory

NAND память была изобретена после NOR, и также названа в честь особой разметки данных (Not AND – логическое Не-И). NAND память записывает и считывает данные с высокой скоростью, в режиме последовательного чтения, упорядочивая данные в небольшие блоки (страницы). Память NAND может считывать и записывать информацию постранично, однако не может обращаться к конкретному байту, как NOR. Поэтому NAND обычно используют в твердотельных накопителях (), аудио и видео проигрывателях, телевизионных приставках, цифровых камеры, мобильных телефонах (для хранения пользовательской информации) и других устройствах, в которых данные, как правило, записываются последовательно.

Например, большинство цифровых камер используют память на основе технологии NAND, так как изображения снимаются и записываются последовательно. Технология NAND является более эффективной еще и при чтении, так как она способна передавать целые страницы данных очень быстро. Как последовательная память, NAND идеальна для хранения данных. Цена на

В 1989 году состоялся анонс Nand Flash памяти, данная разработка была представлена компанией Toshiba на International Solid-State Circuits Conference. До этого существовали только разработки NOR памяти, основными недостатками которой были: скорость работы и большая площадь чипа. Основным отличием NAND Flash от Nor Flash являются особенности адресации, если в NOR Flash можно адресовать произвольную ячейку, то в NAND Flash применена страничная адресация (обычно размер страницы 528, 2112, 4224, 4304, 4320, 8576 байт).

На сегодня существует масса устройств, где используются микросхемы NAND Flash в том числе и в различных носителях информации, таких как SSD накопители, USB Flash, различные Flash card (MMC, RS-MMC, MMCmicro, SD, miniSD, MicroSD, SDHC, CF, xD, SmartMedia, Memory Stick и т.д.)

Принципиально носители информации на NAND Flash из себя представляют микроконтроллер, который обеспечивает работу с микросхемами памяти, а также работу с различными устройствами по заданному стандартами интерфейсу. В большинстве устройств это выглядит как небольшая плата, на которой размещены одна или несколько микросхем NAND Flash памяти в конструктивном исполнении TSOP-48, short TSOP-48 или TLGA-52 и микроконтроллер. Миниатюрные устройства, как правило выполнены в виде одного чипа в который интегрированы как микросхема Nand Flash, так и микроконтроллер.

Основные недостатки NAND Flash памяти - это недостаточно высокая скорость и не очень большое количество циклов записи, которые способна выдержать микросхема. Для обхода этих проблем, производители контроллеров идут на некоторые ухищрения, такие как организация записи в NAND Flash в несколько потоков, для поднятия быстродействия и организация логических банков разбитых на достаточно крупные блоки и организация сложной системы трансляции.

Для равномерного износа NAND Flash практически во всех контроллерах организованно разделение адресного пространства на логические банки, которые в свою очередь разделяются на блоки (состоящие из нескольких страниц памяти), обычно на 256-2048 блоков. Контроллером ведется учет количества записей в каждый из блоков. Для того чтобы данные пользователя можно было свободно перемещать внутри банка, для этого имеется логическая нумерация блоков т.е. на практике при чтении микросхемы в дамп видим картину что данные пользователя в виде достаточно крупных блоков (16кб – 4Мб) хаотично перемешаны. Порядок работы с пользовательскими данными отражен в трансляторе в виде таблицы в которой указан порядок построения блоков для того чтобы получить упорядоченное логическое пространство.

Для увеличения операций чтения/записи производители контроллеров реализуют функции распараллеливания данных, то есть прямая аналогия с RAID массивом уровня 0 (stripe), только немного более сложная реализация. На практике это выглядит либо в виде внутриблочного распараллеливания (интерлива), на более мелкие подблоки (как правило от 1 байта, до 16Кб), также симметричное распараллеливание (страйп) между физическим банками микросхемы NAND Flash и между несколькими микросхемами.

Стоит понимать, что при таком принципе работы, транслятор накопителя – постоянно изменяющаяся таблица, практически при каждой записи в NAND Flash. Исходя из принципа работы с NAND Flash – чтение блока в буфер, внесение изменений и запись блока на место, очевидно, что наиболее опасны для данных являются незавершенные операции записи; например, когда происходит запись измененного транслятора. В результате необдуманного обращения с накопителями: внезапного извлечения их из USB разъема или из разъема кардридера во время записи, чревато разрушением служебных данных, в частности таблицы трансляции.

При разрушение служебных данных, накопитель не может функционировать или в некоторых случаях функционирует неверно. Извлечение данных программными средствами, как правило, не представляется возможным по многим причинам. Одно из решений – это выпаивание микросхем NAND Flash с последующим чтением на соответствующем считывателе (программаторе). Учитывая, что оригинальный транслятор отсутствует, либо поврежден, предстоит работа по разбору дампа извлеченного из микросхемы NAND Flash. Многие, наверное, обратили внимание на кажущийся странным размер страниц памяти в NAND Flash. Это объясняется тем, что в каждой странице, кроме данных пользователя имеются служебные данные обычно это представлено в виде 512/16; 2048/64; 4096/128; 4096/208 (существуют и значительно более сложные варианты организации данные/служебка). В служебных данных присутствую различные маркеры (маркер, номера блока в логическом банке; маркер ротации блока; ECC; и т.п.) Восстановление пользовательских данных сводится к устранению распараллеливания данных внутри блоков, между банков и между микросхемами памяти для получения цельных блоков. Если есть необходимость, то устраняются внутриблочные ротации, ренумерации и т.п. Дальнейшая задача, состоит в поблочной сборке. Для того чтобы ее осуществить необходимо четко уяснить количество логических банков, количество блоков в каждом логическом банке, количество используемых блоков в каждом банке (задействованы не все) местонахождение маркера в служебных данных, алгоритм нумерации. И только потом производить сбор блоков в конечный файл-образ из которого можно будет произвести чтение пользовательских данных. В процессе сбора подстерегают подводные камни в виде нескольких блоков-претендентов на одну позицию в конечный файл-образ. После решение данного круга задач, получаем файл-образ с пользовательской информацией.

В случаях, когда данные не играют никакой роли, но есть желание восстановить работоспособность самого накопителя, то лучшие вариант коррекции проблем со служебными данными – это выполнение процедуры форматирования фирменной утилитой с сайта производителя накопителя. Многие утилиты фактически переписывают всю служебную информацию, создают чистый транслятор, и выполняют процедуру форматирования с созданием новой файловой системы. Если же производитель не удосужился выложить Recovery-утилиту, тогда выход в виде поиска утилит форматирования накопителей на NAND Flash «по контроллеру», единственно, что покажется сложным пользователю – это обилие производителей контроллеров и сложности с идентификацией последнего.

Павел Янчарский

Перепечатка материалов разрешена только с указанием активной ссылки на оригинал статьи

В основу зарождения NAND-памяти легла появившаяся намного раньше флеш-память, используемая в твердотельных накопителях с явно меньшей скоростью работы, долговечностью и большей площадью чипа, чем у NAND-памяти. Флеш-память изобрел Fujio Masuoka в 1984 году, работая в компании Toshiba. После представления разработки Fujio Masuoka на IEEE 1984 (International Electron Devices Meeting) в Сан-Франциско (Калифорния) компания Intel в 1988 году выпустила первый коммерческий флеш-чип типа NOR. Появление NAND-типа флеш-памяти было анонсировано Toshiba в 1989 году на Международной конференции, посвященной твердотельным дискам (International Solid-State Circuits Conference).

Flash-память, типы NAND-памяти

Принципиальным отличием флеш-памяти является хранение ею одного бита информации в массиве транзисторов с плавающим затвором, называемых ячейками. Существует два типа NAND-памяти, используемой в SSD дисках – SLC и MLC. Чем же отличаются SLC и MLC типы памяти? SLC-устройства имеют одноуровневые ячейки, которые хранят в каждом транзисторе только один бит, а многоуровневые MLC могут хранить в каждой ячейке несколько бит информации. Это следствие использования разных уровней электрического заряда на плавающем затворе транзистора. Принцип кодирования (логического 0 или 1) информации во всех случаях одинаков, он будет описан нами ниже. Различается лишь строение ячейки. Глубина уровней MLC может доходить до 4-х, то есть хранить до 4-х бит информации, в то время как SLC является более простой единицей и хранит 1 бит.

Технология MLC позволяет за счет наращивания уровней существенно увеличить объем диска, оставив его физические размеры неизменными, что уменьшает себестоимость каждого гигабайта. На этом положительные качества данной технологии заканчиваются. С каждым дополнительным уровнем усложняется задача распознавания уровня сигнала, не говоря уже об уменьшении ресурса работы SSD-диска, увеличивается время поиска адреса ячейки, повышается вероятность ошибок. Контроль за ошибками осуществляется аппаратно, что в случае технологии MLC ведет к удорожанию управляющей электроники и соответственно увеличивает конечную стоимость SSD. Диски SSD, массово продающиеся на мировом рынке, используют MLC-технологию с четырехуровневой записью. При этом данные кодируются как (11), (10), (01), (00). Для SLC одноуровневая ячейка может принимать лишь значения 0 или 1.

Решения с ячейками SLC при тех же размерах и цене явно проигрывают MLC в объеме хранимой на них информации, но при этом являются более быстрыми и долговечными. Поэтому производителям приходится использовать большее количество микросхем при меньшем суммарном объеме диска, что в конечном итогу повышает цену диска SLC более чем в два раза по сравнению с такого же объема диском MLC.

Механизмы записи и чтения элементарной ячейки NAND-память

Постараемся более подробно описать работу транзистора для NAND-памяти, которым является полевой транзистор с изолированным затвором или MOSFET.

Главной особенность полевого транзистора, которая позволила его использование для хранения информации, стала возможность удерживать электрический заряд на «плавающем» затворе до 10 лет. Сам «плавающий» затвор выполнен из поликристаллического кремния и полностью окружен слоем диэлектрика, что обеспечивает ему полное отсутствие электрического контакта с элементами транзистора. Он расположен между управляющим затвором и подложкой из p-n переходов. Управляющий электрод полевого транзистора называется затвором. В данном случае проводимость p-n перехода, обусловленная электрическим сопротивлением, управляется разностью потенциалов, которая создает электрическое поле, воздействующее на состояние p-n переходов.

Немаловажными элементами транзистора являются также сток и исток. Для изменения бита записываемой информации в ячейку, напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Это позволяет некоторым электронам перейти через слой диэлектрика на плавающий затвор, обеспечив его зарядом, а значит и наполнение элементарной ячейки битом информации.

Накопленный заряд на плавающем затворе влияет на проводимость канала сток-исток, что используется при чтении.

Такая разность механизма записи и чтения явно сказывается на различном энергопотреблении этих режимов. NAND-память потребляет достаточно большой ток при записи, а при чтении затраты энергии наоборот малы. Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят на исток. Именно из таких элементарных ячеек объединенных в страницы, блоки и массивы и состоит современный твердотельный накопитель.

Срок жизни NAND-памяти

Главной особенностью NAND-памяти, позволяющей ее использование в SSD-дисках, стало ее умение хранить данные без внешнего источника энергии. Однако такая технология накладывает ограничения на число изменений логического состояния ячейки, что приводит к конечному числу циклов перезаписи этой ячейки. Это связанно с постепенным разрушением диэлектрического слоя. Данный эффект наступает намного быстрее у ячеек MLC ввиду их малого резерва изменения заряда плавающего затвора из-за конструктивных особенностей. Чтение ячейки тоже влияет на срок ее жизни, но это воздействие намного менее значительно, чем при записи/стирании, что позволяет считать циклы чтения не ограниченными, а срок жизни SSD-диска измеряется количеством возможных циклов перезаписи.

На всех SSD-дисках присутствует недоступная для стандартных операций записи/чтения часть. Она необходима как резерв в случае износа ячеек, по аналогии с магнитными накопителями HDD, который имеет резерв для замены bad-блоков. Дополнительный резерв ячеек используется динамически, и по мере физического изнашивания основных ячеек предоставляется резервная ячейка на замену.

Приведем приблизительную сравнительную таблицу основных характеристик, отличающих работу SSD-дисков с технологией SLC и дисков с ячейками MLC.

Таблица явно говорит обо всех преимуществах и недостатках этих технологий. В ней видно превосходство SLC решений над MLC, но не указан главный критерий популярности SSD-дисков – их цена. Указывать ее и нет смысла ввиду быстрого удешевления таких решений. Скажем лишь, что MLC диски хоть и уступают во всем SLC, но они более чем в два раза выигрывают в цене и могут быть компактнее при тех же объемах хранимых данных.

Структура SSD-диска: размер ячейки, страницы, блока NAND-памяти

Для более эффективного использования элементарных ячеек памяти они были объединены в массивы с несколько уровневой структурой. Одна ячейка хранящая один (для SLC) или, как правило, два (для нынешнего поколения MLC) бита данных, объединена в группу названную страницей и вмещающую 4 КБ данных.

Специальные алгоритмы для работы с SSD-дисками

Ввиду ограниченности циклов записи/стирания ячеек флеш-памяти разработчикам пришлось составить правильный алгоритм работы SSD-диска, позволяющий равномерно «изнашивать» всё его запоминающее пространство. Как уже было нами отмечено, весь объем диска делится на блоки размером 512 КБ, а они в свою очередь на страницы емкостью 4 КБ, на которые осуществляются операции чтения и записи. Но как только вы записали информацию на страницу, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 КБ, а стереть данные можно минимум блоками по 512 КБ. Для этого контроллер группирует и переносит данные (этот алгоритм мы опишем ниже) для освобождения целого блока. Эта операция приводит к увеличению времени отклика и сокращению ресурс SSD, но чем-то приходится жертвовать.

Поговорим об алгоритме записи/удаления.

После запроса на запись от операционной системы, контроллер носителя определяет размер и структуру информации. При наличии достаточного числа пустых блоков выделяется новый блок, на который и копируются переданные ОС для записи данные. Однако по мере заполнения диска и уменьшению достаточного числа пустых блоков данная операция существенно усложняется. Контроллер все чаще ищет максимально подходящий (по количеству свободных страниц), частично занятый блок и переписывает его в пустой блок, совмещая его с данными, пришедшими от ОС для записи, что полностью заполняет его. Старый блок затем очищается. При таком алгоритме мы получаем один полностью заполненный блок и один пустой, который зачисляется в группу пустых блоков, доступных для записи. При запросе на запись, контроллер использует только блоки из этой группы.

В своем оснащении контроллер обычно имеет 10 каналов, в частности таким количеством каналов обладает контроллеры SSD-дисков от Intel. Весь пул микросхем равномерно закреплен за каждым каналом обмена данных. На данном этапе развития технологий работы SSD-дисков, микросхемы памяти, взаимодействующие с первым каналом, не могут пересекаться на операциях со вторым, третьим и последующими каналами, но данная проблема вполне может разрешиться в недалеком будущем. Вполне логично бы было использовать «плавающие» связи для всей памяти, размещенной на диске. Часто возникает необходимость записи очереди из мелких данных, тогда контроллер автоматически распределяет весь блок по всем каналам, но связь между ячейками сохраняется, т.к. этот кусок данных является одной логической единицей.

Операция удаления данных тоже напрямую зависит от объема и размещения удаляемых данных. Если вся информация, записана в одном блоке или в группе блоков, полностью занимая их, то блок/блоки попросту очищаются и помечаются как пустые и готовые для последующей записи с максимально возможной скоростью. Но данный идеальный случай встречается не всегда.

Если необходимо удалить не весь блок, а несколько страниц, находящихся в нем, то контроллер удаляет данные логически, не стирая их, а просто помечая данные страницы как удаленные. В дальнейшем оставшаяся информация будет скомпонована с новой, пришедшей для записи, и записана в пустой блок, а исходный блок, как уже было описано в алгоритме записи, будет полностью удален и помечен как пустой.

Зачем нужен Тримминг?

Это еще одна немаловажная технология, обеспечивающая более равномерный износ SSD-диска и более быструю работу с данными за счет команды TRIM. Она позволяет выстроить цепочку и определить приоритет освобождаемых блоков. Раньше данная операция была возложена на ОС, но современные SSD-контроллеры уже поддерживают данную функцию аппаратно в прошивках накопителей. Время выполнение операции по «зачистке» блоков связано по экспоненте со свободным объемом на диске. Чем меньше информации и больше свободного места, тем быстрее происходит «тримминг» на SSD. По мере заполнения диска до 75% функция очистки все еще не сильно выражена относительно простоя. Но, как только остаётся менее 15% свободного места, «триммирование» становится затруднительным. Естественно, часть зависимости полностью обуславливается типом информации (статичная, т.е. редко перемещаемая и в основном только читаемая, или динамическая). Согласно исследованию IBM идеальные условия работы SSD, когда он заполнен менее, чем на 75% и соотношения статической и динамической части информации 3 к 1.

TRIM является неотъемлемой частью современных твердотельных накопителей. Он обеспечивает прирост производительности при заполнении данными дисков более чем на 2/3, за счет правильной сортировки блоков и подготовке их к записи. Это позволяет сократить разницу в скорости работы нового и уже заполнено на 75% диска до 2-3%.

Не стоит забывать, что по умолчанию операционная система настроена на работу с обычным HDD диском, а значит пользователю обязательно необходимо, отключить «старые» механизмы увеличения скорости работы магнитного диска, а так же алгоритмы дефрагментации. Кроме того, важно побеспокоиться о неполном использовании всего пространства своего SSD-диска.

Для чего используется кэш-буфер на SSD-дисках?

Кэш-буфер на SSD-дисках не применяется для ускорения процедуры записи/чтения как это принято для HDD-накопителей. Его объем даже не указывается в технических спецификациях SSD основной массой производителей. Он и не может считаться обычной кэш-памятью, как мы это привыкли понимать. Кэш-память на SSD дисках используется динамически, для хранения таблиц размещения и занятости ячеек диска. Параллельно в ней может храниться временная информация со стираемых ячеек, при нехватке пустого места на диске. Таблицы представляют собой трехмерную матрицу, и являются основным помощником для контроллера SSD. Основываясь на этих данных, диск принимает решения о стирании дополнительных ячеек. В нем так же хранится информация о частоте и интенсивности использования каждого доступного блока на диске. Кроме того, здесь записаны адреса «мест», где невозможно осуществить запись, ввиду физического износа.

Контроллер SSD-диска

Очень важным и постоянно усовершенствуемым элементом SSD-накопителя является его контроллер. Главной задачей контроллера является обеспечение операций чтения и записи, но в виду массы физических особенностей SSD-накопителя, контроллер также отвечает за управление структурой размещения данных. Основываясь на матрице размещения блоков, в какие ячейки уже проводилась запись, а в какие еще нет, контроллер оптимизирует скорость записи и обеспечивает максимально длительный срок службы вашего SSD-диска. Вследствие особенностей построения NAND-памяти, работать с ее каждой ячейкой отдельно нельзя. Как мы уже говорили выше, они объединены в страницы объемом по 4 Кбайта, и записать информацию можно только полностью заняв страницу. Стирать данные можно по блокам, которые равны 512 Кбайт. Все эти ограничения накладывают определенные обязанности на правильный интеллектуальный алгоритм работы контроллера. Поэтому правильно настроенный и оптимизированный контролер может существенно изменить как скоростные показатели, так и долговечность работы SSD-диска.

Итоги

На данный момент пока еще рано говорить о полной победе SSD-накопителей над магнитными дисками. Если учитывать объем и скорость работы SSD-накопителя, сравнивая их с аналогичными параметрами для традиционных HDD, то главным сдерживающим фактором перехода на твердотельные диски все еще останется их цена. Анализ нескольких последних лет показал нежелание производителей снижать цену на NAND-память. Только последние полгода можно наблюдать небольшую тенденцию по снижению цены на SSD, и то это, скорее всего, обусловлено спадом потребительского спроса, что вызвано мировым кризисом. Твердотельные накопители уже несколько лет представлены в широком ассортименте на мировом рынке, но даже такой значительный для цифровых технологий срок не смог повлиять на их конкурентоспособность по критерию «цена за ГБ хранимой информации» по отношению к магнитным дискам. Плотность записи на один магнитный диск постоянно увеличивается, что способствует выпуску все более емких моделей (на данный момент широко доступны HDD емкостью 2 ТБ). Такое распределение рынка может заставить покупателя отдать предпочтение SSD накопителю только в случае острой необходимости в скорости чтения или стойкости к вибрации/удару, но основной объем информации все равно будет храниться на классических жестких дисках.

Достоинства и недостатки SSD по сравнению с магнитными дисками HDD:

Достоинства:

  • намного большая скорость чтения;
  • полное отсутствие шума;
  • надежность ввиду отсутствия движущихся частей;
  • малое энергопотребление;
  • высокая устойчивость к вибрационным нагрузкам.

Недостатки:

  • высокая стоимость за каждый ГБ сохраняемой информации;
  • ограниченное количество циклов записи и удаления данных.

Статья прочитана 10888 раз(а)

Подписаться на наши каналы


Рекомендуем почитать

Наверх